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Abstract
We investigate the use of a non-parametric in-
dependence measure, the Hilbert-Schmidt Inde-
pendence Criterion (HSIC), as a loss-function for
learning robust regression and classification mod-
els. This loss-function encourages learning mod-
els where the distribution of the residuals between
the label and the model prediction is statistically
independent of the distribution of the instances
themselves. This loss-function was first proposed
by Mooij et al. (2009) in the context of learning
causal graphs. We adapt it to the task of learn-
ing for unsupervised covariate shift: learning on
a source domain without access to any instances
or labels from the unknown target domain, but
with the assumption that p(y|x) (the conditional
probability of labels given instances) remains the
same in the target domain. We show that the pro-
posed loss is expected to give rise to models that
generalize well on a class of target domains char-
acterised by the complexity of their description
within a reproducing kernel Hilbert space. Ex-
periments on unsupervised covariate shift tasks
demonstrate that models learned with the pro-
posed loss-function outperform models learned
with standard loss functions, achieving state-of-
the-art results on a challenging cell-microscopy
unsupervised covariate shift task.

1. Introduction
In recent years there has been much interest in methods
for learning robust models: models that are learned using
certain data but perform well even on data drawn from a
distribution which is different from the training distribu-
tion. This interest stems from demand for models which can
perform under conditions of transfer learning and domain
adaptation (Rosenfeld et al., 2018). This is especially rele-

1Technion Institute of Technology, Haifa, Israe. Correspon-
dence to: Daniel Greenfeld <danielgreenfeld3@gmail.com>, Uri
Shalit <urishalit@technion.ac.il>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

vant as training sets such as labeled image collections are
often restricted to a certain setting, time or place, while the
learned models are expected to generalize to cases which are
beyond the specifics of how the training data was collected.

More specifically, we consider the following learning prob-
lem, called unsupervised covariate shift. Let (X,Y ) be a
pair of random variables such that X ∈ X and Y ∈ Y ⊂ R,
with a joint distribution Psource(X,Y ), such that X are the
instances and Y the labels. Our goal is, given a training set
drawn from Psource(X,Y ), to learn a model predicting Y
from X that works well on a different, a-priori unknown tar-
get distribution Ptarget(X,Y ). In a covariate shift scenario,
the assumption is that Ptarget(Y | X) = Psource(Y | X)
but the marginal distribution Ptarget(X) can change between
source and target. We focus on unsupervised covariate shift,
where we have no access to samples X or Y from the target
domain.

In this paper we propose using a loss function inspired by
work in the causal inference community. We consider a
model in which the relation between the instance X and its
label Y is of the form:

Y = f?(X) + ε, ε⊥⊥X, (1)

where the variable ε denotes noise which is independent of
the distribution of the random variable X .

Given a well-specified model family and enough samples,
one can learn f?, in which case there is no need to worry
about covariate shift. However, in many realistic cases we
cannot expect to have the true model in our model class,
nor can we expect to have enough samples to learn the true
model even if it is in our model class. While traditional
methods rely on unlabeld data from the target domain to
reason about Ptarget(X), throughout this work we do not
assume that we have any samples from a test distribution,
nor that the model is well-specified.

The basic idea presented in this paper is as follows: by Eq.
(1) we have Y −f?(X)⊥⊥X . Standard loss functions aim to
learn a model f̂ such that f̂(X) ≈ Y , or such that p̂(Y |X)
is high. We follow a different approach: learning a model
f̂ such that Y − f̂(X) is approximately independent of the
distribution of X . Specifically, we propose measuring inde-
pendence using the Hilbert Schmidt Independence Criterion
(HSIC): a non-parametric method that does not assume a
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specific noise distribution for ε (Gretton et al., 2005a; 2008).
This approach was first proposed by Mooij et al. (2009) in
the context of causal inference. As Mooij et al. (2009) point
out, this approach can be contrasted with learning with loss
functions such as the squared-loss or absolute-loss, which
implicitly assume that ε has, respectively, a Gaussian or
Laplacian distribution.

Intuitively, covariate shift is most harmful when the target
distribution has more mass on areas of X on which the
learned model performs badly. Thus, being robust against
unsupervised covariate shift means having no certain sub-
population (of positive measure) on which the model per-
forms particularly badly. This of course might come at a
certain cost to the performance on the known source distri-
bution.

The following toy example showcases that standard loss
functions do not necessarily incentivize such behaviour.
Suppose X = {0, 1}, and Y = X . Let P (X = 0) = ε,
and consider the following hypothesis class: H = {h1, h2},
where h1(x) = 1 for all x, and h2(x) = x−0.01. For small
values of ε, an algorithm minimizing the mean squared er-
ror (or any standard loss) will output h1. An algorithm
relying on the independence criteria on the other hand will
output h2, since its residuals are independent of X . Which
is preferable? That depends on the target (test) distribution.
If it is the same as the training distribution, h1 is indeed a
better choice. However, if we do not know the target dis-
tribution, then h2 might be the better choice since it will
always incur relatively small loss, as opposed to h1 which
might have very poor performance, say if P (X = 0) and
P (X = 1) are switched during test time. While pursuing
robustness against any change in P (X) is difficult, we will
show below that learning with the HSIC-loss provides a
natural trade-off between the generalization guarantees on
the unknown target, and the complexity of the changes in
the target relative to the source distribution.

Our contributions relative to the first proposal by Mooij et al.
(2009) are as follows:

1. We prove that the HSIC objective is learnable for an
hypothesis class of bounded Rademacher complexity.

2. We prove that minimizing the HSIC-loss minimizes a
worst-case loss over a class of unsupervised covariate
shift tasks.

3. We provide experimental validation using both linear
models and deep networks, showing that learning with
the HSIC-loss is competitive on a variety of unsuper-
vised covariate shift benchmarks.

4. We provide code, including a PyTorch (Paszke et al.,

2019) class for the HSIC-loss1.

2. Background and Setup
The Hilbert-Schmidt independence criterion (HSIC), intro-
duced by Gretton et al. (2005a; 2008), is a useful method for
testing if two random variables are independent. We give
its basics below.

The root of the idea is that while Cov(A,B) = 0 does not
imply that two random variables A and B are independent,
having Cov(s(A), t(B)) = 0 for all bounded continuous
functions s and t does actually imply independence (Rényi,
1959). Since going over all bounded continuous functions
is not tractable, Gretton et al. (2005b) propose evaluating
sups2F,t2G Cov [s(x), t(y)] where F ,G are universal Re-
producing Kernel Hilbert Spaces (RKHS). This allows for
a tractable computation and is equivalent in terms of the
independence property. Gretton et al. (2005a) then intro-
duced HSIC as an upper bound to the measure introduced by
Gretton et al. (2005b), showing it has superior performance
and is easier to work with statistically and algorithmically.

2.1. RKHS Background

A reproducing kernel Hilbert space F is a Hilbert space
of functions from X to R with the following (reproducing)
property: there exist a positive definite kernelK : X×X →
R and a mapping function φ from X to F s.t. K(x1, x2) =
〈φ(x1), φ(x2)〉F . Given two separable (having a complete
orthonormal basis) RKHSs F and G on metric spaces X
and Y , respectively, and a linear operator C : F → G, the
Hilbert-Schmidt norm of C is defined as follows:

‖C‖HS =
X
i,j

〈Cui, vj〉2G ,

where {ui} and {ui} are some orthonormal basis for
F and G respectively. Here we consider two probabil-
ity spaces X and Y and their corresponding RKHSs F
and G. The mean elements µx and µy are defined such
that 〈µx, s〉F := E[〈φ(x), s〉F ] = E[s(x)], and likewise
〈µy, t〉G := E[〈ψ(y), t〉G ] = E[t(y)], where ψ is the embed-
ding from Y to G. Notice that we can compute the norms of
those operators quite easily: ‖µx‖2

F = E[K(x1, x2)] where
the expectation is done over i.i.d. samples of pairs from X .
For s ∈ F and t ∈ G, their tensor product s ⊗ t : G → F
is defined as follows: (s⊗ t)(h) = 〈t, h〉G · s. The Hilbert-
Schmidt norm of the tensor product can be shown to be
given by ‖s⊗ t‖2

HS = ‖s‖2
F · ‖t‖2

G . Equipped with these def-
initions, we are ready to define the cross covariance operator
Cxy : G → F :

Cxy = E[φ(x)⊗ ψ(y)]− µx ⊗ µy.
1https://github.com/danielgreenfeld3/XIC.

https://github.com/danielgreenfeld3/XIC
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2.2. HSIC

Consider two random variables X and Y , residing in two
metric spaces X and Y with a joint distribution on them,
and two separable RKHSsF and G onX and Y respectively.
HSIC is defined as the Hilbert Schmidt norm of the cross
covariance operator:

HSIC(X,Y ;F ,G) ≡ ‖Cxy‖2
HS.

Gretton et al. (2005a) show that:

HSIC(X,Y ;F ,G) ≥ sup
s2F,t2G

Cov [s(x), t(y)] , (2)

an inequality which we use extensively for our results.

We now state Theorem 4 of Gretton et al. (2005a)) which
shows the properties of HSIC as an independence test:
Theorem 1 (Gretton et al. (2005a), Theorem 4). Denote by
F and G RKHSs both with universal kernels, k, l respec-
tively on compact domains X and Y . Assume without loss
of generality that ‖s‖1 ≤ 1 for all s ∈ F and likewise
‖t‖1 ≤ 1 for all t ∈ G.

Then the following holds: ‖Cxy‖2
HS = 0⇔ X ⊥⊥ Y .

Let {(xi, yi)}ni=1 be i.i.d. samples from the joint distribution
on X × Y . The empirical estimate of HSIC is given by:

ĤSIC{(xi, yi)}ni=1;F ,G) =
1

(n− 1)2
trKHLH, (3)

where Ki,j = k(xi, xj), Li,j = l(yi, yj) are kernel matri-
ces for the kernels k and l respectively, and Hi,j = δi,j − 1

n
is a centering matrix. The main result of Gretton et al.
(2005a) is that the empirical estimate ĤSIC converges to
HSIC at a rate of O

�
1

n1/2

�
, and its bias is of order O( 1

n ).

3. Proposed Method
Throughout this paper, we consider learning functions tak-
ing the form Y = f?(X) + ε, where X and ε are indepen-
dent random variables drawn from a distribution D. This
presentation assumes the existence of a mechanism tying
together X and Y through f?, up to independent noise fac-
tors. A typical learning approach is to set some hypothesis
classH, and attempt to solve the following problem:

min
h2H

EX,ε�D[`(y, h(x))],

where ` is often the squared loss function in a regression
setting, or the cross entropy loss in case of classification.

Here, following Mooij et al. (2009), we suggest using a loss
function which penalizes hypotheses whose residual from Y
is not independent of the instance X . Concretely, we pose
the following learning problem:

min
h2H

HSIC(X,Y − h(X);F ,G), (4)

Algorithm 1 Learning with HSIC-loss
Input: samples {(xi, yi)}ni=1, kernels k, l, a hypothesis
hθ parameterized by θ, and a batch size m > 1.
repeat

Sample mini-batch {(xi, yi)}mi=1

Compute the residuals rθi = yi − hθ(xi)
Compute the kernel matrices Ki,j = k(xi, xj), and
Rθi,j = l(rθi , r

θ
j )

Compute the HSIC-loss on the mini-batch: Loss(θ) =
tr(KHRθH)/(m− 1)2 where Hi,j = δi,j − 1

m
Update: θ ← θ − α · ∇Loss(θ)

until convergence
Compute the estimated source bias:
b← 1

n

Pn
i=1 yi −

1
n

Pn
i=1 hθ(xi)

Output: A bias-adjusted hypothesis h(x) = hθ(x) + b

where we approximate the learning problem with empirical
samples using ĤSIC as shown in Eq. (3). Unlike typical
loss functions, this loss does not decompose as a sum of
losses over each individual sample. In Algorithm 1 we
present a general gradient-based method for learning with
this loss.

As long as the kernel functions k(·, ·) and l(·, ·) are differ-
entiable, taking the gradient of the HSIC-loss is simple with
any automatic differentiation software (Paszke et al., 2019;
Abadi et al., 2015). We note that HSIC(X,Y −h(X);F ,G)
is exactly the same for any two functions h1(X), h2(X)
who differ only by a constant. This can be seen by the
examining the role of the centering matrix H , or from the
invariance of the covariance operator under constant shifts.
Therefore, the predictor obtained from solving (4) is de-
termined only up to a constant term. To determine the
correct bias, one can infer it from the empirical mean of
the observed Y values. We note that it is possible to add a
regularization term to the loss function. In our experiments
we used standard regularization techniques such as L2 norm
weight and early stopping, setting them by standard (source
distribution only) cross-validation.

3.1. Understanding the HSIC-loss

Here we provide two additional views on the HSIC-loss,
motivating its use in cases which go beyond additive noise.

The first is based on the observation that, up to a constant,
the residual Y − h(X) is the gradient of the squared error
with respect to h(X). Intuitively, this means that by op-
timizing for the residual to be independent of X , we ask
that the direction and magnitude in which we need to up-
date h(X) to improve the loss is the same regardless of X .
Put differently, the gradient of h(X) would be the same
for every subset of X . This is also true for classification
tasks: consider the outputs of a classification network as
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logits o which are then transformed by Sigmoid or Softmax
operations into a probability vector h. The gradient of the
standard cross-entropy loss with respect to o is exactly the
residual Y − h(X). Thus, even when not assuming additive
noise, requiring that the residual would be independent of
X encourages learning a model for which the gradients of
the loss have no information about the instances X .

The second interpretation concerns the question of what
does it mean for a model h(X) to be optimal with respect
to predicting Y from X . One reasonable way to define opti-
mality is when h(X) captures all the available information
that X has about the label Y . That is, a classifier is optimal
when:

Y ⊥⊥X | h(X). (5)

This is also related to the condition implied by recent work
on Invariant Risk Minimization (Arjovsky et al., 2019). Op-
timizing for the condition in equation 5 is difficult because
of the conditioning on h(X). We show in the supplemental
that attaining the objective encouraged by the HSIC-loss,
namely learning a function h(X) such that Y −h(X)⊥⊥X ,
implies the optimality condition 5.

4. Theoretical Results
We now prove several properties of the HSIC-loss, moti-
vating its use as a loss function which emphasizes robust-
ness against distribution shifts. We consider models of the
form given in Eq. (1) such that ε has zero mean. Assume
that X ∈ X and Y ∈ Y , where X ,Y are compact metric
spa ces. Denote by F and G reproducing kernel Hilbert
spaces of functions from X and Y respectively, to R s.t. that
‖f‖F ≤ MF for all f ∈ F and ‖g‖G ≤ MG for all g ∈ G.
We will use MG and MF throughout this section. Omitted
proofs can be found in the supplement. Denote by F̃ and G̃
the restriction of F and G to functions in the unit ball of the
respective RKHS. Before we state the results, we give the
following useful lemma:
Lemma 2. Suppose F and G are RKHSs over X and Y , s.t.
‖s‖F ≤ MF for all s ∈ F and ‖t‖G ≤ MG for all t ∈ G.
Then the following holds:

sup
s2F,t2G

Cov[s(X), t(Y )] = MF �MG sup
s2 ~F,t2 ~G

Cov[s(X), t(Y )].

4.1. Lower Bound

We first relate HSIC-loss to standard notions of model
performance: we show that under mild assumptions, the
HSIC-loss is an upper bound to the variance of the residual
f? (X)− h (X). The additional assumption is that for all
h ∈ H, f? − h is in the closure of F , and that G contains
the identity function from R to R. This means that MF
acts as a measure of complexity of the true function f? that
we trying to learn. Note however this does not imply that
f? ∈ H, but rather this is an assumption on the kernel space
used to calculate the HSIC term.

Theorem 3. Under the conditions specified above:

Var(f?(X)� h(X)) �MF �MG � HSIC(X,Y � h(X); ~F , ~G).

Recalling the bias-variance decomposition:

E
h
(Y − h (X))

2
i
=

Var (f? (X)− h (X)) + (E [f? (X)− h (X)])
2
+ E

�
ε2
�
,

we see that the HSIC-loss minimizes the variance part of the
mean squared error (MSE). To minimize the entire MSE,
the learned function should be adjusted by adding a constant
which can be inferred from the empirical mean of Y .

4.1.1. THE REALIZABLE CASE

If h ∈ H has HSIC-loss equal to zero, then up to a constant
term, it is the correct function:

Corollary 4. Under the assumptions of Theorem 3, we have
the following:

HSIC
�
X,Y − h(X); F̃ , G̃

�
= 0⇒ h (X) = f? (X) + c,

almost everywhere.

Proof. From Theorem 3, we have that

HSIC
�
X,Y − h(X); F̃ , G̃

�
= 0 =⇒

Var (f? (X)− h (X)) = 0,

therefore f? (X)− h (X) must be a constant up to a zero-
probability set of X .

4.2. Robustness Against Covariate Shift

Due to its formulation as a supremum over a large set of
functions, the HSIC-loss is an upper bound to a natural
notion of robustness. This notion, which will be formalised
below, captures the amount by which the performance of a
model might change as a result of a covariate shift, where
the performance is any that can be measured by some ` ∈ G
applied on the residuals Y − h(X). In this subsection we
denote the functions in G as ` instead of t, to emphasize that
we now think of `(r) as possible loss functions acting on
the residuals.

We consider two different ways of describing a target dis-
tribution which is different from the source. The first is by
specifying the density ratio between the target and source
distributions. This is useful when the support of the distri-
bution does not change but only the way it is distributed.
A second type of covariate shift is due to restricting the
support of the distribution to a certain subset. This can be
described by an indicator function which states which parts
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of the source domain are included. The following shows
how the HSIC-loss is an upper bound to the degradation in
model performance in both covariate shift formulations.

We start with the latter case. For a subsetA � X of positive
measure, the quantity comparing a model's performance
in terms of the loss̀ on the source distribution and the
same model's performance when the target distribution is
restricted toA, is as follows:

1
E [1A (x)]

E [1A (x)` (y � h (x))] � E [` (y � h (x))]

For �; c > 0 let Wc; � denote the family of subsetsA with
source probability at leastc > 0 s.t. there exists somes 2 F
which is� close to1A :

Wc;� = f A � X j9 s 2 F s.t. k1A � sk1 � �; E [1A (x)] � cg:

All these subset can be approximately described by func-
tions fromF . The complexity of such subsets is naturally
controlled byM F .

Theorem 5. Let ` 2 G be a non-negative loss function, and
let �; c > 0:

sup
A 2W c;�

1
E [1A (x)]

E [1A (x)` (y � h (x))] �

M F M GHSIC (X; Y � h(X ); ~F ; ~G)
c

+
�

2�
c

+ 1
�

E [` (y � h (x))] :

Theorem 5 states that the degradation in performance due
to restricting the support of the distribution to some subset
is bounded by terms related to the size of the set and the
ability to represent it byF . Compare this to the following
naive bound:

sup
A 2W c;�

E [1A (x)` (y � h (x))]
E [1A (x)]

�
E [` (y � h (x))]

c
:

Failing to account how the loss is distributed across differ-
ent subsets ofX , as done in the HSIC-loss, leads to poor
generalization guarantees. Indeed, the naive bound will not
be tight for the original function, i.e.h = f ?, but the HSIC
based bound will be tight whenever� � c.

Returning to the �rst way of describing covariate shifts, we
denote byPsource(X ) the density function of the distribu-
tion onX from which the training samples are drawn, and
Ptarget(X ) the density of an unknown target distribution over
X .

Theorem 6. LetQ denote the set of density functions onX
which are absolutely continuous w.r.t.Psource(X ), and their

density ratio is inF :

Q =
�

Ptarget : X ! R� 0 s.t. Ex � P target [1] = 1;

Ex � Psource

�
Ptarget(x)
Psource(x)

�
= 1 ;

Ptarget

Psource
2 F

�
:

Then,

sup
P target2Q

` 2G

Ex � P target[`(Y � h(X ))] � Ex � Psource[`(Y � h(X ))]

� M F � M G � HSIC(X; Y � h(X ); ~F ; ~G);

where HSIC is of course evaluated on the training distribu-
tion Psource.

Combining Theorem 6 and the lower bound of Theorem 3,
we obtain the following result:

Corollary 7. Under the same assumptions of Theorems
3 and 6, further assume that the square functionx 7!
x2, belongs toG or its closure. Denote:� HSIC(h) =
HSIC(X; Y � h(X ); ~F ; ~G), MSEP target(h) = EP target[(Y �
h(X ))2], biassource(h) = EPsource[f

?(x) � h(x)], and
� 2 = E["2]. Then:

sup
P target2Q

MSEP target(h)

� 2M F � M G � � HSIC(h) + biassource(h)2 + � 2:

Theorem 6 and Corollary 7 show that minimizing HSIC
minimizes an upper bound on the worst case loss relative to
a class of target distribution whose complexity is determined
by the norm of the RKHSM F . Compared to a naive bound
based on the in�nity norm of the density ratio, this bound
is much tighter when consideringf ? for example, and by
continuity for functions near it. Further discussion can be
found in the supplementary material.

4.3. Learnability: Uniform Convergence

By formulating the HSIC learning problem as a learning
problem over pairs of samples fromX � X with specially
constructed labels, we can reduce the question of HSIC
learnability to a standard learning theory problem (Mohri
et al. (2018), Ch 3). We use this reduction to prove that it
is possible to minimize the HSIC objective on hypothesis
classesH with bounded Rademacher complexityR n (H )
using a �nite sample.

Theorem 8. Suppose the residuals' kernelk is bounded
in [0; 1] and satis�es the following condition:k(r; r 0) =
� (h(x) � h(x0); y � y0) where � : R � Y ! R is s.t.
� (�; y) is an L � � Lipschitz function for ally. Let C1 =
supx;x 0 l (x; x 0), C2 = sup r;r 0 k(r; r 0). Then, with probabil-
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ity of at least1 � � , the following holds for allh 2 H :

�
�
�HSIC(X; Y � h(X ); F ; G) � [HSIC(f (x i ; r i )g

n
i =1 ; F ; G))

�
�
�

� 3C1

 

4L � R n (H ) + O

 r
ln(1=� )

n

!!

+ 3 C2C1

r
ln(2=� )

2n
:

5. Related Work

As mentioned above, Mooij et al. (2009) were the �rst to
propose using the HSIC loss as a means to learn a regres-
sion model. However, their work focused exclusively on
learning the functions corresponding to edges in a causal
graph, and leveraging that to learn causal directions and then
the structure of the graph itself. They have not applied the
method to domain adaptation or to robust learning, nor did
they analyze the qualities of this objective as a loss function.

The literature on robust learning is rapidly growing in size
and we cannot hope to cover it all here. Especially rel-
evant papers on robust learning forunsuperviseddomain
adaptation are Namkoong and Duchi (2017); Volpi et al.
(2018b); Duchi and Namkoong (2018). Volpi et al. (2018b)
propose an iterative process whereby the training set is aug-
mented with adversarial examples that are close in some
feature space, to obtain a perturbation of the distribution.
Namkoong and Duchi (2017) suggest minimizing the vari-
ance of the loss in addition to its empirical mean, and em-
ploy techniques from learning distributionally robust mod-
els. Some recent papers have highlighted strong connec-
tions between causal inference and robust learning, see e.g.
the works of Heinze-Deml and Meinshausen (2017) and
Rothenḧausler et al. (2018). By having some knowledge
on the corresponding data generating graph of the problem,
Heinze-Deml and Meinshausen (2017) propose minimiz-
ing the variance under properties that are presupposed to
have no impact on the prediction. A more general means
of using the causal graph to learn robust models is given by
Subbaswamy and Saria (2018); Subbaswamy et al. (2019),
who propose a novelgraph surgery estimatorwhich speci�-
cally takes account of factors in the data which are known
apriori to be vulnerable to changes in the distribution. These
methods require detailed knowledge of the causal graph
and are computationally heavy when the dimension of the
problem grows. In (Rothenhäusler et al., 2018), the authors
propose using anchors, which are covariates that are known
to be exogenous to the prediction problem, to obtain robust-
ness against distribution shifts induced by the anchors. Of
course, a large body of work exist on covariate shift learn-
ing when there is access to unlabeled test data (see, e.g.,
Daume III and Marcu (2006); Saenko et al. (2010); Gret-
ton et al. (2009); Tzeng et al. (2017); Volpi et al. (2018a)),
however we stress that we do not require such access.

6. Experimental Results

To evaluate the performance of the HSIC loss function, we
experiment with synthetic and real-world data. We focus
on tasks of unsupervised transfer learning: we train on a
one distribution, called theSOURCEdistribution, and test
on a different distribution, called theTARGET distribution.
We assume we have no samples from the target distribution
during learning.

6.1. Synthetic Data

As a �rst evaluation of the HSIC-loss, we experiment with
�tting a linear model. We focus on small sample sizes as
those often lead to dif�culties in covariate shift scenarios.
The underlying model in the experiments isy = � > x + "
where� 2 R100 is drawn for each experiment from a Gaus-
sian distribution with� = 0 :1. In the training phase,x
is drawn from a uniform distribution over[� 1; 1]100. We
experimented with" drawn from one of three distributions:
Gaussian, Laplacian, or a shifted exponential:" = 1 � e
wheree is drawn from an exponential distributionexp(1).
In any case," is drawn independently fromx. In each ex-
periment, we drawn 2 f 2i g13

i =5 training samples and train
using either using squared-loss, absolute-loss, and HSIC-
loss, all with anl2 regularization term. TheSOURCEtest
set is created in the same manner as the training set was cre-
ated, while theTARGET test set simulates a covariate shift
scenario. This is done by changing the marginal distribution
of x from a uniform distribution to a Gaussian distribution
overR100. In all cases the noise on theSOURCEandTAR-
GET is drawn from the same distribution. This process is
repeated20 times for eachn. When training the models
with HSIC-loss, we used batch-size of 32, and optimized
using Adam optimizer (Kingma and Ba, 2014). The kernels
we chose were radial basis function kernels, with
 = 1 for
both covariates' and residuals' kernels.

Figure 1 presents the results of experiments with Gaus-
sian, Laplacian, and shifted-exponential noise. With Gaus-
sian noise, HSIC-loss performs similarly to squared-loss
regression, and with Laplacian noise HSIC-loss performs
similarly to absolute-loss regression, where squared-loss
is the maximum-likelihood objective for Gaussian noise
and absolute-loss is the maximum-likelihood objective for
Laplacian noise. In both cases it is reassuring to see that
HSIC-loss is on par with the maximum-likelihood objec-
tives. In all cases we see that HSIC-loss is better on the
TARGET distribution compared to objectives which are not
the maximum likelihood objective. This is true especially
in small sample sizes. We believe this reinforces our result
in Theorem 6 that the HSIC-loss is useful when we do not
know in advance the loss or the exact target distribution.
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Figure 1.Comparison of models trained with squared-loss, absolute-loss and HSIC-loss. Each point on the graph is the MSE averaged
over 20 experiments, and the shaded area represents one standard error from the mean. Dashed lines are the MSE evaluated over the
source distribution, solid lines are the MSE evaluated over the target distribution.

6.2. Bike Sharing Dataset

In the bike sharing dataset by Fanaee-T and Gama (2014)
from the UCI repository, the task is to predict the number
of hourly bike rentals based on the following covariates:
temperature, feeling temperature, wind speed and humidity.
Consisting of 17,379 samples, the data was collected over
two years, and can be partitioned by year and season. This
dataset has been used to examine domain adaptation tasks by
Subbaswamy et al. (2019) and Rothenhäusler et al. (2018).
We adopt their setup, where theSOURCEdistribution used
for training is three seasons of a year, and theTARGET

distribution used for testing is the forth season of the same
year, and where the model of choice is linear. We compare
with least squares, anchor regression (AR) Rothenhäusler
et al. (2018) and Surgery by Subbaswamy et al. (2019).

We ran 100 experiments, each of them was done by ran-
domly sub-sampling80%of the SOURCEset and80%of
theTARGET set, thus obtaining a standard error estimate of
the mean. When training the models with HSIC-loss, we
used batch-size of 32, and optimized the loss with Adam
(Kingma and Ba, 2014), with learning rate drawn from a
uniform distribution over[0:0008; 0:001]. The kernels we
chose were radial basis function kernels, with
 = 2 for the
covariates' kernel, and
 = 1 for the residuals' kernel.

We present the results in Table 1. Following the discussion
in section 4, we report thevarianceof the residuals in the
test set. We can see that training with HSIC-loss results in
better performances in 6 out of 8 times. In addition, unlike
AR and Surgery, training with HSIC-loss does not require
knowledge of the speci�c causal graph of the problem, nor
does it require the training to be gathered from different
sources as in AR.

Table 1.Variance results on the bike sharing dataset. Each row
corresponds to a training set consisting of three season of that year,
and the variance ofY � h(X ) on theTARGET set consisting of
the forth season is reported. In bold are the best results in each
experiment, taking into account one standard error.

Test data OLS AR Surgery HSIC
(Y1) Season 115.4� 0.0215.4� 0.02 15.5� 0.03 16.0� 0.04
Season 2 23.1� 0.03 23.1� 0.03 23.7� 0.0422.9� 0.03
Season 3 28.0� 0.03 28.0� 0.03 28.1� 0.0327.9� 0.03
Season 4 23.7� 0.03 23.7� 0.03 25.6� 0.0423.6� 0.04
(Y2) Season 129.8� 0.0529.8� 0.05 30.7� 0.06 30.7� 0.07
Season 2 39.0� 0.05 39.1� 0.05 39.2� 0.0638.9� 0.04
Season 3 41.7� 0.05 41.5� 0.05 41.8� 0.0540.8� 0.05
Season 4 38.7� 0.0438.6� 0.04 40.3� 0.0638.6� 0.05

6.3. Rotating MNIST

In this experiment we test the performance of models trained
on the MNIST dataset by LeCun et al. (1998) as theSOURCE

distribution, and digits which are rotated by an angle� sam-
pled from a uniform distribution over[� 45; 45]as theTAR-
GET distribution. Samples of the test data are depicted in
the supplementary material. The standard approach to ob-
tain robustness against such perturbations is to augment the
training data with images with similar transformations, as in
Scḧolkopf et al. (1996) for example. However, in practice
it is not always possible to know in advance what kind of
perturbations should be expected, and therefore it is valu-
able to develop methods for learning robust models even
without such augmentations. We compared training with
HSIC-loss to training with cross entropy loss, using three
types of architectures. The �rst is a convolutional neural
network (CNN):! input ! conv(dim=32)! conv(dim=64)
! fully-connected(dim=524)! dropout(p=0.5)! fully-
connected(dim=10). The second is a multi-layered percep-
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Figure 2. Accuracy on SOURCE and TARGET test sets, with models
trained with either cross entropy or HSIC-loss. Plotted are the
median, 25th and 75th percentiles.

tron (MLP) with two hidden layers of size 256, 524, 1024:
input → fully-connected(dim=256,524,1024) → fully-
connected(dim=256,524,1024)→dropout(p=0.5)→ fully-
connected(dim=10). The third architecture was also an MLP,
except there were four hidden layers instead of two. Each
experiment was repeated 20 times, and in every experiment
the number of training steps (7 epochs) remained constant
for a fair comparison. Each time the training set consisted
of 10K randomly chosen samples. The kernels we chose
were radial basis function kernels with γ = 1 for the resid-
uals, and γ = 22 for the images, chosen according to the
heuristics suggested by Mooij et al. (2009). The results are
depicted in Figure 2. We see that for all models, moving to
the TARGET distribution induces a large drop in accuracy.
Yet for all architectures we see that using HSIC-loss gives
better performance on the TARGET set compared to using
the standard cross-entropy loss.

6.4. Cell Out of Sample Dataset

In the last experiment, we test our approach on the cell
out of sample dataset introduced by Lu et al. (2019). This
dataset was collected for the purpose of measuring robust-
ness against covariate shift. It consists of 64×64 microscopy
images of mouse cells stained with one of seven possible
fluorescent proteins (highlighting distinct parts of the cell),
and the task is to predict the type of the fluorescent pro-
tein used to stain the cell. Learning systems trained on
microscopy data are known to suffer from changes in plates,
wells and instruments (Caicedo et al., 2017). Attempting
to simulate these conditions, the dataset contains four test
sets, with increasing degrees of change in the covariates’
distribution, as described in Table 2, adopted from Lu et al.
(2019). Following (Lu et al., 2019), we trained an 11-layer
CNN, DeepLoc, used in (Kraus et al., 2017) for protein sub-
cellular localization. We followed the pre-processing, data
augmentation, architecture choice, and training procedures

Table 2. Description of the source and target distributions in the
cell out of sample dataset

Dataset Description Size
Source Images from 4 independent plates for each

class
41,456

Target1 Held out data 10,364
Target2 Same plates, but different wells 17,021
Target3 2 independent plates for each class, differ-

ent days
32,596

Target4 1 plate for each class, different day and mi-
croscope

30,772

Table 3. Class balanced accuracy on each of the four target distribu-
tions. The last row depicts the results of training with cross-entropy
as reported in (Lu et al., 2019). HSIC-aug and CE-aug refer to
experiments done with test time augmentation.

Training loss Target1 Target2 Target3 Target4
HSIC 99.2 98.8 93.4 95.3
CE 98.4 98.1 91.7 93.8
HSIC-aug 99.2 98.9 93.4 95.4
CE-aug-(Lu et al., 2019) 98.8 98.5 92.6 94.6

described there, with the exception of using HSIC-loss and
different learning rate when using HSIC. When comput-
ing HSIC, the kernel width was set to 1 for both kernels.
Training was done for 50 epochs on 80% of the SOURCE
dataset, and the final model was chosen according to the
remaining 20% used as a validation set. The optimization
was done with Adam (Kingma and Ba, 2014), with batch
size of 128, and exponential decay of the learning rate was
used when training with cross-entropy loss. Lu et al. (2019)
used data augmentation during training (random cropping
and random flips) and test time (prediction is averaged over
5 crops taken from the corners and center image), as this is a
common procedure to encourage robustness. We compared
HSIC-based models to cross-entropy based models both
with and without test time augmentation. We note that (Lu
et al., 2019) examined several deep net models and DeepLoc
(with cross-entropy training) had the best results.

Table 3 depicts the results, showing a clear advantage of the
HSIC-based model which is able to achieve new state-of-
the-art results in the more difficult TARGET distributions,
while preserving the performance in TARGET distributions
closer to the SOURCE.

7. Conclusion
In this paper we propose learning models whose errors are
independent of their inputs. This can be viewed as a non-
parametric generalization of the way residuals are orthog-
onal to the instances in OLS regression. We prove that the
HSIC-loss is learnable in terms of uniform convergence, and
show that this loss naturally comes with a strong notion of
robustness against changes in the input distribution when the
change can be described in a bounded RKHS. The main the-
oretical limitations of our approach are the assumption that


