
Implicit Geometric Regularization for Learning Shapes
Supplementary Material

A. Additional Implementation Details
A.1. Network Architecture.

We used Auto-Decoder network architecture proposed in
(Park et al., 2019), as described in sections 5 and 7.2:
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where FC is a fully connected linear layer and FC+ is FC
followed by softplus activation; a smooth approximation
of ReLU: x 7→ 1

β ln(1 + eβx). We used β = 100. The
dashed line connecting the input to the 4th layer indicates
a skip connection. L is the latent vector’s size. For shape
reconstruction application we take L = 0; for the shape
space experiment we used L = 256.

A.2. Training Details.

Shape Reconstruction. Training was done on a single
Nvidia V-100 GPU with PYTORCH deep learning framework
(Paszke et al., 2017). We used ADAM optimizer (Kingma &
Ba, 2014) for 100k iterations with constant learning rate of
0.0001. In each iteration we sampled uniformly at random
1282 points from of the input point cloud.

Shape Space Learning. Training was done on 4 Nvidia V-
100 GPUs, with PYTORCH deep learning framework (Paszke
et al., 2017). We used ADAM optimizer (Kingma & Ba,
2014) for 1k epochs with initial learning rate of 0.0005
scheduled to decrease by a factor of 2 every 500 epochs. We
divided the training set into mini-batches: a batch contains
32 different shapes, where each shape is freshly sampled
uniformly at random to produce 1282 points.

B. Additional Results
B.1. Shape Space Learning

As mentioned in 7.2 we present additional results from the
shape space learning experiment in Figure 2. We provide
reconstruction results of both training and test (i.e., unseen
point clouds) sets, with the random train-test split. These
results are discussed in Section 7.2.

C. Theory
C.1. Plane Reproduction using Liapunov Function

In this section we suggest an alternative, self-contained
proof for the plane reproduction property of our model in
the non-noisy data case, i.e., X = {xi}i∈I span some d− 1

dimension hyperplaneH ⊂ Rd that contains the origin.

We present a simple argument that, with random initial-
ization, the gradient flow in equation 1 converges, with
probability one, to one of the two global minima corre-
sponding to the signed distance function toH characterized
in Theorem 1. We work in the transformed coordinate space
and consider the gradient flow

dq

dt
= −∇q`(q), (1)

with `(q) as in equation 7.

Theorem 3. When initializing the gradient flow in equa-
tion 1 randomly, then with probability one the solution con-
vergences

q(t)
t→∞−−−→ q∗,

where q∗ is one of the global minima of the loss in equa-
tion 7, i.e., ±q. Therefore, the limit model, f(x; q∗), ap-
proximates the signed distance function to e⊥1 (i.e.,H in the
transformed coordinates).

We prove Theorem 3 using a certain Liapunov function
(explained shortly). By random initialization we mean q0

is drawn from some continuous probability distribution in
Rd (i.e., with a density function). Note that with probability
one q0 is not orthogonal to e1. Let v be one of ±q =
±

√
1−λ1

2λe1 from Theorem 1 so that vTq0 > 0.
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Liapunov function. To show that q(t) converges to v
we will introduce a Liapunov function; the existence of
such a function implies the desired convergence using stan-
dard stability results from the theory of dynamical sys-
tems (Wiggins, 2003; Teschl, 2012). Consider the domain
Ω =

{
q ∈ Rd|eT1 q > 0

}
. h : Ω → R is a Liapunov func-

tion if it is C1 and satisfies the following conditions:

1. Energy: h(v) = 0 and h(q) > 0 for all q ∈ Ω \ {v}.

2. Decreasing: ∇h(q) · dqdt (q) < 0 for all w ∈ Ω \ {v}.

3. Bounded: The level-sets {q|h(q) = c} are bounded.

Figure 1. Level-
sets of h.

Intuitively, a Liapunov function can
be imagined as a sort of an energy
function (i.e., non-negative) that van-
ishes only at v and that the flow de-
fined by equation 1 strictly decreases
its value at every point, except at the
fixed point v. These conditions im-
ply that if a flow (i.e., integral curve)
starting at q0 ∈ Ω stays bounded it
has to converge to v. See for exam-
ple Theorem 6.14 in (Teschl, 2012).
Now, consider

h(q) =
‖q − v‖2

1 + ‖q‖2
. (2)

We will prove that h is Liapunov for our problem. First it
clearly satisfies the energy condition. The bounded condi-
tion can be seen by noting that h(q) ∈ [0, 1) for all q ∈ Ω
and that in the quadratic equation h(q) = c the quadratic
term has the form (1− c) ‖w‖2 and since (1− c) > 0 the
level-sets of h are all finite-radius circles, see Figure 1.

To prove the decreasing property a direct computation shows
that for q ∈ Ω

∇h · dq
dt

=
−8vTq

(1 + ‖q‖2)2

(
qTDq + λ

(
‖q‖2 − 1

)2
)
≤ 0

where in the last inequality we used the fact that vTq =
q1 > 0, andD is a positive semi-definite matrix, i.e., λi ≥ 0,
i ∈ [d]. Furthermore, if the r.h.s. equals zero then qTDq =
0 and ‖q‖ = 1; this implies that q = v. Therefore for all
q ∈ Ω \ {q} we have ∇h · dqdt < 0.

Relation to Theorem 2. Although this seems as a special
case of Theorem 2, note that it works for the continuous
gradient flow. This is in contrast to the proof of Theorem 2
that uses the result of (Lee et al., 2016) building upon the
discrete nature of gradient descent iterations. Furthermore,
we believe a simple self-contained convergence proof that
does not rely on previous work could be of merit.
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Figure 2. Additional results from D-Faust shape space experiment (see Section 7.2 in main paper). Left - train results, right - test results.
In each row (left to right): Registration (not used), raw scan (source of input point clouds), our result, and SAL result. Back-faces are
colored in magenta.


