Supplementary Materials for "LTF: A Label Transformation Framework for Correcting Label Shift"

Anonymous Authors¹

A. Supplementary Material

A.1. Proof of Proposition 1

Proof. Let h^c be complementary function of h, such that $X = H(h(X), h^c(X))$. Let $X_1 = h(X)$ and $X_2 = h^c(X)$, then we have $p_{X,Y}(x, y) = p_{X_1,X_2,Y}(x_1, x_2, y)$. Using the decomposition $p_{X_1,X_2,Y}(x_1, x_2, y) = p_{X_1}(x_1)p_{X_2,Y|X_1}(x_2, y|x_1)$, we have

$$I(Y,X) = I(Y,X_1) + E_{X_1}[I(Y|X_1,X_2|X_1)], \quad (1)$$

where $I(\cdot, \cdot) \ge 0$ is the mutual information. By maximizing $I(Y, X_1)$, the best solution we can achieve is $I(Y, X_1) = I(Y, X)$, which implies $I(Y|X_1, X_2|X_1) = 0$. This means the conditional independence of Y and X_2 given X_1 , i.e., $Y \perp X_2 | X_1$, which is equivalent to $Y \perp X | h(X)$. Then it suffices to show that maximizing mutual information $I(Y, X_1)$ is equivalent to minimizing the cross-entropy loss or mean squared loss under some parametric assumptions.

We first expand the mutual information $I(Y, X_1)$ as

$$I(Y, X_1) = H(Y) - H(Y|X_1)$$

= $H(Y) + \int p(y, x_1) \log p(y|x_1) dy dx_1.$ (2)

For regression problems, we use $q(y|x_1) = N(w^T x_1 | \sigma^2)$ to approximate $p(y|x_1)$ and write (2) as

$$I(Y, X_1) \approx H(Y) - \frac{1}{2\sigma^2} \int p(y, x_1) (y - w^T x_1)^2 dy dx_1.$$
(3)

It is straightforward to see that maximizing $I(Y, X_1)$ is equivalent minimizing the mean squared loss. For classification, we use $q(y = k|x_1) = \frac{\exp w_k^T x_1}{\sum_{k'=1}^{K} \exp w_{k'}^T x_1}$ to approximate $p(y|x_1)$ and rewrite (2) as

$$I(Y, X_1) \approx H(Y) + \int \sum_{k=1}^{K} p(y = k, x_1) \frac{\exp w_k^T x_1}{\sum_{k'=1}^{K} \exp w_{k'}^T x_1} dx$$
(4)

Therefore, maximizing $I(Y, X_1)$ is equivalent minimizing the cross-entropy loss for classification.

A.2. Results of Fashion-MNIST and MNIST

A.2.1. RESULTS OF CIFAR-10

The details of experimental settings of CIFAR-10 are given at the table 1, and the results of CIFAR-10 are given at the main paper.

Classifier Details		
Architecture	Resnet-18	
Batch Size	128	
Training epochs	20	
Optimizer	SGD	
Learning Rate	1e-2	
L2 Penalty Parameter	5e-4	
Label Transformation Details		
Architecture	One-Layer Network	
Label Influence Recovery Details		
Generator Architecture	BigGAN	
Training Method	BigGAN (Brock et al., 2018)	
Distribution Matching		
Optimizer	Adam	
Learning Rate	8e-5	
Training epochs	1000	

Table 1. The experimental details on CIFAR-10 dataset.

A.2.2. RESULTS OF FASHION-MNIST

The details of experimental settings of Fashion-MNIST are given at the table 2. The MSE error of the estimated la x_1 bel weights P_Y^T/P_Y^S , accuracy and F1 score of FASHION-MNIST are shown as Figure 1, 2, 3.

A.2.3. RESULTS OF MNIST

The details of experimental settings of MNIST are given at the table 3. The MSE error of the estimated label weights P_Y^T/P_Y^S , accuracy and F1 score of MNIST are shown as Figure 4, 5, 6.

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

Classifier Details		
Architecture	Discriminator of DCGAN	
Batch Size	128	
Training epochs	20	
Optimizer	SGD	
Learning Rate	1e-2	
L2 Penalty Parameter	5e-4	
Label Transformation Details		
Architecture	One-Layer Network	
Label Influence Recovery Details		
Generator Architecture	Generator of DCGAN	
Training Method	TAC-GAN (Gong et al., 2019)	
Distribution Matching		
Optimizer	Adam	
Learning Rate	8e-5	
Training epochs	1000	

Table 2. The experimental details on FASHION-MNIST dataset.

Figure 1. (a) Mean squared errors of estimated label weights (Lower is better), (b) accuracy and (c) F-1 score (Higher is better) on FASHION-MNIST for the uniform training set and random Dirichlet shifted test set, where the smaller *alpha* corresponds to the bigger shift.

	Classifier Details	
2	Architecture	Two-layer Network
3	Batch Size	128
ŀ	Training epochs	20
Ď	Optimizer	SGD
)	Learning Rate	1e-2
7	L2 Penalty Parameter	5e-4
8	Label Transformation Details	
)	Architecture	One-Layer Network
)	Label Influence Recovery Details	
	Generator Architecture	Four-layer Network
2	Training Method	TAC-GAN (Gong et al., 2019)
3	Distribution Matching	
	Optimizer	Adam
Ď	Learning Rate	8e-5
)	Training epochs	1000
7		

Table 3. The experimental details on MNIST dataset.

Figure 2. (a) Mean squared errors of estimated label weights (Lower is better), (b) accuracy and (c) F-1 score (Higher is better) on FASHION-MNIST for the uniform training set and Tweak-One shifted test set, where *alpha* is the probability of the tweaked class.

Figure 3. (a) Mean squared errors of estimated label weights (Lower is better), (b) accuracy and (c) F-1 score (Higher is better) on FASHION-MNIST for the uniform training set and minority-class shifted test set, where *alpha* is the ratio of minority classes.

Figure 4. (a) Mean squared errors of estimated label weights (Lower is better), (b) accuracy and (c) F-1 score (Higher is better) on MNIST for the uniform training set and the random Dirichlet shifted test set, where the smaller *alpha* corresponds to the bigger shift.

Submission and Formatting Instructions for ICML 2020

Figure 5. (a) Mean squared errors of estimated label weights (Lower is better), (b) accuracy and (c) F-1 score (Higher is better) on MNIST for the uniform training set and Tweak-One shifted test set, where *alpha* is the probability of the tweaked class.

Figure 6. (a) Mean squared errors of estimated label weights (Lower is better), (b) accuracy and (c) F-1 score on MNIST for the uniform training set and minority-class shifted test set, where *alpha* is the ratio of minority classes.

A.3. Label Weights Visualization of Continuous Synthetic Data Experimens

)			
7	Regressor Details		
3	Architecture	Three-layer Network	
)	Batch Size	64	
)	Training epochs	1000	
1	Optimizer	Adam	
2	Learning Rate	1e-3	
3	Label Transformation Details		
1	Architecture	Three-layer Network	
5	Label Influence Recovery Details		
5	Generator Architecture	Three-layer Network	
7	Training Method	TAC-GAN (Gong et al., 2019)	
3	Distribution Matching		
)	Optimizer	Adam	
)	Learning Rate	1e-3	
1	Training epochs	10000	

Table 4. The experimental details on Moon Synthetic dataset.

A.3.1. RESULTS OF SHIFT A

Figure 7. (a) The illustration of Moon Synthetic Data (Shift A, 1st experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Figure 8. (a) The illustration of Moon Synthetic Data (Shift A, 2nd experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Figure 9. (a) The illustration of Moon Synthetic Data (Shift A, 3rd experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Submission and Formatting Instructions for ICML 2020

Figure 10. (a) The illustration of Moon Synthetic Data (Shift A, 4th experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

177

178

179 180

195

196

201

Figure 11. (a) The illustration of Moon Synthetic Data (Shift A, 5th experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Figure 13. (a) The illustration of Moon Synthetic Data (Shift B, 2nd experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Figure 14. (a) The illustration of Moon Synthetic Data (Shift B, 3rd experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Figure 15. (a) The illustration of Moon Synthetic Data (Shift B, 4th experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

217 Figure 12. (a) The illustration of Moon Synthetic Data (Shift B, 218 1st experiment), (b) The visualization of label weight P_Y^T/P_Y^S of 219 KMM, KMM(feature), our framework and the Ground Truth.

Submission and Formatting Instructions for ICML 2020

Figure 16. (a) The illustration of Moon Synthetic Data (Shift B, 5th experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Figure 17. (a) The illustration of Moon Synthetic Data (Shift C, 1st experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Figure 18. (a) The illustration of Moon Synthetic Data (Shift C, 2nd experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Figure 19. (a) The illustration of Moon Synthetic Data (Shift C, 3rd experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Figure 20. (a) The illustration of Moon Synthetic Data (Shift C, 4th experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Figure 21. (a) The illustration of Moon Synthetic Data (Shift C, 5th experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Figure 22. (a) The illustration of Moon Synthetic Data (Shift D, 1st experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

293

327

328

329

308Figure 23. (a) The illustration of Moon Synthetic Data (Shift D,3092nd experiment), (b) The visualization of label weight P_Y^T/P_Y^S of310KMM, KMM(feature), our framework and the Ground Truth.311

Figure 24. (a) The illustration of Moon Synthetic Data (Shift D, 3rd experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Figure 25. (a) The illustration of Moon Synthetic Data (Shift D, 4th experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

Figure 26. (a) The illustration of Moon Synthetic Data (Shift D, 5th experiment), (b) The visualization of label weight P_Y^T/P_Y^S of KMM, KMM(feature), our framework and the Ground Truth.

A.4. Results of dsprite Dataset

The details of experimental settings of dsprite could be found at the table 5. The results of it could be found at the main paper.

Regressor Details		
Architecture	Discriminator of DCGAN	
Batch Size	128	
Training epochs	500	
Optimizer	Adam	
Learning Rate	1e-4	
Label Transformation Details		
Architecture	Three-Layer Network	
Label Influence Recovery Details		
Generator Architecture	Generator of DCGAN	
Training Method	TAC-GAN (Gong et al., 2019)	
Distribution Matching		
Optimizer	Adam	
Learning Rate	5e-5	
Training epochs	2000	

Table 5. The experimental details on dsprite dataset.

330	References
331	Andrew Brock Leff Donahue and Karen Simonyan Large
332	scale gan training for high fidelity natural image synthesis
333	arXiv preprint arXiv:1809.11096, 2018.
334	
222	Mingming Gong, Yanwu Xu, Chunyuan Li, Kun Zhang, and
330	Kayhan Batmanghelich. Twin auxiliary classifiers gan.
220	arXiv preprint arXiv:1907.02690, 2019.
220	
339	
3/1	
342	
343	
344	
345	
346	
347	
348	
349	
350	
351	
352	
353	
354	
355	
356	
357	
358	
359	
360	
361	
362	
363	
364	
365	
366	
260	
260	
309	
370	
371	
373	
374	
375	
376	
377	
378	
379	
380	
381	
382	
383	
384	