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Abstract
Gating mechanisms are widely used in neural
network models, where they allow gradients to
backpropagate more easily through depth or time.
However, their saturation property introduces
problems of its own. For example, in recurrent
models these gates need to have outputs near 1
to propagate information over long time-delays,
which requires them to operate in their saturation
regime and hinders gradient-based learning of
the gate mechanism. We address this problem by
deriving two synergistic modifications to the stan-
dard gating mechanism that are easy to implement,
introduce no additional hyperparameters, and
improve learnability of the gates when they are
close to saturation. We show how these changes
are related to and improve on alternative recently
proposed gating mechanisms such as chrono
initialization and Ordered Neurons. Empirically,
our simple gating mechanisms robustly improve
the performance of recurrent models on a range
of applications, including synthetic memorization
tasks, sequential image classification, language
modeling, and reinforcement learning, particularly
when long-term dependencies are involved.

1. Introduction
Recurrent neural networks (RNNs) are an established
machine learning tool for learning from sequential data.
However, RNNs are prone to the vanishing gradient problem,
which occurs when the gradients of the recurrent weights be-
come vanishingly small as they get backpropagated through
time (Hochreiter, 1991; Bengio et al., 1994; Hochreiter
et al., 2001). A common approach to alleviate the vanishing
gradient problem is to use gating mechanisms, leading to
models such as the long short term memory (Hochreiter
& Schmidhuber, 1997, LSTM) and gated recurrent units
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(Chung et al., 2014, GRUs). These gated RNNs have been
very successful in several different application areas such
as in reinforcement learning (Kapturowski et al., 2018;
Espeholt et al., 2018) and natural language processing
(Bahdanau et al., 2014; Kočiskỳ et al., 2018).

At every time step, gated recurrent networks use a weighted
combination of the history summarized by the previous state,
and a function of the incoming inputs, to create the next
state. The values of the gates, which are the coefficients of
the weighted combination, control the length of temporal
dependencies that can be addressed. This weighted update
can be seen as an additive or residual connection on the
recurrent state, which helps signals propagate through
time without vanishing. However, the gates themselves
are prone to a saturating property which can also hamper
gradient-based learning. This can be problematic for RNNs,
where carrying information for very long time delays
requires gates to be very close to their saturated states.

We address two particular problems that arise with the
standard gating mechanism of recurrent models. Firstly,
learning when gates are in their saturation regime is difficult
because gradients through the gates vanish as they saturate.
We derive a modification to standard gating mechanisms
that uses an auxiliary refine gate (Section 3.1) to modulate a
main gate. This mechanism allows the gates to have a wider
range of activations without gradients vanishing as quickly.
Secondly, typical initialization of the gates is relatively
concentrated. This restricts the range of timescales the model
can address at initialization, as the timescale of a particular
unit is dictated by its gates. We propose uniform gate initial-
ization (Section 3.2) that addresses this problem by directly
initializing the activations of these gates from a distribution
that captures a wider spread of dependency lengths.

The main contribution of this paper is the refine gate mech-
anism. As the refine gate works better in tandem with uni-
form gate initialization, we call this combination the UR
gating mechanism. We focus on comparing the UR gating
mechanism against other approaches in our experiments.
These changes can be applied to any gate (i.e. parameterized
bounded function) and have minimal to no overhead in terms
of speed, memory, code complexity, parameters, or hyper
parameters. We apply them to the forget gate of recurrent
models, and evaluate on several benchmark tasks that re-
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quire long-term memory including synthetic memory tasks,
pixel-by-pixel image classification, language modeling, and
reinforcement learning. Finally, we connect our methods to
other proposed gating modifications, introduce a framework
that allows each component to be replaced with similar ones,
and perform extensive ablations of our method. Empirically,
the UR gating mechanism robustly improves on the standard
forget and input gates of gated recurrent models. When ap-
plied to the LSTM, these simple modifications solve synthetic
memory tasks that are pathologically difficult for the standard
LSTM, achieve state-of-the-art results on sequential MNIST
and CIFAR-10, and show consistent improvements in lan-
guage modeling on the WikiText-103 dataset (Merity et al.,
2016) and reinforcement learning tasks (Hung et al., 2018).

2. Gated Recurrent Neural Networks
Broadly speaking, RNNs are used to sweep over a sequence
of input data xt to produce a sequence of recurrent states
ht ∈ Rd summarizing information seen so far. At a high
level, an RNN is just a parametrized function in which each
sequential application of the network computes a state update
u : (xt,ht−1) 7→ht. Gating mechanisms were introduced to
address the vanishing gradient problem (Hochreiter, 1991;
Bengio et al., 1994; Hochreiter et al., 2001), and have proven
to be crucial to the success of RNNs. This mechanism essen-
tially smooths out the update using the following equation,

ht=ft(xt,ht−1)◦ht−1+it(xt,ht−1)◦u(xt,ht−1), (1)

where the forget gate ft and input gate it are [0,1]d-valued
functions that control how fast information is forgotten or
allowed into the memory state. When the gates are tied,
i.e. ft+it=1 as in GRUs, they behave as a low-pass filter,
deciding the time-scale on which the unit will respond (Tallec
& Ollivier, 2018). For example, large forget gate activations
close to ft=1 are necessary for recurrent models to address
long-term dependencies.1

We will introduce our improvements to the gating mechanism
primarily in the context of the LSTM, which is the most
popular recurrent model.

ft=σ(Pf (xt, ht−1)), (2)
it=σ(Pi(xt, ht−1)), (3)
ut=tanh(Pu(xt, ht−1)), (4)
ct=ft◦ct−1+it◦ut, (5)
ot=σ(Po(xt, ht−1)), (6)
ht=ottanh(ct). (7)

A typical LSTM (equations (2)-(7)) is an RNN whose state
is represented by a tuple (ht, ct) consisting of a “hidden”

1In this work, we use “gate” to alternatively refer to a [0,1]-
valued function or the value (“activation”) of that function.

Figure 1. Refine mechanism. The refine mechanism improves flow
of gradients through a saturating gate f . As f saturates, its gradient
vanishes, and its value is unlikely to change (see Figure 4). The
refine gate r is used to produce a bounded additive term φ that may
push f lower or higher as necessary. The resulting effective gate g
can achieve values closer to 0 and 1 and can change even when f is
stuck. We apply it to the forget gate of an LSTM. The g is then used
in place of f in the state update (5).

state and “cell” state. The state update equation (1) is used to
create the next cell state ct (5). Note that the gate and update
activations are a function of the previous hidden state ht−1
instead of ct−1. Here, P? stands for a parameterized linear
function of its inputs with bias b?, e.g.

Pf (xt,ht−1)=Wfxxt+Wfhht−1+bf . (8)

and σ(·) refers to the standard sigmoid activation function
which we will assume is used for defining [0,1]-valued ac-
tivations in the rest of this paper. The gates of the LSTM
were initially motivated as a binary mechanism, switching
on or off, allowing information and gradients to pass through.
However, in reality, this fails to happen due to a combination
of two factors: initialization and saturation. This can be prob-
lematic, such as when very long dependencies are present.

3. Our Proposed Gating Mechanisms
We present two solutions that work in tandem to address
the previously described issues. The first is the refine gate,
which allows for better gradient flow by reparameterizing
a saturating gate, for example, the forget gate. The second is
uniform gate initialization, which ensures a diverse range
of gate values are captured at the start of training, which
allows a recurrent model to have a multi-scale representation
of an input sequence at initialization.

3.1. Refine Gate

Formally, the full mechanism of the refine gate as applied
to gated recurrent models is defined in equations (9)-(11).
Note that it is an isolated change where the forget gate ft is
modified to get the effective forget gate in (10) before apply-
ing the the standard update (1). Figure 1 illustrates the refine
gate in an LSTM cell. Figure 3 illustrates how the refine gate
rt is defined and how it changes the forget gate ft to produce
an effective gate gt. The refine gate allows the effective
gate g to reach much higher and lower activations than the
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constituent gates f and r, bypassing the saturating gradient
problem. For example, this allows the effective forget gate
to reach g=0.99 when the forget gate is only f=0.9.

Finally, to simplify comparisons and ensure that we always
use the same number of parameters as the standard gates,
when using the refine gate we tie the input gate to the effec-
tive forget gate, it =1−gt.2 However, we emphasize that
these techniques can be applied to any gate (or more broadly,
any bounded function) to improve initialization distribution
and help optimization. For example, our methods can be
combined in different ways in recurrent models, e.g. an inde-
pendent input gate can be modified with its own refine gate.

rt=σ(Pr(xt, ht−1)), (9)

gt=rt ·(1−(1−ft)2)+(1−rt)·f2t , (10)
ct=gtct−1+(1−gt)ut. (11)

3.2. Uniform Gate Initialization

Standard initialization schemes for the gates can prevent
the learning of long-term temporal correlations (Tallec &
Ollivier, 2018). For example, supposing that a unit in the cell
state has constant forget gate value ft, then the contribution
of an input xt in k time steps will decay by (ft)

k. This gives
the unit an effective decay period or characteristic timescale
ofO( 1

1−ft ).
3 Standard initialization of linear layers L sets

the bias term to 0, which causes the forget gate values (2) to
concentrate around 0.5. A common trick of setting the forget
gate bias to bf =1.0 (Jozefowicz et al., 2015) does increase
the value of the decay period to 1

1−σ(1.0) ≈ 3.7. However,
this is still relatively small and may hinder the model from
learning dependencies at varying timescales easily.

We instead propose to directly control the distribution of
forget gates, and hence the corresponding distribution of
decay periods. In particular, we propose to simply initialize
the value of the forget gate activations ft according to a
uniform distribution U(0,1)4,

bf ∼σ−1(U [ε,1−ε]). (12)

An important difference between UGI and standard or other
(e.g. Tallec & Ollivier, 2018) initializations is that negative
forget biases are allowed. The effect of UGI is that all
timescales are covered, from units with very high forget
activations remembering information (nearly) indefinitely,
to those with low activations focusing solely on the incoming

2In our experiments, we found that tying input/forget gates
makes negligible difference on downstream performance, consistent
with previous findings in the literature (Greff et al., 2016; Melis
et al., 2017).

3This corresponds to the number of timesteps it takes to decay
by 1/e.

4Since σ−1(0)=−inf , we use the standard practice of thresh-
olding with a small ε for stability.

(a) (b)

Figure 2. The adjustment function. (a) An adjustment function
α(ft) satisfying natural properties is chosen to define a band within
which the forget gate is refined. (b) The forget gate ft(x) is conven-
tionally defined with the sigmoid function (black). The refine gate
interpolates around the original gate ft to yield an effective gate gt
within the upper and lower curves, gt∈ft±α(ft).

input. Additionally, it introduces no additional parameters;
it even can have less hyperparameters than the standard
gate initialization, which sometimes tunes the forget bias
bf (Jozefowicz et al., 2015). Appendix B.2 and B.3 further
discuss the theoretical effects of UGI on timescales.

3.3. The URLSTM

The URLSTM requires two small modifications to the
vanilla LSTM. First, we present the way the biases of forget
gates are initialized in Equation (12) with UGI. Second,
the modifications on the standard LSTM equations to
compute the refine and effective forget gates are presented
in Equations (9)-(11). However, we note that these methods
can be used to modify any gate (or more generally, bounded
function) in any model. In this context, the URLSTM is
simply defined by applying UGI and a refine gate r on the
original forget gate f to create an effective forget gate g
(Equation (10)). This effective gate is then used in the cell
state update (11). Empirically, these small modifications
to an LSTM are enough to allow it to achieve nearly binary
activations and solve difficult memory problems (Figure 5).

3.4. A Formal Treatment of Refine Gates

Given a gate f = σ(Pf (x)) ∈ [0,1], the refine gate is an
independent gate r=σ(Pr(x)) that modulates f to produce
a value g∈ [0,1]which will be used in place of f downstream.
It is motivated by considering how to modify the output
of a gate f in a way that promotes gradient-based learning,
derived below.

An additive adjustment A root cause of the saturation
problem is that the gradient ∇f of a gate can be written
solely as a function of the activation value as f(1 − f),
decays rapidly as f approaches to 0 or 1. Thus when the
activation f is past a certain upper or lower threshold,
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(a) (b)

Figure 3. Refine gate activations and gradients.: (a) Contours of
the effective gate gt as a function of the forget and refine gates
ft, rt. High effective activations can be achieved with more modest
ft,rt values. (b) The gradient∇gt as a function of effective gate
activation gt. [Black, blue]: Lower and upper bounds on the ratio of
the gradient with a refine gate vs. the gradient of a standard gate. For
activation values near the extremes, the refine gate can significantly
increase the gradients.

learning effectively stops. This problem cannot be fully
addressed only by modifying the input of the sigmoid, as
in UGI and other techniques, as the gradient will still vanish
by backpropagating through the activation function.

Therefore to better control activations near the saturating
regime, instead of changing the input to the sigmoid in f=
σ(P(x)), we consider modifying the output. Modifying the
gate with a multiplicative interaction can have unstable learn-
ing dynamics since when the gates have very small values,
the multiplicative factor may need to be very large to avoid
the gradients of the gates shrinking to zero. As a result, we
consider adjusting f with an input-dependent additive update
φ(f,x) for some function φ, to create an effective gate g=
f+φ(f,x) that will be used in place of f downstream such as
in the main state update (1). This sort of additive (“residual”)
connection is a common technique to increase gradient flow,
and indeed was the motivation of the LSTM additive gated
update (1) itself (Hochreiter & Schmidhuber, 1997).

Choosing the adjustment function φ Although there
might be many choices that seem plausible for choosing an
appropriate additive update φ, we first identify the desirable
properties of such a function and then discuss how our refine
gate mechanism satisfies those properties.

The desired properties of φ emerge considering the
applications of the gating mechanisms in recurrent models:

• Boundedness: After the additive updates, the
activations still need to be bounded between 0 and 1.

• Symmetricity: The resulting gating framework should
be symmetric around 0, as sigmoid does.

• Smoothness: The refining mechanism should be
differentiable, since we will be using backpropagation

and gradient based optimization methods.

Let us note that, ft may need to be either increased or de-
creased, regardless of what value it has. This is because the
gradients through the gates can vanish either when the activa-
tions get closer to 0 or 1. Therefore, an additive update to f
should create an effective gate activationgt in the rangeft±α
for some α. We assume that the allowed adjustment range,
α=α(ft), needs to be a function of f to keep the g between 0
and 1. Since 0 and 1 are symmetrical in the gating framework,
our adjustment rate should also satisfy α(f)=α(1−f).

Figure 2a illustrates the general appearance ofα(f) based on
aforementioned properties. According to the Boundedness
property, the adjustment rate should be be upper-bounded by
min(f,1−f) to ensure that g∈f±α(f) is bounded between
0 and 1. As a consequence of this property, its derivatives
should also satisfy, α′(0)≤ 1 and α′(1)≥−1. Symetricity
also implies α′(f)=−α′(1−f), and smoothness implies α′

is continuous. The simplest such function satisfying all these
properties is the linear α′(f)=1−2f , yielding to our choice
of adjustment function, α(f)=f−f2=f(1−f). However,
when f is bounded between 0 and 1, α(f) will be positive.

Recall that the goal is to produce an effective activation
g=f+φ(f,x) such that g∈f±α(f) (Figure 2b) given. Our
final observation is that the simplest such function φ satis-
fying this is φ(f,x) =α(f)ψ(f,x) where ψ(f,x)∈ [−1,1]
decides the sign of adjustment, and it can also change
its magnitude as well. The standard method of defining
[−1,1]-valued differentiable functions is achieved by using
a tanh non-linearity, and this leads to φ(f,x)=α(f)(2r−1)
for another gate r=σ(P(x)). The full refine update equation
can be given as in Equation (13),

g=f+α(f)(2r−1)=f+f(1−f)(2r−1)
=(1−r)·f2+r·(1−(1−f)2)

(13)

Equation (13) has the elegant interpretation that the gate r
linearly interpolates between the lower band f−α(f)=f2
and the symmetric upper band f + α(f) = 1− (1− f)2
(Figure 2b). In other words, the original gate f is the
coarse-grained determinant of the effective gate g, while the
gate r “refines” it.

4. Related Gating Mechanisms
We highlight a few recent works that also propose small gate
changes to address problems of long-term or variable-length
dependencies. Like ours, they can be applied to any gated
update equation.

Tallec & Ollivier (2018) suggest an initialization strategy
to capture long-term dependencies on the order of Tmax,
by sampling the gate biases from bf ∼ log U(1,Tmax−1).
Although similar to UGI in definition, chrono initialization
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(CI) has critical differences in the timescales captured, for
example, by using an explicit timescale parameter and having
no negative biases. Due to its relation to UGI, we provide a
more detailed comparison in Appendix B.3. As mentioned
in Section 3.4, techniques such as these that only modify
the input to a sigmoid gate do not adequately address the
saturation problem.

The Ordered Neuron (ON) LSTM introduced by (Shen
et al., 2018) aims to induce an ordering over the units in
the hidden states such that “higher-level” neurons retain
information for longer and capture higher-level information.
We highlight this work due to its recent success in NLP, and
also because its novelties can be factored into introducing
two mechanisms which only affect the forget and input gates,
namely (i) the cumax := cumsum ◦ softmax activation
function which creates a monotonically increasing vector
in [0,1], and (ii) a pair of “master gates” which are ordered
by cumax and fine-tuned with another pair of gates.

We observe that these are related to our techniques in that
one controls the distribution of a gate activation, and the
other is an auxiliary gate with modulating behavior. Despite
its important novelties, we find that the ON-LSTM has
drawbacks, including speed and scaling issues of its gates.
We provide the formal definition and detailed analysis of the
ON-LSTM in Appendix B.4. For example, we comment on
how UGI can also be motivated as a faster approximation of
the cumax activation. We also flesh out a deeper relationship
between the master and refine gates and show how they can
be interchanged for each other.

We include a more thorough overview of other related works
on RNNs in Appendix B.1. These methods are mostly
orthogonal to the isolated gate changes considered here
and are not analyzed. We note that an important drawback
common to all other approaches is the introduction of
substantial hyperparameters in the form of constants, training
protocol, and significant architectural changes. For example,
even for chrono initialization, one of the less intrusive
proposals, we experimentally find it to be particularly
sensitive to the hyperparameter Tmax (Section 5).

4.1. Gate Ablations

Our insights about previous work with related gate compo-
nents allow us to perform extensive ablations of our con-
tributions. We observe two independent axes of variation,
namely, activation function/initialization (cumax, constant
bias sigmoid, CI, UGI) and auxiliary modulating gates (mas-
ter, refine), where different components can be replaced with
each other. Therefore we propose several other gate combina-
tions to isolate the effects of different gating mechanisms. We
summarize a few ablations here; precise details are given in
Appendix B.5. O-: Ordered gates. A natural simplification of
the main idea of ON-LSTM, while keeping the hierarchical

Table 1. Summary of gate ablations. Summary of gating mecha-
nisms considered in this work as applied to the forget/input gates of
recurrent models. Some of these ablations correspond to previous
work. -- standard LSTMs, C- (Tallec & Ollivier, 2018), and OM
(Shen et al., 2018)

Name Initialization/Activation Auxiliary Gate

-- Standard initialization N/A
C- Chrono initialization N/A
O- cumax activation N/A
U- Uniform initialization N/A
-R Standard initialization Refine gate
OM cumax activation Master gate
UM Uniform initialization Master gate
OR cumax activation Refine gate
UR Uniform initialization Refine gate

bias on the forget activations, is to simply drop the auxiliary
master gates and define ft,it (2)-(3) using the cumax acti-
vation function. UM: UGI master gates. This variant of the
ON-LSTM’s gates ablates the cumax operation on the master
gates, replacing it with a sigmoid activation and UGI which
maintains the same initial distribution on the activation values.
OR: Refine instead of master. A final variant in between the
UR gates and the ON-LSTM’s gates combines cumax with
refine gates. In this formulation, as in UR gates, the refine
gate modifies the forget gate and the input gate is tied to the
effective forget gate. The forget gate is ordered using cumax.

Table 1 summarizes the gating modifications we consider
and their naming conventions. Note that we also denote
the ON-LSTM method as OM for mnemonic ease. Finally,
we remark that all methods here are controlled with the
same number of parameters as the standard LSTM, aside
from OM and UM which use an additional 1

2C -fraction
parameters where C is the downsize factor on the master
gates (Appendix B.4). C=1 unless noted otherwise.

5. Experiments
We first perform full ablations of the gating variants (Sec-
tion 4.1) on two common benchmarks for testing memory
models: synthetic memory tasks and pixel-by-pixel image
classification tasks. We then evaluate our main method
on important applications for recurrent models including
language modeling and reinforcement learning, comparing
against baselines from literature where appropriate.

The main claims we evaluate for each gating component
are (i) the refine gate is more effective than alternatives
(the master gate, or no auxiliary gate), and (ii) UGI is more
effective than standard initialization for sigmoid gates. In
particular, we expect the *R gate to be more effective than
*M or *- for any primary gate *, and we expect U* to be
better than -* and comparable to O* for any auxiliary gate *.

The standard LSTM (--) uses forget bias 1.0 (Section
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Figure 4. Performance on synthetic memory: Copy task using
sequences of length 500. Several methods including standard gates
fail to make any progress (overlapping flat curves at baseline). Note
that methods that combine the refine gate with a range of gate values
(OR, UR) perform best. But the refine gate on its own does not
perform well. Adding task using sequences of length 2000. Most
methods eventually make progress, but again methods that combine
the refine gate with a range of gate values (OR, UR) perform best.

2.2). When chrono initialization is used and not explicitly
tuned, we set Tmax to be proportional to the hidden size.
This heuristic uses the intuition that if dependencies of
length T exist, then so should dependencies of all lengths
≤ T . Moreover, the amount of information that can be
remembered is proportional to the number of hidden units.

All of our benchmarks have prior work with recurrent
baselines, from which we used the same models, protocol,
and hyperparameters whenever possible, changing only the
gating mechanism without doing any additional tuning for
the refine gating mechanisms. Full protocols and details for
all experiments are given in Appendix D.

5.1. Synthetic Memory Tasks

Our first set of experiments is on synthetic memory
tasks (Hochreiter & Schmidhuber, 1997; Arjovsky et al.,
2016) that are known to be hard for standard LSTMs to solve.
For these tasks, we used single layer models with 256 hidden
units, trained using Adam with learning rate 10−3.

Copy task. The input is a sequence ofN+20 digits where
the first 10 tokens (a0,a1,...,a9) are randomly chosen from
{1,...,8}, the middle N tokens are set to 0, and the last ten
tokens are 9. The goal of the recurrent model is to output
(a0,...,a9) in order on the last 10 time steps, whenever the

Figure 5. Distribution of forget gate activations before and after
training. For the Copy task. We show the distribution of activations
ft for four methods: -- cannot learn large enough ft and makes no
progress on the task. C- initializes with extremal activations which
barely change during training. U- makes progress by encouraging
a range of forget gate values, but this distribution does not change
significantly during training due to saturation. UR starts with the
same distribution as U- but is able to learn extreme gate values,
which allows it to access the distal inputs, as necessary for this task.
Appendix E.1 shows a reverse task where UR is able to un-learn
from a saturated regime.

cue token 9 is presented. We trained our models using
cross-entropy with baseline loss log(8) (Appendix D.1).

Adding task. The input consists of two sequences: 1. N
numbers (a0,...,aN−1) sampled independently from U [0,1]
2. an index i0 ∈ [0, N/2) and i1 ∈ [N/2, N), together
encoded as a two-hot sequence. The target output is ai0+ai1
and models are evaluated by the mean squared error with
baseline loss 1/6.

Figure 4 shows the loss of various methods on the Copy and
Adding tasks. The only gate combinations capable of solving
Copy completely are OR, UR, O-, and C-. This confirms the
mechanism of their gates: these are the only methods capable
of producing high enough forget gate values either through
the cumax non-linearity, the refine gate, or extremely high
forget biases. U- is the only other method able to make
progress, but converges slower as it suffers from gate satu-
ration without the refine gate. -- makes no progress. OM and
UM also get stuck at the baseline loss, despite OM’s cumax
activation, which we hypothesize is due to the suboptimal
magnitudes of the gates at initialization (Appendix B.4). On
the Adding task, every method besides -- is able to eventually
solve it, with all refine gate variants fastest.

Figure 5 shows the distributions of forget gate activations of
sigmoid-activation methods, before and after training on the
Copy task. It shows that activations near 1.0 are important
for a model’s ability to make progress or solve this task, and
that adding the refine gate makes this significantly easier.

5.2. Pixel-by-pixel Image Classification

These tasks involve feeding a recurrent model the pixels of
an image in a scanline order before producing a classification
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Figure 6. Performance on pixel-by-pixel image classification.
Performance is consistent with synthetic tasks. -- performs the
worst. Other gating variants improve performance. Note that meth-
ods that combine the refine gate with a range of gate values (OR,
UR) perform best.

label. We test on the sequential MNIST (sMNIST), permuted
MNIST (pMNIST) (Le et al., 2015), and sequential CIFAR-
10 (sCIFAR-10) tasks. Each LSTM method was ran with a
learning rate sweep with 3 seeds each. We found that many
methods were quite unstable, with multiple seeds diverging.
Figure 6 shows the accuracy curves of each method at their
best stable learning rate. The basic LSTM is noticeably worse
than all of the others. This suggests that any of the gate mod-
ifications, whether better initialization, cumax non-linearity,
or master or refine gates, are better than standard gates espe-
cially when long-term dependencies are present. Addition-
ally, the uniform gate initialization methods are generally bet-
ter than the ordered and chrono initialization, and the refine
gate performs better than the master gate. Table 2 compares
the test accuracy of our main model against other models from
the literature. In addition, we tried variants of GRUs and the
addition of a generic regularization technique—we chose
Zoneout (Krueger et al., 2016) with default hyperparameters
(zc=0.5, zh=0.05). This combination even outperformed
non-recurrent models on sequential MNIST and CIFAR-10.

From Sections 5.1 and 5.2, we draw a few conclusions about
the comparative performance of different gate modifications.
First, the refine gate is consistently better than comparable
master gates. C- solves the synthetic memory tasks but is
worse than any other variant outside of those. We find or-
dered (cumax) gates to be effective, but speed issues prevent
us from using them in more complicated tasks. UR gates are
consistently among the best performing and most stable.

Table 2. Comparison to prior methods for pixel-by-pixel image
classification. Test acc. on pixel-by-pixel image classification
benchmarks. Top: Recurrent baselines and variants. Middle: Non-
recurrent sequence models with global receptive field. r-LSTM has
2-layers with an auxiliary loss. Bottom: Our methods.

Method sMNIST pMNIST sCIFAR-10

LSTM (ours) 98.9 95.11 63.01
Dilated GRU (Chang et al., 2017) 99.0 94.6 -
IndRNN (Li et al., 2018a) 99.0 96.0 -
r-LSTM (Trinh et al., 2018) 98.4 95.2 72.2

Transformer (Trinh et al., 2018) 98.9 97.9 62.2
Temporal ConvNet (Bai et al., 2018a) 99.0 97.2 -
TrellisNet (Bai et al., 2018b) 99.20 98.13 73.42

URLSTM 99.28 96.96 71.00
URLSTM + Zoneout (Krueger et al., 2016) 99.21 97.58 74.34
URGRU + Zoneout 99.27 96.51 74.4

Table 3. Language modelling results. Perplexities on the
WikiText-103 dataset.

Method Valid Test

-- 34.3 35.8
C- 35.0 36.4
C- Tmax=8 34.3 36.1
C- Tmax=11 34.6 35.8
OM 34.0 34.7
U- 33.8 34.9
UR 33.6 34.6

5.3. Language Modeling

We consider word-level language modeling on the WikiText-
103 dataset, where (i) the dependency lengths are much
shorter than in the synthetic tasks, (ii) language has an
implicit hierarchical structure and timescales of varying
lengths. We evaluate our gate modifications against the exact
hyperparameters of a SOTA LSTM-based baseline (Rae et al.,
2018) without additional tuning (Appendix D). Additionally,
we compare against ON-LSTM, which was designed for
this domain (Shen et al., 2018), and chrono initialization,
which addresses dependencies of a particular timescale as
opposed to timescale-agnostic UGI methods. In addition
to our default hyperparameter-free initialization, we tested
models with the chrono hyperparameter Tmax manually set
to 8 and 11, values previously used for language modeling to
mimic fixed biases of about 1.0 and 2.0 respectively (Tallec
& Ollivier, 2018).

Table 3 shows Validation and Test set perplexities for various
models. We find that OM, U-, and UR improve over -- with
no additional tuning. However, although OM was designed
to capture the hierarchical nature of language with the
cumax activation, it does not perform better than U- and
UR. Appendix D, Figure 11 additionally shows validation
perplexity curves, which indicate that UR overfits less than
the other methods.

The chrono initialization using our aforementioned initial-
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Figure 7. Active match. Hung et al. (2018). The agent navigates a
3D world using observations from a first person camera. The task
has three phases. In phase 1, the agent must search for a colored
cue. In phase 2, the agent is exposed to apples which give distractor
rewards. In phase 3, the agent must correctly recall the color of the
cue and pick the sensor near the corresponding color to receive the
task reward. An episode lasts between 450 and 600 steps, requiring
long-term memory and credit assignment.

ization strategy makes biases far too large. While manually
tweaking the Tmax hyperparameter helps, it is still far from
any UGI-based methods. We attribute these observations
to the nature of language having dependencies on multiple
widely-varying timescales, and that UGI is enough to capture
these without resorting to strictly enforced hierarchies such
as in OM.

5.4. Reinforcement Learning Memory Tasks

In most partially observable reinforcement learning (RL)
tasks, the agent can observe only part of the environment at
a time and thus requires a memory to summarize what it has
seen previously. However, designing memory architectures
for reinforcement learning problems has been a challenging
task (Oh et al., 2016; Wayne et al., 2018). Many memory
architectures for RL use an LSTM component to summarize
what an agent has seen.

We investigated if changing the gates of these LSTMs can
improve the performance of RL agents, especially on difficult
tasks involving memory and long-term credit assignment. We
chose the Passive match and Active match tasks from Hung
et al. (2018) using A3C agents (Mnih et al., 2016). See Figure
7 for a description of Active match. Passive match is similar,
except the agent always starts facing the colored cue. As a
result, Passive Match only tests long term memory, not long-
term credit assignment. Only the final task reward is reported.

Hung et al. (2018) evaluated agents with different recurrent
cores: basic LSTM, LSTM+Mem (an LSTM with memory),
and RMA (which also uses an LSTM core), and found the
standard LSTM was not able to solve these tasks. We mod-
ified the LSTM agent with our gate mechanisms. Figure 8
shows the results of different methods on the Passive match
and Active match tasks with distractors. These tasks are
structurally similar to the synthetic tasks (Sec. 5.1) requiring
retrieval of a memory over hundreds of steps to solve the

Figure 8. Performance on reinforcement learning tasks that re-
quire memory. We evaluated the image matching tasks from Hung
et al. (2018), which test memorization and credit assignment, using
an A3C agent (Mnih et al., 2016) with an LSTM policy core. We
observe that general trends from the synthetic tasks (Section (5.1))
transfer to this reinforcement learning setting.

task, and we found that those trends largely transferred to the
RL setting even with several additional confounders present
such as agents learning via RL algorithms, being required to
learn relevant features from pixels rather than being given the
relevant tokens, and being required to explore in the Active
Match case.

We found that the UR gates substantially improved the
performance of the basic LSTM on both Passive Match and
Active Match tasks with distractor rewards. The URLSTM
was the was the only method able to get near optimal
performance on both tasks, and achieved similar final
performance to the LSTM+Mem and RMA agents reported
in (Hung et al., 2018).

5.5. Additional Results and Experimental Conclusions

Appendix (E.1) shows an additional synthetic experiment
investigating the effect of refine gates on saturation. Ap-
pendix (E.3) has results on a program execution task, which
is interesting for having explicit long and variable-length
dependencies and hierarchical structure. It additionally
shows another very different gated recurrent model where
the UR gates provide consistent improvement.

Finally, we would like to comment on the longevity of
the LSTM, which for example was frequently found to
outperform newer competitors when better tuned (Melis
et al., 2017; Merity, 2019). Although many improvements
have been suggested over the years, none have been proven to
be as robust as the LSTM across an enormously diverse range
of sequence modeling tasks. By experimentally starting from
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well-tuned LSTM baselines, we believe our simple isolated
gate modifications to actually be robust improvements. In
Appendix B.3 and B.4, we offer a few conclusions for the
practitioner about the other gate components considered
based on our experimental experience.

6. Discussion
In this work, we introduce and evaluate several modifications
to the ubiquitous gating mechanism that appears in recurrent
neural networks. We describe methods that improve
on the standard gating method by alleviating problems
with initialization and optimization. The mechanisms
considered include changes on independent axes, namely
initialization/activations and auxiliary gates, and we perform
extensive ablations on our improvements with previously
considered modifications. Our main gate model robustly
improves on standard gates across many different tasks and
recurrent cores, while requiring less tuning. Finally, we
emphasize that these improvements are entirely independent
of the large body of research on neural network architectures
that use gates, and hope that these insights can be applied
to improve machine learning models at large.
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