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Abstract
Support Vector Machines (SVMs) are among the
most fundamental tools for binary classification.
In its simplest formulation, an SVM produces a
hyperplane separating two classes of data using
the largest possible margin to the data. The focus
on maximizing the margin has been well moti-
vated through numerous generalization bounds.
In this paper, we revisit and improve the classic
generalization bounds in terms of margins. Fur-
thermore, we complement our new generalization
bound by a nearly matching lower bound, thus
almost settling the generalization performance of
SVMs in terms of margins.

1. Introduction
Since their introduction (Vapnik, 1982; Cortes & Vapnik,
1995) Support Vector Machines (SVMs) have continued to
be among the most popular classification algorithms. In
the most basic setup an SVM produces, upon receiving a
training data set, a classifier by finding a maximum margin
hyperplane separating the data. More formally, given a
training data set S = {x1, . . . , xm} of m samples in Rd,
each with a label yi ∈ {−1,+1}, an SVM finds a unit
vector w ∈ Rd such that yi〈xi, w〉 ≥ θ for all i, with the
largest possible value of the margin θ. Note that one often
includes a bias parameter b such that one instead requires
yi(〈xi, w〉 + b) ≥ θ. As b has no relevance on this work
we ignore it for notational simplicity. The predicted label
on a new data data point x ∈ Rd, is simply sign(〈x,w〉).
When the data is linearly separable, that is there exists a
vector w with yi〈xi, w〉 > 0 for all i, then the maximum
margin hyperplane w is the solution to the following convex
optimization problem, which is often referred to as the hard
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margin SVM.

min
w
‖w‖22

s.t. yi〈xi, w〉 ≥ 1 ∀i.
(1)

Note that the maximum margin hyperplane is not neces-
sarily a vector w of unit norm. If we however let w∗ =
w/‖w‖2, then by linearity, we get a unit vector w∗ such that
yi〈xi, w∗〉 ≥ 1/‖w‖2 for all i. That is, the margin becomes
at least 1/‖w‖2 for all (xi, yi).

As data is typically not linearly separable, one often con-
siders a relaxed variant of the above optimization problem,
known as soft margin SVM (Cortes & Vapnik, 1995).

min
w,ξ
‖w‖22 + λ

∑
i
ξi

s.t. yi〈xi, w〉 ≥ 1− ξi ∀i.
ξi ≥ 0 ∀i.

(2)

Here λ ≥ 0 is a hyper parameter which, roughly speaking,
controls the tradeoff between the magnitude of the margin
θ = 1/‖w‖2 and the number of data points with margin sig-
nificantly less than θ. The soft margin optimization problem
is also convex and can be solved efficiently.

A key reason for the success of SVMs is the extensive
study and ubiquitousness of kernels (see e.g. (Boser et al.,
1992)). By allowing efficient calculation of inner products
in high (or even infinite) dimensional spaces, kernels make
it possible to apply SVMs in these spaces through feature
transforms without actually having to compute the feature
transform, neither during training or prediction. Predictions
are efficient since they only need to consider the support
vectors. These are the sample data points (x, y) that are not
strictly on the correct side of the margin of the hyperplane,
meaning that y 〈x,w〉 ≤ θ.

Feature transforms, like the application of a kernel, often
drastically increase the dimensionality of the input domain,
directly increasing the the VC-dimension of the hypothe-
sis set (the set of hyperplanes) the same way. Thus one
might worry about overfitting. However, SVMs, even with
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the Gaussian kernel that maps to an infinite dimensional
space, often generalize well to new data points in practice.
Explaining this phenomenon has been the focus of much
theoretical work, see e.g. (Vapnik, 1982; Bartlett & Shawe-
Taylor, 1999; Bartlett & Mendelson, 2002), with probably
the most prominent and simplest explanations being based
on generalization bounds involving margins. These margin
generalization bounds show that, as long as a hypothesis
vector has large margins on most training data, then the
hypothesis generalizes well to new data, independent of the
dimension of the data. Further strengthening these gener-
alization bounds and our understanding of the influence of
margins is the focus of this paper. We start by reviewing
some of the previous margin-based generalization bounds
for SVMs.

1.1. Previous Generalization Bounds

In what follows we review previous generalization bounds
for SVMs. We have focused on the most classic bounds,
taking only the margin θ, the radius R of the input space,
and the number of data samples m into account. We have
rephrased the previous theorems to put them all into the
same form, allowing for easier comparison between them.
ThroughoutX denotes the input space,D a distribution over
X × {−1, 1}, and LD(w) the out-of-sample error for a vec-
tor w. That is LD(w) = Pr(x,y)∼D [sign(〈x,w〉) 6= y] =
Pr(x,y)∼D [y 〈x,w〉 ≤ 0]. Given a training set S and a mar-
gin θ, LθS(w) denotes the in-sample margin error for a
vector w, i.e. LθS(w) = Pr(x,y)∼S [y 〈x,w〉 ≤ θ], where
(x, y) ∼ S means a that (x, y) is sampled from S uniformly
at random.

The first work trying to explain the generalization perfor-
mance of SVMs through margins is due to (Bartlett &
Shawe-Taylor, 1999). They first consider the linearly sepa-
rable case/hard margin SVM and prove the following gener-
alization if all samples have margins at least θ:
Theorem 1. [ (Bartlett & Shawe-Taylor, 1999)] Let d ∈ N+

and let R > 0. Denote by X the ball of radius R in Rd
and let D be any distribution over X × {−1, 1}. For every
δ > 0, it holds with probability at least 1− δ over a set of
m samples S ∼ Dm, that for every w ∈ Rd with ‖w‖2 ≤ 1,
if all samples (x, y) ∈ S have margin (i.e. y〈x,w〉) at least
θ > 0, then:

LD(w) ≤ O
(

(R/θ)2 ln2m+ ln(1/δ)

m

)
.

They complemented their bound with a generalization
bound for the soft margin SVM setting, showing that in
addition for all θ > 0,

LD(w) ≤ LθS(w) +O

√ (R/θ)2 ln2m+ ln(1/δ)

m

 .

Notice how the generalization error in the soft margin case
is larger due as

√
x ≥ x for x ∈ [0, 1]. This fits well

with classic VC-dimension generalization bounds for the
realizable and non-realizable setting, see e.g. (Vapnik &
Chervonenkis, 2015; Ehrenfeucht et al., 1989; Anthony &
Bartlett, 2009).

This bound was later improved by (Bartlett & Mendelson,
2002), who showed, using Rademacher complexity, that for
all θ > 0,

LD(w) ≤ LθS(w) +O

(√
(R/θ)2 + ln(1/δ)

m

)
. (3)

Ignoring logarithmic factors and the dependency on δ, both
bounds show similar dependencies on the radius of the point
set R, the margin θ and the number of samples m. The de-
pendency onR/θ also fits well with the intuition that scaling
the data distribution should not change the generalization
performance. Finally notice how the soft margin bounds
allow one to consider any margin θ, not just the smallest
over all samples, and then pay an additive term proportional
to the fraction of points in the sample with margin less than
θ (i.e. LθS(w) = Pr(x,y)∼S [y 〈x,w〉 ≤ θ]).

Finally, the work by McAllester (McAllester, 2003), uses
a PAC-Bayes argument to give a bound that attempts to
interpolate between the hard margin and soft margin case.
His bound shows that for all θ > 0, we have:

LD(w) ≤ LθS(w) +O

(
(R/θ)2 lnm

m

)
+O

(√
(R/θ)2 lnm

m
· LθS(w)

)

+O

(√
lnm+ ln(1/δ)

m

)
.

(4)

Notice that in the hard margin case, we have LθS(w) = 0
and thus the above simplifies to O((R/θ)2 ln(m)/m) +
O(
√

(lnm+ ln(1/δ))/m). The first term is an O(lnm)
factor better than the hard margin bound by Bartlett and
Shawe-Taylor (Theorem 1), but unfortunately it is domi-
nated by the

√
(lnm+ ln(1/δ))/m term for all but very

small margins, that is θ ≤ O(R(ln(m)/m)1/4).

These classic bounds have not seen any improvements for
almost two decades, even though we have no generalization
lower bounds that rule out further improvements. Gen-
eralization bounds for SVMs that are independent of the
dimensionality of the space has also been proved based on
the (expected) number of support vectors (Vapnik, 1982).

1.2. Our Contributions

Our first main contribution is an improvement over the
known margin-based generalization bounds for a large range



Margin-Based Generalization Bounds for SVMs

of parameters. Our new generalization bound is as follows:

Theorem 2. Let d ∈ N+ and let R > 0. Denote by X the
ball of radius R in Rd and let D be any distribution over
X × {−1, 1}. For every δ > 0, it holds with probability at
least 1− δ over a set of m samples S ∼ Dm, that for every
w ∈ Rd with ‖w‖2 ≤ 1 and every margin θ > 0, we have

LD(w) ≤ LθS(w) +O

(
(R/θ)2 lnm+ ln(1/δ)

m

+

√
(R/θ)2 lnm+ ln(1/δ)

m
· LθS(w)

)
.

When comparing our new bound to the previous hard
margin bound, i.e. every margin is at least θ, note that
the previous strongest results were Theorem 1 and the
bound in (4) (setting LθS(w) = 0). Theorem 2 improves
the former by a logarithmic factor and improves the ad-
ditive O

(√
(lnm+ ln(1/δ))/m

)
term in the latter to

O(ln(1/δ)/m). For soft margin the best known bounds
are (3) and (4). We improve over the former (3) for
any choice of margin θ with LθS(w) < 1/ lnm and we
improve over (4) once again by replacing the additive
O
(√

(lnm+ ln(1/δ))/m
)

term by O(ln(1/δ)/m).

A natural question to ask is whether this new bound is
close to optimal. In particular, for δ = Ω(1), our new
generalization bound simplifies to:

LD(w) ≤ LθS(w)+O

(
R2 lnm

θ2m
+

√
R2 lnm · LθS(w)

θ2m

)
.

and the generalization bound in (3) becomes:

LD(w) ≤ LθS(w) +O

(√
R2

θ2m

)
.

Summarizing the two, we get:

Corollary 3. Let d ∈ N+ and let R > 0. Denote by X the
ball of radius R in Rd and let D be any distribution over
X × {−1, 1}. Then it holds with constant probability over
a set of m samples S ∼ Dm, that for every w ∈ Rd with
‖w‖2 ≤ 1 and every margin θ > 0, we have

LD(w) ≤ LθS(w) +O

(
R2 lnm

θ2m

+

√
R2

θ2m
·min{lnm · LθS(w), 1}

)
.

At first glance the bound presented in Corollary 3 might
seem odd. The first expression inside the O-notation, which
intuitively stands for the hard-margin bound, incorporates a

lnm factor, while the second term, which intuitively stands
for the soft-margin bound does not. Our second main result,
however, demonstrates that Corollary 3 is in fact tight for
most ranges of parameters. Specifically, one cannot remove
the extra lnm factor for the hard-margin case.

Theorem 4. There exists a universal constant C > 0 such
that for every R ≥ Cθ, every m ≥ (R2/θ2)1.001 and every
0 ≤ τ ≤ 1, there exists a distributionD overX×{−1,+1},
where X is the ball of radius R in Ru for some u, such that
with constant probability over a set of m samples S ∼ Dm,
there exists a vector w with ‖w‖2 ≤ 1 and LθS(w) ≤ τ
satisfying:

LD(w) ≥ LθS(w) + Ω

(
R2 lnm

θ2m
+

√
R2 ln(τ−1)τ

θ2m

)

≥ LθS(w) + Ω

(
R2 lnm

θ2m
+

√
R2 ln(LθS(w)−1)LθS(w)

θ2m

)
.

Together with Theorem 4, Corollary 3 gives the first com-
pletely tight generalization bounds in the hard margin case
(by setting τ = 0 in Theorem 4, and defining 0 ln(0−1) =
0). For the soft margin SVM case, the bounds are only off
from one another by a factor√

lnm/ ln(LθS(w)−1)

i.e. they asymptotically match when LθS(w) ≤ m−ε for an
arbitrarily small constant ε > 0. Our generalization lower
bound also shows that the previous generalization bound
in (3) is tight when LθS(w) ≥ ε for any constant ε > 0.
Thus our main results settle the generalization performance
of Support Vector Machines in terms of the classic margin-
based parameters for all ranges of LθS(w) not including
m−o(1) ≤ LθS(w) ≤ o(1).

We remark that our upper bound generalize to infinite di-
mension as it only depends on the ability for performing
Johnson Lindenstrauss transforms of the data which works
for Hilbert spaces in general (Johnson & Lindenstrauss,
1984).

2. Margin-Based Generalization Upper
Bound

This section is devoted to the proof of Theorem 2, and
we start by recollecting some notation. To this end, let
d ∈ N+ and let R, δ > 0. Let D be some distribution over
X×{−1, 1}, whereX is theR-radius ball around the origin
in Rd, and letH denote the unit ball in Rd. Finally, let E ⊆
(X×{−1, 1})m include all sequences S ∈ (X×{−1, 1})m
such that for every w ∈ H and θ > 0,

LD(w) ≤ LθS(w) +O

(
π +

√
πLθS(w)

)
,
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where π = π(δ) = (R/θ)2 lnm+ln(1/δ)
m . In these notations

the theorem states that PrS∼Dm [E ] ≥ 1− δ.

Key Tools and Techniques. One known method to prove
such bounds (see, e.g. (Schapire et al., 1998; Gao & Zhou,
2013)) is to discretize the set of classifiers (or hyperplanes)
and then union bound over the discrete set. When consid-
ering hyperplanes in Rd, however, the discretization results
in too large a set, which in turn means that the resulting
union bound gives too large a probability bound. More
specifically, the size of the set depends on the dimension
d. In order to overcome this difficulty, and give generaliza-
tion upper bound for a general d-dimensional distribution
D we first reduce the dimension of the data set to a small
dimension while approximately maintaining the geometric
structure of the data set. That is, the dot products of a set
points x ∈ X with hyperplanes w ∈ H are maintained by
the projection with high probability. More specifically, we
randomly project both balls X and H onto a small dimen-
sion k, while approximately preserving the inner products.
The random linear projection we use is simply a matrix
whose every entry is sampled independently from a standard
normal distribution. While this projection matrix has been
studied in previous applications of dimensionality reduction
(Johnson & Lindenstrauss, 1984; Dasgupta & Gupta, 2003),
we present some new analysis and give tight bounds that
show that inner product values in X ×H are well-preserved
with high probability by the projection. We next discretize
the set of hyperplanes in Rk, using techniques inspired by
(Alon & Klartag, 2017), and show that it is enough to union
bound over the resulting small grid.

We now turn to prove the theorem. Note first that if
θ > R then the bound is trivial, since for every S,
Pr(x,y)∼S [y 〈x,w〉 ≤ θ] = 1. We may therefore assume
hereafter that θ ∈ (0, R]. Similarly we assume that
m ≥ (R/θ)2 lnm + ln(1/δ). To show that E occurs with
high probability, we next define a sequence {Ek}k∈N+ of
events whose intersection is contained in E and has probabil-
ity at least 1− δ. In order to define the sequence {Ek}k∈N+

we start by defining, for every w ∈ H and every positive in-
teger k ∈ N+, a distribution Qk(w) over Rd → R. Loosely
speaking, every function g ∈ supp(Qk(w)) takes a vector
x ∈ Rd, projects it into Rk and then takes its inner product
with a vector w̃ ∈ Rk. The vector w̃ is the projection of w
into Rk rounded to a predefined grid in Rk. Formally, we
next describe the process that samples g ∼ Qk(w). First
sample a projection matrixA ∈ Rk×d from Rd to Rk. Every
entry of A is independently sampled from a normal distri-
bution N (0, 1/k) with mean 0 and variance 1/k. Next, we
define the vector w̃, which is a randomized rounding of Aw
to the grid of vectors in Rk whose every entry is a whole
multiple of 1/

√
k. For every j ∈ [k], let ` be the unique

integer such that ` ≤
√
k[Aw]j < ` + 1. Set w̃j = `/

√
k

with probability (`+ 1)−
√
k[Aw]j and w̃j = (`+ 1)/

√
k

otherwise, independently for every j ∈ [k] and indepen-
dently of the choice of A. Finally, define g : Rd → R by
g(x) = 〈Ax, w̃〉 for every x ∈ Rd. For every w ∈ H and
every g ∈ supp(Qk(w)) denote by Ag ∈ Rk×d the matrix
associated with g. Note that the choice of Ag does not de-
pend on w. If w is clear from context we simply write Qk
instead of Qk(w).

Finally, for every k ∈ N+, let ∆k be the set of all vectors
v ∈ Rk satisfying that ‖v‖22 ≤ 6 and for every j ∈ [k],
vj
√
k is an integer. We are now ready to define the sequence

{Ek}k∈N+ of events.

Definition 1. Let k ∈ N+. For every A ∈ Rk×d and
S ∈ supp(Dm), we say that A and S are compatible if for
all v ∈ ∆k and ` ∈ [10k],

Pr
(x,y)∼D

[
y 〈Ax, v〉 ≤ `R

10k

]
≤ Pr

(x,y)∼S

[
y 〈Ax, v〉 ≤ `R

10k

]
+

8 ln(29k/δ)

m

+ 4

√
Pr

(x,y)∼S

[
y 〈Ax, v〉 ≤ `R

10k

]
· ln(29k/δ)

m
.

(5)

Let C denote the set of all compatible pairs (A,S). Finally,
let Ek be the set of all S ∈ supp(Dm) such that for all
w ∈ H, Prg∼Qk [(Ag, S) ∈ C] ≥ 1− 6 · 2−k/2.

The next lemma implies Theorem 2 by simply applying a
union bound, since

∑
k

1
k(k+1) = 1.

Lemma 5. For every k ∈ N+, PrS∼Dm [Ek] ≥ 1− δ
k(k+1) ,

and moreover
⋂
k∈N+ Ek ⊆ E .

We start by proving that for every k, with high probability
over S ∼ Dm, S ∈ Ek. The first step is to prove that for ev-
ery fixed matrixA, a random sample S ∼ Dm is compatible
with A with very high probability. Using Markov’s inequal-
ity we then conclude that a random sample S ∼ Dm is,
with very high probability, compatible with most projection
matrices {Ag}g∈supp(Qk(w) for every w ∈ H. Formally, we
prove the following.

Claim 6. For every A ∈ Rd×k, PrS∼Dm [(A,S) ∈ C] ≥
1− δ/2k.

Proof. Let A ∈ Rd×k, and fix some v ∈ ∆k and ` ∈ [10k].
First note that if Pr(x,y)∼D[y 〈Ax, v〉 ≤ `R/(10k)] ≤
8 ln(29k/δ)

m then (5) holds for all S ∈ supp(Dm). We can
therefore assume that Pr(x,y)∼D[y 〈Ax, v〉 ≤ `R/(10k)] >
8 ln(29k/δ)

m . Let γ =
√

2 ln(29k/δ)
mPrD[y〈Ax,v〉≤`R/(10k)] , then

γ ∈ (0, 1/2), and therefore a Chernoff bound then
gives that with probability at least 1 − 2δ

29k
over the

choice of S ∼ Dm, Pr(x,y)∼S [y 〈Ax, v〉 ≤ `R/(10k)]
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is between (1− γ) Pr(x,y)∼D [y 〈Ax, v〉 ≤ `R/(10k)] and
2 Pr(x,y)∼D [y 〈Ax, v〉 ≤ `R/(10k)]. Hence since (1 −
γ)−1 ≤ 1 + 2γ we get that with probability at least
1− 2δ/29k over the choice of S we have

Pr
(x,y)∼D

[y 〈Ax, v〉 ≤ `R/(10k)]

≤ (1 + 2γ) Pr
(x,y)∼S

[y 〈Ax, v〉 ≤ `R/(10k)] ,
(6)

and moreover,

γ ≤

√
4 ln(29k/δ)

mPr(x,y)∼S [y 〈Ax, v〉 ≤ `R/(10k)]
(7)

Plugging (7) into (6) and summing up we get that for every
v ∈ ∆k and ` ∈ [10k], with probability at least 1− 2δ/29k

over the choice of S we have

Pr
(x,y)∼D

[y 〈Ax, v〉 ≤ `R/(10k)] ≤

Pr
(x,y)∼S

[y 〈Ax, v〉 ≤ `R/(10k)] +
8 ln(29k/δ)

m

+ 4

√
ln(29k/δ)

m
Pr

(x,y)∼S
[y 〈Ax, v〉 ≤ `R/(10k)]

(8)

Union bounding over all v ∈ ∆k and ` ∈ [10k] we get that
PrS∼Dm [(A,S) ∈ C] ≥ 1 − 10k|∆k|δ/29k. To finish the
proof of the claim, we show that |∆k| ≤ 26k. Let v ∈ ∆k,
then as |vj

√
k| ∈ N for all j ∈ [k] then

∑
j∈[k] |vj

√
k| ≤∑

j∈[k] |vj
√
k|2 ≤ 6k. Therefore the number of possible

ways to construct |v1
√
k|, . . . , |vk

√
k| is the number of pos-

sible solutions to the equation
∑
j∈[k+1] xj = 6k in nat-

ural numbers, which is
(
7k
6k

)
≤ 24.5k. Taking all possible

signs into account gives |∆k| ≤ 25.5k. We conclude that
PrS∼Dm [(A,S) ∈ C] ≥ 1− δ/2k.

The following corollary follows by applying Markov’s in-
equality. Its proof is deferred to the supplementary material.

Corollary 7. PrS∼Dm [Ek] ≥ 1− δ/(k(k + 1)).

We next prove the second part of Lemma 5, namely that⋂
k∈N+ Ek ⊆ E . We start by introducing some concentration

bounds on sums of products of Gaussian random variables.

Lemma 8. Let A ∈ Rd×k be a matrix whose every entry is
independently N (0, 1/k) distributed. Then for every u, v ∈
Rd and t ∈ [0, 1/4) we have

1. PrA[|‖Au‖22 − ‖u‖22| > t‖u‖22] ≤ 2e−0.21kt
2

; and

2. PrA[| 〈Au,Av〉 − 〈u, v〉 | > t] ≤ 4e
−kt2

7‖u‖22‖v‖
2
2 .

The proof of the lemma is quite technically involved, and its
proof is thus deferred to the full version of the paper. The

next claim shows that with very high probability over the
choice of a pair (x, y), either sampled from D or uniformly
at random from a sample S, and the choice of g ∼ Qk(w),
the values 〈x,w〉 and g(x) cannot be too far apart.

Claim 9. For all w ∈ H, θ ∈ (0, R] and k ∈ N+,

1. Pr
(x,y)∼D,g∼Qk

[y 〈x,w〉 ≤ 0 ∧ yg(x) ≥ 49θ/100] ≤

7e−( k
120 )( θR )

2

; and

2. For every S ∈ supp(Dm),
Pr

(x,y)∼S,g∼Qk
[y 〈x,w〉 ≥ θ ∧ yg(x) ≤ θ/2] ≤

7e−( k
120 )( θR )

2

.

Proof. Let w ∈ H, θ > 0 and k ∈ N+. Then

Pr
(x,y)∼D,g∼Qk

[y 〈x,w〉 ≤ 0 ∧ yg(x) ≥ 49θ/100] ≤

Pr
(x,y)∼D,g∼Qk

[|y 〈x,w〉 − yg(x)| > 49θ/100]

Recall that for every x ∈ Rd, g(x) = 〈Ax, w̃〉, where
every entry of A ∈ Rd×k is sampled independently from a
Gaussian distribution with mean 0 and variance 1/k, and
w̃ ∈ Rk is constructed by randomly rounding each entry of
Aw independently to a multiple of 1/

√
k. By the triangle

inequality, the linearity of the dot product, and since y ∈
{−1, 1},

Pr
(x,y)∼D,g∼Qk

[|y 〈x,w〉 − yg(x)| > 49θ/100]

≤ Pr
(x,y)∼D,g∼Qk

[| 〈x,w〉 − 〈Ax,Aw〉 | > 49θ/200]

+ Pr
(x,y)∼D,g∼Qk

[| 〈Ax,Aw − w̃〉 | > 49θ/200]

(9)

To bound the first probability term observe that

Pr
(x,y)∼D,g∼Qk

[
|〈x,w〉 − 〈Ax,Aw〉| > 49θ

200

]
≤ E(x,y)∼D

[
Pr

g∼Qk

[∣∣∣∣ 〈x,w〉‖x‖2‖w‖2
− 〈Ax,Aw〉
‖x‖2‖w‖2

∣∣∣∣ > 49θ

200R

]]
≤ 4e−

k
7 ( 49θ

200R )
2

,

(10)

where the inequality before last follows from the fact that
‖w‖2 ≤ 1 and Pr(x,y)∼D[‖x‖2 ≤ R] = 1, and the last
inequality is an application of Lemma 8.

To bound the second term in (9), fix (x, y) ∈ supp(D) and
A ∈ Rk×d, and denote Aw = ŵ. Then for every j ∈ [k]

independently w̃j =
b√kŵjc√

k
with probability

⌊√
kŵj

⌋
+

1−
√
kŵj , and w̃j =

b√kŵjc+1
√
k

otherwise. Therefore for
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every j ∈ [k], E[w̃j ] = ŵj , and thus E[〈Ax,Aw − w̃〉] =
0. A Hoeffding bound then yields

Pr
g∼Qk

[| 〈Ax,Aw − w̃〉 | > 49θ/200 | Ag = A] ≤

2e
−2(49θ/200)2∑

j∈[k] [Ax]
2
j
(ŵj−w̃j)2 ≤ 2e

−2k
(

49θ
200‖Ax‖2

)2

.

In addition, since ‖x‖22 ≤ R2 for all x ∈ X ,

Pr
(x,y)∼D,g∼Qk

[‖Ax‖2 >
√

1.25R] ≤ e−k/80

Finally, from the law of total probability we get that

Pr
(x,y)∼D,g∼Qk

[
|〈Ax,Aw − w̃〉| > 49θ

200

]
≤ 2e

−2k
(

49θ
200
√

1.25R

)2

+ e−k/80

(11)

Plugging (10) and (11) into (9) we get that

Pr
(x,y)∼D
g∼Qk

[y 〈x,w〉 ≤ 0 ∧ yg(x) > θ/2] ≤ 7e−( k
120 )( θR )

2

,

which concludes the first part of the lemma. The proof
of the second part is identical, as we did not use any
property of the distribution D other than the fact that
Pr(x,y)∼D[‖x‖2 ≤ R] = 1. For every S ∈ supp(Dm),
it holds that Pr(x,y)∼S [‖x‖2 ≤ R] = 1, and the result fol-
lows.

The next claim essentially shows that restricting the defini-
tion of compatibility of a sample S and a matrix A only to
grid points in ∆k was indeed enough. Intuitively this is due
to the fact that with very high probability over the choice of
q ∼ Qk(w), the rounding of Agw is in the grid. Formally,
we show the following.

Claim 10. For every S ∈
⋂
k∈N Ek, for all w ∈ H, θ ∈

(0, R] and k ∈ N+,

Pr
(x,y)∼D,g∼Qk

[yg(x) ≤ 49θ/100]

≤ Pr
(x,y)∼S,g∼Qk

[yg(x) ≤ θ/2] + 7e−( k
120 )( θR )

2

+ 30e−k/24 +O

(
k + ln(1/δ)

m

+

√
k + ln(1/δ)

m
· Pr
(x,y)∼S,g∼Qk

[yg(x) ≤ θ/2]

)
;

(12)

Proof. Fix S ∈
⋂
k∈N Ek, w ∈ H, θ ∈ (0, R] and k ∈

N+. Clearly, if θ ≤ 10R/k then 7e−( k
120 )( θR )

2

≥ 1 and
therefore (12) holds. Otherwise, let ` be the smallest integer
such that 49θ/100 ≤ `R/(10k). As θ ≤ R, ` ∈ [10k]. In
addition, 49θ/100 ≤ `R/(10k) ≤ 49θ/100 +R/(10k) ≤

θ/2. Denote by F the event that (Ag, S) ∈ C and w̃ ∈ ∆k

(recall that w̃ is the vector Aw, where each entry is rounded
to the nearest multiple of 1/

√
k). For every S ∈ supp(Dm),

g : Rd → R and ξ > 0, denote

ΛξD(g) := Pr
(x,y)∼D

[yg(x) ≤ ξ] ,

ΛξS(g) := Pr
(x,y)∼S

[yg(x) ≤ ξ] .

Therefore

Pr
(x,y)∼D,g∼Qk

[yg(x) ≤ 49θ/100]

≤ Pr
(x,y)∼D,g∼Qk

[yg(x) ≤ `R/(10k)]

≤ Pr
(x,y)∼D,g∼Qk

[yg(x) ≤ `R/(10k) | F ] + Pr
g∼Qk

[F̄ ]

≤ Eg∼Qk
[

Λ
`R/(10k)
D (g)

∣∣∣F]+ Pr
g∼Qk

[F̄ ] ,

(13)

By the definition of compatible pairs and linearity of expec-
tation we get that

Eg∼Qk
[

Λ
`R/(10k)
D (g)

∣∣∣F]
≤ Eg∼Qk

[
Λ
`R/(10k)
S (g)

∣∣∣F]+
8 ln(29k/δ)

m

+ 4Eg∼Qk

[√
Λ
`R/(10k)
S (g) · ln(29k/δ)

m

∣∣∣∣∣F
]
.

Note that for every non-negative random variable Y and
event E, E[Y |E] ≤ E[Y ]/Pr[E]. We therefore turn to
bound the probability of F . By a simple union bound,

Pr
g∼Qk

[F̄ ] ≤ Pr
g∼Qk

[(Ag, S) /∈ C] + Pr
g∼Qk

[w̃ /∈ ∆k] .

Since S ∈ Ek, Prg∼Qk [(Ag, S) /∈ C] ≤ 6 · 2−k/2. Next,
for every j ∈ [k], |w̃j | ≤ |[Agw]j | + 1/

√
k. Therefore

‖w̃‖22 ≤ ‖Agw‖22 + 1 + 2 max{‖Agw‖22, 1}, and hence if
‖Aw‖22 ≤ 1.5, then ‖w̃‖22 ≤ 6, and therefore w̃ ∈ ∆k.
We conclude that Prg∼Qk [w̃ /∈ ∆k] ≤ Prg∼Qk [‖Agw‖22 >
1.5] ≤ e−k/24 , and hence Prg∼Qk [F ] ≥ 1 − 7e−k/24 ≥
(1 + 15e−k/24)−1. Since, in addition, `R/(10k) ≤ θ/2 we
get

Eg∼Qk
[

Λ
`R/(10k)
D (g)

∣∣∣F] ≤
(1 + 15e−k/24)Eg∼Qk

[
Λ
θ/2
S (g)

]
+

8 ln(29k/δ)

m

+ 4(1 + 15e−k/24)Eg∼Qk

[√
Λ
θ/2
S (g) · ln(29k/δ)

m

]
.
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Finally, by Jensen’s inequality we get

Eg∼Qk
[

Λ
`R/(10k)
D

∣∣∣ (Ag, S) ∈ C
]

≤ Eg∼Qk
[
Λ
θ/2
S

]
+

8 ln(29k/δ)

m

+ 4

√
Eg∼Qk

[
Λ
θ/2
S

]
· ln(29k/δ)

m
+ 30e−k/24 .

Plugging into (13) we get (12).

To finish the proof of Lemma 5, let S = 〈(xj , yj)〉j∈[m] ∈⋂
k∈N+ Ek, fix some w ∈ H and θ > 0, and let k =⌈

240
(
R
θ

)2
lnm

⌉
. We will show that S ∈ E .

LD(w) = Pr
(x,y)∼D,g∼Qk

[y 〈x,w〉 ≤ 0]

≤ Pr
(x,y)∼D,g∼Qk

[yg(x) ≤ 49θ/100] +
1

m

(14)

Where the last inequality is due to Claim 9, and since
7e−( k

120 )( θR )
2

≤ 7/m2 ≤ 1/m . From Claim 10 we get

Pr
(x,y)∼D,g∼Qk

[yg(x) ≤ 49θ/100] ≤

Pr
(x,y)∼S,g∼Qk

[yg(x) ≤ θ/2] +O

(
k + ln(1/δ)

m

+

√
k + ln(1/δ)

m
· Pr
(x,y)∼S,g∼Qk

[yg(x) ≤ θ/2]

)
;

(15)

Similarly to (14) we get that

Pr
(x,y)∼S,g∼Qk

[yg(x) ≤ θ/2] ≤ LθS(w) +
1

m2
. (16)

Where the last inequality follows from Claim 9 and the fact
that y 〈x,w〉 ≤ θ is independent of g. Finally, plugging
(16) into (15) and then into (14), and assuming that k +
ln(1/δ) ≤ m we get that

Pr
(x,y)∼D

[y 〈x,w〉 ≤ 0] ≤ Pr
(x,y)∼S

[y 〈x,w〉 < θ]

+O

(
π +

√
π · Pr

(x,y)∼S
[y 〈x,w〉 < θ]

)
,

where π = (R/θ)2 lnm+ln(1/δ)
m , and therefore S ∈ E , and the

proof of Lemma 5, and thus of Theorem 2, is now complete.

3. Existential Lower Bound
The goal of this section is to prove the generalization lower
bound in Theorem 4. Our proof is split into two cases,
depending on the magnitude of τ . The results we prove are
as follows:

Lemma 11. There is a universal constant C > 0 such that
for every R ≥ Cθ and every m ≥ (R2/θ2)1.001, there
exists a distribution D over X × {−1,+1}, where X is the
ball of radius R in Ru for some u, such that with constant
probability over a set of m samples S ∼ Dm, there exists
a vector w with ‖w‖2 ≤ 1 and LθS = 0 satisfying LD ≥
Ω
(
R2 lnm
θ2m

)
.

Lemma 12. There is a universal constant C > 0 such that
for every R ≥ Cθ, every m ≥ (R2/θ2)1.001 and every
R2 ln(m)/(θ2m) < τ ≤ 1, there exists a distribution D
over X × {−1,+1}, where X is the ball of radius R in Ru
for some u, such that with constant probability over a set of
m samples S ∼ Dm, there exists a vector w with ‖w‖2 ≤ 1
and LθS ≤ τ satisfying

LD ≥ LθS + Ω

(√
R2τ ln (τ−1)

θ2m

)
.

We will first show how to combine Lemma 11 and
Lemma 12 to obtain Theorem 4. For any 0 ≤ τ ≤ 1,
every R ≥ Cθ for a large constant C > 0 and every
m ≥ (R2/θ2)1.001, we can invoke Lemma 11 or Lemma 12
to conclude the existence of a distribution D, such that with
constant probability over a choice of m samples S ∼ Dm,
there is a vector w with ‖w‖2 ≤ 1 and either:

1. LθS(w) = 0 < τ and

LD(w) ≥ LθS(w) + Ω(R2 lnm/(θ2m)).

2. LθS(w) ≤ τ and

LD(w) ≥ LθS(w) + Ω(
√

(R2/θ2) ln(τ−1)τ/m).

Note that Lemma 12 strictly speaking cannot be invoked
for τ ≤ R2 ln(m)/(θ2m), but for such small values of τ ,
the expression

√
(R2/θ2) ln(τ−1)τ/m becomes less than

R2 lnm/(θ2m) and the bound follows from Lemma 11
instead. Thus for any 0 ≤ τ ≤ 1, with constant probability
over S, we may find a w with LθS(w) ≤ τ and

LD(w) ≤ LθS(w)

+ Ω
(
R2 lnm/(θ2m) +

√
(R2/θ2) ln(τ−1)τ/m

)
.

This concludes the proof of Theorem 4. The following two
sections prove the two lemmas.

3.1. Small τ

In this section, we prove Lemma 11. Let m be the number
of samples and assume m ≥ (R2/θ2)1+ε where ε = 0.001.
Assume furthermore that R ≥ Cθ for a sufficiently large
constant C > 0. We construct a distributionD over Ru+1×
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{−1,+1}, where u = 4eε−1m/ lnm. The distribution D
gives a uniform random point among {x1, . . . , xu} where
xi has its (u+ 1)’st and i’th coordinate equal to R/

√
2 and

the rest 0. The label is always 1.

Inspired by ideas by (Grønlund et al., 2019), we will show by
a coupon-collector argument that with high probability, no
more than u−R2/θ2 elements of {x1, . . . , xu} are included
in the sample S. Consider repeatedly sampling elements
i.i.d. uniformly at random from {x1, . . . , xu}. For every
k ∈ {1, . . . , u}, let Xk be the number of samples between
the time the (k − 1)’th distinct element is sampled and
the time the k’th distinct element is sampled. Then Xk ∼
Geom(pk), where pk = (u − k + 1)/u. Denote X :=∑u−t
k=1Xk for t = R2/θ2. Then:

E[X] =

u−t∑
k=1

1

pk
= u · (

u∑
k=1

1

k
−

t∑
k=1

1

k
)

≥ u · (ln(u)− ln(t)− 1) = u ln(u/(et)).

For a large enough constant C such that R > Cθ, we
have E[X] ≥ em. To see why this is true, recall that u =
4eε−1m/ lnm, and m ≥ (R2/θ2)1+ε, and therefore

E[X] = u ln
( u
et

)
= 4eε−1 · m

lnm
· ln

(
4eε−1 · m

lnm

e
(
R2

θ2

) )

≥ 4eε−1 · m

lnm
· ln
(

4eε−1mε/(1+ε)

e lnm

)
≥ 4eε−1 · ε

2(1 + ε)

m

lnm
· lnm ≥ em

where the inequality before last is due to the fact that for
large enough C > 0, lnm < mε/(2(1+ε)). Denote next
p∗ = mink∈[u−t] pk = (t + 1)/u, and λ = m/E[X], then
0 < λ ≤ e−1, and following known tail bounds on the sum
of geometrically-distributed random variables (e.g. (Janson,
2018)) we get:

Pr[X ≤ m] = Pr[X ≤ λE[X]] ≤ e−p∗E[X](λ−1−lnλ) .

As λ ≤ e−1 we get that 1 + lnλ < 0, and therefore

Pr[X ≤ m] ≤ e−
t+1
u ·E[X]·λ ≤ e−(t+1)mu ≤ e ε lnm

4e .

For large enough C > 0 we have e−(4e)
−1ε lnm < 1/2.

Therefore with constant probability over S ∼ Dm, there are
at least t elements from {x1, . . . , xu} that are not included
in S. Assume we are given such an S. Let xi1 , . . . , xit/16
denote some t/16 elements that are not in S and con-
sider the vector w having its (u + 1)’st coordinate set to
θ
√

2/R, coordinates ij = −2
√

2θ/R and remaining co-
ordinates 0. Then ‖w‖2 =

√
θ22/R2 + (t/16)8θ2/R2 ≤√

1/8 + 1/2 < 1. Notice that for all xi ∈ S, we have
〈w, xi〉 = (θ

√
2/R) · R/

√
2 = θ. For an xij we have

〈w, xij 〉 = (θ
√

2/R) · R/
√

2 + (−2
√

2θ/R) · R/
√

2 =
θ−2θ = −θ. Thus LθS(w) = 0 while LD(w) = t/(16u) =
Ω(R2 lnm/(θ2m)).

3.2. Large τ

In this section, we prove Lemma 12. Let m ≥ (R2/θ2)1+ε

be the number of samples with ε = 0.001, and let
R2 ln(m)/(θ2m) < τ ≤ 1. We construct a distribution D
over Ru+1×{−1,+1}, where u = R2/(16θ2τ). The distri-
butionD gives a uniform random point among {x1, . . . , xu}
where xi has its (u+1)’st and i’th coordinate equal toR/

√
2

and the rest to 0. The label is always 1.

In our lower bound proof, we will find a vector w of the
following form. Let k = e−28τu, and for every subset
T ⊆ {1, . . . , u} with |T | = k, let wT be the vector where
each coordinate iwith i ∈ T is set to−1/

√
2k, its (u+1)’st

coordinate is set to θ
√

2/R and all remaining coordinates
are set to 0. Then ‖wT ‖2 =

√
1/2 + 2θ2/R2 ≤ 1, as

R > Cθ for some sufficiently large C > 0. In addition, for
every i /∈ T , 〈xi, wT 〉 = θ and for every i ∈ T we have
〈xi, wT 〉 = θ − R/(2

√
k) ≤ −θ < 0 if i ∈ T . Clearly

for every such subset T , LD(wT ) = k/u = τ/e28. What
remains is to argue that with constant probability over S,
there exists T where LθS(wT ) is significantly smaller than
k/u, i.e. there is a large gap between LD(wT ) and LθS(wT ).

Fix some set S of m samples from D, let bi denote the
number of times xi is in the sample. Then for every T
we have LθS(wT ) = (

∑
i∈T bi)/m. Let T ∗ ⊆ {1, . . . , u}

be the set containing the k indices with smallest bi. We
will show that with good probability over the choice of S
the k smallest values among b1, . . . , bu are small, and thus
(
∑
i∈T∗ bi)/m is small.

Consider first a fixed index i. For every j ∈ [m] let cj be the
indicator for the event that the j’th element in the sample is
xi. Then c1, . . . , cm are independent indicators with success
probability p = 1/u, and moreover, bi =

∑
j∈[m] ci. We

will use the following reverse Chernoff bound to show that
bi is significantly smaller than its expectation m/u with
reasonable probability.

Lemma 13. [ (Klein & Young, 2015)] For every√
3/(mp) < δ < 1/2,

Pr

∑
j

cj ≤ (1− δ)mp

 ≥ e−9mpδ2 .
Now set

δ =
√

ln(u/(2k))/(9m/u).

Since u/(2k) = e28τ−1/2 > e27 it follows that δ >√
ln(e27)/9(m/u) =

√
3/(m/u). We have assumed

τ > R2 ln(m)/(θ2m), and thus u = R2/(16θ2τ) <
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m/(16 lnm). Therefore δ =
√

ln(u/(2k))/(9m/u) ≤√
ln(e28τ−1)/(9 · 16 lnm) ≤ 1/2 for a large enough con-

stant C > 0 such that R > Cθ. Hence we may use
Lemma 13 to conclude that Pr[bi ≤ (1 − δ)m/u] ≥
e− ln(u/(2k)) = 2k/u.

We will next show that with constant probability there are
at least k indices i for which bi ≤ (1 − δ)m/u. Let Bi
denote the indicator for the event bi ≤ (1−δ)m/u. We will
show that with probability at least 1/8, B :=

∑
iBi ≥ k.

Note first that E[B] = E[
∑
iBi] = uE[B1] ≥ 2k. By the

Paley-Zygmund inequality it follows that

Pr [B ≥ k] ≥ Pr [B ≥ (1/2)E [B]] ≥ E[B]2

4E[B2]
(17)

Consider now E[B2] =
∑
i,j E[BiBj ]. For i 6= j, we have

that the events Bi and Bj are negatively correlated and
thus E[BiBj ] ≤ E[Bi]

2 = E[B1]2. For i = j we have
E[BiBi] = E[Bi] = E[B1]. Therefore we may bound
E[B2] ≤ (u2 − u)E[B1]2 + uE[B1] ≤ E[B]2 + E[B].
Note that for a large enough C > 0, E[B] ≥ 2k ≥ 1
and thus E[B] ≤ E[B]2 and we get that E[B2] ≤ 2E[B]2.
Plugging in (17), we conclude that Pr[B ≥ k] ≥ 1/8,
and hence with probability at least 1/8 over the random
set of samples S, it holds that (

∑
i∈T∗ bi)/m ≤ (k(1 −

δ)m/u)/m = k(1−δ)/u. In this case, we haveLD(wT∗)−
LθS(wT∗) ≥ kδ/u = Ω((R2/θ2)

√
ln(u/k)/(m/u)) =

Ω(
√

(R2/θ2) ln(τ−1)τ/m). Since τ = e28k/u =
e28LD(wT∗) ≥ e28LθS(wT∗) we have that LθS(wT∗) ≤
τ/e28 ≤ τ which concludes the proof of Lemma 12.
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