A. Proof of Convergence Results

We first introduce several useful function properties.

Definition 1. A function f(z) : R — R is said to be
Lipshitz-smooth with constant L if

IVF(@) = VIl < Llz - yll, Yo,y € R?

Definition 2. A function f(x) has p-bounded gradients if
V()] < p, Vo € RY

Definition 3. A function f(x) has B-bounded Hessian if
IV2f(x)] < B, Ve € RY.

Then, we prove the main results about convergence.

Theorem 1. (Convergence.) Suppose the supervised loss
function is Lipschitz-smooth with constant L < 2, and the
supervised loss and unsupervised loss have p-bounded gra-
dients, then follow our optimization algorithm, the labeled
loss always monotonically decreases with the iteration t,
ie.,

Eouter(9t+1) S £outer (et) (1)

Furthermore, the equality in Eq.(1) holds only when the
gradient of the outer objective respect to o becomes 0 at
some iteration t, i.e.,

Eouter (9t+1) — Eouter (et)

if and only if
vaﬁouter(et) =0

Proof. The change of outer-level objective from iteration ¢
tot+ 1is:

£outer(9t+1) _ Eouter(et) (2)
— Eouter (et _ neveﬁznner (0t7 Olt)) _ Eouter(at)
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L
< (5 —Dmp® <0.
The first inequality holds since the loss function is Lipschitz-
smooth with constant L and the second inequality holds
since both the supervised and unsupervised loss function
has p-bounded gradients. The third inequality holds since
L<2.

Moreover, it is obviously that if and only if ¥V, £Lo%*¢" (0,) =

0, the optimization will converge and L°%¢"(0;,1) =
ﬁouter(at)' O

Theorem 2. (Convergence Rate.) Suppose the aforemen-

tioned conditions hold, let the step size ng for 0 satisfies

np = min{1, % for some constant k > 0, such that % <1
— infl C

and 1, = min{+, ﬁ} for some constant C > 0, such

that g < L. Then, the approximation algorithm can

achieve E[||V oL (0)3] < € in O(1/€?). And more
specifically,

C
1 outer 2 < O
OgntlSnTIE[HVaﬁ 0,)]13] < O(\/T)
where C'is some constant independent to the convergence
process.

Proof. First, according to the updating rule, we have:

LT (G,11) — L (6,) 3)
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For the second term, we can adopt a Lipschitz-continuous function
as w to make £°***" smooth w.r.t. . Then we have:
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Therefore,
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Summing up the above inequalities and rearranging the terms, we
can obtain
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Further, we can deduce that,
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B. Proof of Theoretical Studies
We first introduce several useful definitions.
Definition 4. (Hoeffding’s inequality). Let Z+, - - - , Z,, be
independent bounded random variables with Z; € [0, 1] for

all i. Then

n

P(% > (Zi —E(Z:) > t) < exp(—2ne?)
and

n

Z < —t) < exp(—2ne?)

i=1

3\H

forallt > 0.

Definition 5. (e-cover). A set A is and e-cover of B, if
Va € B,3a’ € Asatisfies ||o — o/ || < e

Then we prove the main results to show the safeness results
of our proposal.

Theorem 3. (Safeness.) Let 0°% be the supervised model,
ie, 05T = argmingeo Y1, {(h(xi;0),y:). Define the
empirical risk as:

3\*—‘

2 JAh(xi:0),50)

Then we have the empirical risk of 0 that returned by DS*L
is never worse than 65 that learned from merely labeled

data, i.e., R(0) < R(65T).

Proof. Suppose R(6) > R(05L), obviously we can always
set all weights of unlabeled examples to zero and obtain
R(0) = R(0°L). Therefore, 6 is never worse than 657, [

Theorem 4. (Generalization.) Assume the loss function is
A-Lipschitz continuous w.r.t. o Let o € B? be the parame-
ter of example weighting function w in a d-dimensional unit
ball. Let n be the labeled data size. Define the generaliza-
tion risk as:
R(0) = E(x,v) [€(h(X;0),Y)]

Let o* = argmin,cga R(0(c)) be the optimal parameter
in the unit ball, and & = arg ming e 4 R(0(at)) be the em-
pirically optimal among a candidate set A. With probability
at least 1 — § we have,

- A (3X 4d In( 81In(2/d
Rib(a") < RGO + P EALRO) = ShC/D)
n € n
Proof. Lete = % and A = Y24 (3/\/);21 C/9) For any
fixed «, according to Hoeffding’s inequality, we have,
A . A?
P{|R(6(a)) — R(0())| > A} < 2exp(— ) 9
9
- (3/0

then we have

< (3/0)%.

Then, using union bound over all elements of A, with probability
no less than 1 — § we have

Va € A: |R(0(a)) — R(O(a))] < \/2‘iln(3/€)n+ 21n(2/9)

Let A be an e-cover of B,

A < (1+2/¢)

(10)
Then, Vo' € A, we can obtain
RG@) > RO \/2d1n 3/€) +21n(2/§) an
> Rld(a \/Zdln 3/€) +21n(2/6) a2
R(b(a 2\/2dln 3/e +21n(2/5)/13)

The first and third inequality holds since Eq.(10) and the second
inequality holds since & = arg mingea R(6(c)).

According to the Lipschitz-continuity of £ w.r.t. to o, Yoo € B,
we have

2d1In(3/€) + In(2/9)
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< R(0(a)) +

B



