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Abstract
Lifelong learning has recently attracted attention
in building machine learning systems that contin-
ually accumulate and transfer knowledge to help
future learning. Unsupervised topic modeling has
been popularly used to discover topics from doc-
ument collections. However, the application of
topic modeling is challenging due to data sparsity,
e.g., in a small collection of (short) documents and
thus, generate incoherent topics and sub-optimal
document representations. To address the prob-
lem, we propose a lifelong learning framework
for neural topic modeling that can continuously
process streams of document collections, accumu-
late topics and guide future topic modeling tasks
by knowledge transfer from several sources to
better deal with the sparse data. In the lifelong
process, we particularly investigate jointly: (1)
sharing generative homologies (latent topics) over
lifetime to transfer prior knowledge, and (2) min-
imizing catastrophic forgetting to retain the past
learning via novel selective data augmentation,
co-training and topic regularization approaches.
Given a stream of document collections, we ap-
ply the proposed Lifelong Neural Topic Modeling
(LNTM) framework in modeling three sparse doc-
ument collections as future tasks and demonstrate
improved performance quantified by perplexity,
topic coherence and information retrieval task.
Code: https://github.com/pgcool/
Lifelong-Neural-Topic-Modeling

1. Introduction
Unsupervised topic models, such as LDA (Blei et al., 2003),
RSM (Salakhutdinov & Hinton, 2009), DocNADE (Lauly
et al., 2017), NVDM (Srivastava & Sutton, 2017), etc. have
been popularly used to discover topics from large document
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Figure 1. Motivation for Lifelong Topic Modeling

collections. However in sparse data settings, the application
of topic modeling is challenging due to limited context in a
small document collection or short documents (e.g., tweets,
headlines, etc.) and the topic models produce incoherent
topics. To deal with this problem, there have been several at-
tempts (Petterson et al., 2010; Das et al., 2015; Nguyen et al.,
2015; Gupta et al., 2019) that introduce prior knowledge
such as pre-trained word embeddings (Pennington et al.,
2014) to guide meaningful learning.

Lifelong Machine Learning (LML) (Thrun & Mitchell,
1995; Mitchell et al., 2015; Hassabis et al., 2017; Parisi
et al., 2019) has recently attracted attention in building adap-
tive computational systems that can continually acquire,
retain and transfer knowledge over life time when exposed
to modeling continuous streams of information. In con-
trast, the traditional machine learning is based on isolated
learning i.e., a one-shot task learning (OTL) using a single
dataset and thus, lacks ability to continually learn from in-
crementally available heterogeneous data. The application
of LML framework has shown potential for supervised nat-
ural language processing (NLP) tasks (Chen & Liu, 2016)
such as in sentiment analysis (Chen et al., 2015), relation
extraction (Wang et al., 2019), text classification (de Mas-
son d’Autume et al., 2019), etc. Existing works in topic
modeling are either based on the OTL approach or trans-
fer learning (Chen & Liu, 2014) using stationary batches
of training data and prior knowledge without accounting
for streams of document collections. The unsupervised
document (neural) topic modeling still remains unexplored
regarding lifelong learning.

In this work, we explore unsupervised document (neu-
ral) topic modeling within a continual lifelong learning
paradigm to enable knowledge-augmented topic learning
over lifetime. We show that Lifelong Neural Topic Modeling
(LNTM) is capable of mining and retaining prior knowledge

https://github.com/pgcool/Lifelong-Neural-Topic-Modeling
https://github.com/pgcool/Lifelong-Neural-Topic-Modeling
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(topics) from streams of large document collections, and
particularly guiding topic modeling on sparse datasets using
accumulated knowledge of several domains over lifespan.
For example in Figure 1, we have a stream of coherent top-
ics associated with apple extracted from a stream of large
document collections over time t ∈ [1, T ] (i.e., past learn-
ing). Observe that the word apple is topically contextualized
by several domains, i.e., productline, operating
system and fruit at tasks t = 1, t = 2 and t = T ,
respectively. For the future task T + 1 on a small document
collection, the topic (red box) produced without LNTM is
incoherent, containing some irrelevant words (marked in
red) from various topics. Given a sufficient overlap (marked
in green) in the past and future topic words, we aim to
help topic modeling for the future task T + 1 such that the
topic (red box) becomes semantically coherent (green box),
leading to generate an improved document representation.

Therefore, the goal of LNTM is to (1) detect topic overlap
in prior topics t ∈ [1, T ] of the knowledge base (KB) and
topics of future task T + 1, (2) positively transfer prior topic
information in modeling future task, (3) retain or minimize
forgetting of prior topic knowledge, and (4) continually
accumulate topics in KB over life time. In this work, we
particularly focus on addressing the challenge: how to si-
multaneously mine relevant knowledge from prior topics,
transfer mined topical knowledge and also retain prior topic
information under domain shifts over lifespan?

Contributions: We present a novel lifelong neural topic
modeling framework that learns topics for a future task with
proposed approaches of: (1) Topic Regularization that en-
ables topical knowledge transfer from several domains and
prevents catastrophic forgetting in the past topics, (2) Word-
embedding Guided Topic Learning that introduces prior
multi-domain knowledge encoded in word-embeddings, and
(3) Selective-data Augmentation Learning that identifies rel-
evant documents from historical collections, learns topics
simultaneously with a future task and controls forgetting
due to selective data replay. We apply the proposed frame-
work in modeling three sparse (future task) and four large
(past tasks) document collections in sequence. Intensive ex-
perimental results show improved topic modeling on future
task while retaining past learning, quantified by information
retrieval, topic coherence and generalization capabilities.

2. Methodology: Lifelong Topic Modeling
In following section, we describe our contributions in build-
ing Lifelong Neural Topic Modeling framework including:
topic extraction, knowledge mining, retention, transfer and
accumulation. See Table 1 for the description of notations.

Consider a stream of document collections S = {Ω1, Ω2,...,
ΩT , ΩT+1} over lifetime t ∈ [1, ..., T, T + 1], where ΩT+1

Table 1. Description of the notations used in this work

Notation Description

LNTM Lifelong Neural Topic Modeling
EmbTF Word Embedding based transfer

TR Topic Regularization
SAL Selective-data Augmentation Learning

TopicPool Pool of accumulated topics
WordPool Pool of accumulated word embeddings

Ωt A document collection at time/task t
(T + 1) Future task
{1, ..., T} Past tasks

Zt ∈ RH×K Topic Embedding matrix for task t
Et ∈ RE×K Word Embedding matrix for task t

Θ LNTM parameters
Φ LNTM hyper-parameters

λt
EmbTF Degree of relevance of Et ∈ WordPool for (T + 1)

λt
TR Degree of topic imitation/forgetting of Zt by ZT+1

λt
SAL Degree of domain-overlap in Ωt and ΩT+1

At ∈ RH×H Topic-alignment in Zt and ZT+1

K,D Vocabulary size, document size
E, H Word embedding dimension, #topics

b ∈ RK Visible (input) bias vector
c ∈ RH Hidden (input) bias vector

v An input document (visible units)
Lt Loss (negative log-likelihood) for task t

W ∈ RH×K Encoding matrix of DocNADE for task (T + 1)

U ∈ RK×H Decoding matrix of DocNADE for task (T + 1)

is used to perform future learning. During the lifelong learn-
ing, we sequentially iterate over S and essentially analyze a
document collection Ωt ∈ S using a novel topic modeling
framework that can leverage and retain prior knowledge
extracted from each of the lifelong steps {1, ..., t− 1}.

2.1. Topic Learning via Neural Topic Model

Within the OTL framework, an unsupervised neural-network
based topic model named as Document Neural Autoregres-
sive Distribution Estimation (DocNADE) (Larochelle &
Lauly, 2012; Lauly et al., 2017) has shown to outperform ex-
isting topic models based on LDA (Blei et al., 2003; Srivas-
tava & Sutton, 2017) or neural networks such as Replicated
Softmax (RSM) (Salakhutdinov & Hinton, 2009), Autoen-
coders (Lauly et al., 2017), NVDM (Miao et al., 2016) etc.
Additionally, Gupta et al. (2019) have recently demonstrated
competitiveness of DocNADE in transfer learning settings.
Thus, we adopt DocNADE as the backbone in discovering
topics and building lifelong topic learning framework.

DocNADE Formulation: For a document (observation vec-
tor) v ∈ Ω of size D such that v = (v1, ...vD), each word
index vi takes a value in vocabulary {1, ...,K} of size K.
Inspired by NADE (Larochelle & Murray, 2011) and RSM
(Salakhutdinov & Hinton, 2009) generative modeling ar-
chitectures, DocNADE computes the joint probability dis-
tribution p(v; Θ) =

∏D
i=1 p(vi|v<i; Θ) of words in the
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Figure 2. An illustration of the proposed Lifelong Neural Topic Modeling (LNTM) framework over s stream of document collections

document v by factorizing it as a product of conditional
distributions p(vi|v<i; Θ), where each conditional is effi-
ciently modeled via a feed-forward neural network using
proceeding word v<i in the sequence.

Following reconstruction principle, the DocNADE com-
putes a hidden vector hi(v<i) at each autoregressive step:

hi(v<i) = g(c+
∑
q<i

W:,vq ) and g = {sigmoid, tanh}

p(vi = w|v<i; Θ) =
exp(bw + Uw,:hi(v<i))∑
w′ exp(bw′ + Uw′,:hi(v<i))

for each i ∈ {1, ...D}, where v<i ∈ {v1, ..., vi−1} is a sub-
vector consisting of all vq such that q < i. Θ is a collection
of parameters including weight matrices {W ∈ RH×K ,
U ∈ RK×H} and biases {c ∈ RH , b ∈ RK}. H and K
are the number of hidden units (topics) and vocabulary size.

Figure 2 (rightmost; without components 1 , 2 , 3 and 4 )
illustrates the DocNADE architecture, computing the proba-
bility v̂i = p(vi|v<i; Θ) of the ith word vi conditioned on
position dependent hidden layer hi(v<i). The parameter
W is shared in the feed-forward networks and hi encodes
topic proportion for the document v.

Algorithm 1 (lines #1-4) and TOPIC-LEARNING utility (al-
gorithm 2) describe the computation of objective function:
negative log-likelihood L(v; Θ) that is minimized using
stochastic gradient descent. In terms of model complexity,
computing hi(v<i) is efficient (linear complexity) due to
NADE (Larochelle & Murray, 2011) architecture that lever-
ages the pre-activation ai−1 of (i−1)th step in computing ai.
The complexity of computing all hidden layers hi(v<i) is
in O(DH) and all p(vi|v<i; Θ) in O(KDH) for D words

in the document v. Thus, the total complexity of computing
the joint distribution p(v) is in O(DH +KDH).

Importantly, the topic-word matrix W ∈ RH×K has a prop-
erty that the row-vector Wj,: encodes jth topic (distribution
over vocabulary words), i.e., topic-embedding whereas the
column-vector W:,vi corresponds to embedding of the word
vi, i.e., word-embedding. We leverage this property to intro-
duce prior knowledge via topic and word embeddings during
lifelong learning. Additionally, we accumulate all topic and
word embeddings in TopicPool and WordPool, respec-
tively learned over lifetime.

2.2. Lifelong Learning in Neural Topic Modeling

Given the prior knowledge (TopicPool and WordPool),
a stream of document collections S and a new (future) topic
learning task on document collection ΩT+1, the proposed
LNTM framework operates in two phases:

Phase 1: Joint Topic Mining, Transfer and Retention:
The task of topic modeling with lifelong learning capabil-
ities is prone to three main challenges: (a) mining prior
knowledge relevant for the future task T + 1, (b) learning
with prior knowledge, and (c) minimizing catastrophic for-
getting, i.e., retaining of prior knowledge. Here, the prior
knowledge refers to topic and word embeddings extracted
from the historical tasks {1, ...T}. In modeling a future task
T + 1, we address the above challenges by jointly mining,
transferring and retaining prior knowledge. Algorithms 1
and 2 demonstrate the following three approaches within
lifelong neural topic modeling, LNTM= {TR, EmbTF, SAL}:

1 Topic Regularization with TopicPool (TR): To ad-
dress the learning without forgetting, several works (Jung
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et al., 2016; Kirkpatrick et al., 2017; Zenke et al., 2017; Li &
Hoiem, 2018) have investigated regularization approaches
in building LML systems that constrain the updates of neu-
ral weights in modeling the future task (i.e., T + 1) such
that catastrophic forgetting with all the previously learned
tasks is minimized. These existing works majorly focus on
building LML systems dealing with computer vision tasks
mostly in supervised fashion. Lifelong topic and document
representation learning in unsupervised fashion has received
considerable less attention. Thus inspired by the regulariza-
tion strategies, we regularize topics of the past and future
tasks in a way that not only minimizes forgetting of prior
topics but also maximizes topical knowledge transfer for the
future task (i.e., unsupervised topic modeling).

Given a pool of prior topics, i.e., TopicPool built by ac-
cumulating topics from each of the past tasks, we perform
topic mining for the future task T + 1 using DocNADE.
In doing so, the topic learning ZT+1 on document collec-
tion ΩT+1 is guided by all the past topics [Z1, ...ZT ] ∈
TopicPool, building a Topic Miner that consists of:

(a) Topic Extractor: A topic is essentially a distribution
over vocabulary that explains thematic structures in the
document collection. In modeling a stream of document
collections, the vocabulary size may not be same in tasks
over lifetime and thus topic analogy (e.g., shifts, overlap,
etc.) requires common vocabulary words in the participating
topics. Illustrated in Figure 2, each latent topic vector in
ZT+1 (marked by 1 ) of the future task T + 1 encodes a
distribution over words appearing in the past tasks, e.g.,
ZT ∈ TopicPool. As discussed in section 2.1, the topics
ZT+1 can be obtained from the row-vectors of W ∈ ΘT+1

by masking all its column-vectors vi not in the past.

(b) Topic Regularizer: Given TopicPool, we model the
future task by introducing an additional topic-regularization
term ∆TR in its objective function L(ΩT+1; ΘT+1):

∆TR =

T∑
t=1

λtTR(||Zt −AtZT+1||22︸ ︷︷ ︸
topic−imitation

+ ||Ut −PtU||22︸ ︷︷ ︸
decoder−proximity

)

L(ΩT+1; ΘT+1) =
∑

v∈ΩT+1 L(v; ΘT+1) + ∆TR

such that the first term (topic-imitation) allows controlled
knowledge transfer by inheriting relevant topic(s) in ZT+1

from TopicPool, accounting for domain-shifts via a topic-
alignment matrix At ∈ RH×H for every prior task. More-
over, the two terms together preserve the prior learning
with encoder and decoder proximity, respectively due to a
quadratic penalty on the selective difference between the
parameters for the past and future topic modeling tasks,
such that the parameters ΘT+1 also retain representation
capabilities for the document collections in the past, e.g.,
L(Ωt; Θt) ∼ L(Ωt; ΘT+1). Here, λtTR is per-task regular-
ization strength that controls the degree of topic-imitation

Algorithm 1 Lifelong Neural Topic Modeling using DocNADE

input Sequence of document collections {Ω1, ...ΩT , ...ΩT+1}
input Past learning: {Θ1, ...,ΘT }
input TopicPool: {Z1, ...,ZT }
input WordPool: {E1, ...,ET }
parameters ΘT+1 = {b, c,W,U,A1, ...,AT ,P1, ...,PT }
hyper-paramaters ΦT+1 = {H,λ1

LNTM , ..., λ
T
LNTM}

1: Neural Topic Modeling:
2: LNTM = {}
3: Train a topic model and get PPL on test set ΩT+1

test :
4: PPLT+1,ΘT+1 ← topic-learning(ΩT+1,ΘT+1)

5: Lifelong Neural Topic Modeling (LNTM) framework:
6: LNTM = {EmbTF, TR, SAL}
7: For a document v ∈ ΩT+1:
8: Compute loss (negative log-likelihood):
9: L(v|ΘT+1)← compute-NLL(v,ΘT+1, LNTM)

10: if TR in LNTM then
11: Jointly minimize-forgetting and learn with TopicPool:
12: ∆TR ←

∑T
t=1 λ

t
TR (||Zt−AtZT+1||22+||Ut−PtU||22)

13: L(v; ΘT+1)← L(v; ΘT+1) + ∆TR

14: end if
15: if SAL in LNTM then
16: Detect domain-overlap and select relevant historical docu-

ments from [Ω1, ...,ΩT ] for augmentation at task (T+1):
17: ΩT+1

aug ← distill-documents(ΘT+1, PPLT+1, [Ω1, ...,ΩT ])
18: Perform augmented learning (co-training) with ΩT+1

aug :
19: ∆SAL ←

∑
(vt,t)∈ΩT+1

aug
λt
SAL L(vt; ΘT+1)

20: L(v; ΘT+1)← L(v; ΘT+1) + ∆SAL

21: end if
22: Minimize L(v; ΘT+1) using stochastic gradient-descent
23: Knowledge Accumulation:
24: TopicPool← accumulate-topics(ΘT+1)
25: WordPool← accumulate-word-embeddings(ΘT+1)

and forgetting of prior learning t by the future task T + 1.
(Zt,Ut) ∈ Θt are parameters at the end of the past task t.

Figure 2 (Topic Miner component 1 ) and Algorithm 1
(lines #10-14) demonstrate the TR approach in LNTM
framework. The topic regularization ∆TR approach en-
ables jointly mining, transferring and retaining prior topics
when learning future topics continually over lifetime.

2 Transfer Learning with WordPool (EmbTF): Be-
yond topical knowledge, we also leverage pre-trained word
embeddings (complementary to topics) accumulated in
WordPool during lifelong learning. Essentially, we pool
word embedding representation for every word vi learned
while topic modeling over a stream of document collections
from several domains. Thus, we have in total T number of
embeddings (encoding different semantics) for a word vi in
WordPool, if the word appears in all the past collections.
Following Gupta et al. (2019), we introduce prior knowl-
edge in form of pre-trained word embeddings [E1, ...,ET ]
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Algorithm 2 Lifelong Learning Utilities

1: function topic-learning (Ω,Θ)
2: Build a DocNADE neural topic model: Initialize Θ
3: for v ∈ Ωtrain do
4: Forward-pass:
5: Compute loss, L(v; Θ)← compute-NLL(v, Θ)
6: Backward-pass:
7: Minimize L(v; Θ) using stochastic gradient-descent
8: end for
9: Compute perplexity PPL of test set Ωtest:

10: PPL← exp( 1
|Ωtest|

∑
v∈Ωtest

L(v;Θ)
|v| )

11: return PPL, Θ
12: end function

13: function compute-NLL (v,Θ, LNTM = {})
14: Initialize a← c and p(v)← 1
15: for word i ∈ [1, ..., N ] do
16: hi(v<i)← g(a), where g = {sigmoid, tanh}
17: p(vi = w|v<i)← exp(bw+Uw,:hi(v<i))∑

w′ exp(bw′+Uw′,:hi(v<i))

18: p(v)← p(v)p(vi|v<i)
19: Compute pre-activation at ithstep: a← a + W:,vi

20: if EmbTF in LNTM then
21: Get word-embedding vectors for vi from WordPool:
22: a← a +

∑T
t=1 λ

t
EmbTF Wt

:,vi
23: end if
24: end for
25: return − log p(v; Θ)
26: end function

27: function distill-documents (ΘT+1, PPLT+1, [Ω1, ...,ΩT ])
28: Initialize a set of selected documents: ΩT+1

aug ← {}
29: for task t ∈ [1, ..., T ] and document vt ∈ Ωt do
30: L(vt; ΘT+1)← compute-NLL(vt, ΘT+1, LNTM ={})
31: PPL(vt; ΘT+1)← exp(L(vt;ΘT+1)

|vt| )

32: Select document vt for augmentation in task T + 1:
33: if PPL(vt; ΘT+1) ≤ PPLT+1 then
34: Document selected: ΩT+1

aug ← ΩT+1
aug ∪ (vt, t)

35: end if
36: end for
37: return ΩT+1

aug

38: end function

in each hidden layer of DocNADE when analyzing ΩT+1:

h(v<i) = g(c +
∑
q<i

W:,vq +
∑
q<i

T∑
t=1

λtEmbTF Et
:,vq )

Observe that the topic learning for task T + 1 is guided by
an embedding vector E:,vq for the word vq from each of the
T domains (sources), where λtEmbTF is per-task transfer
strength that controls the amount of prior (relevant) knowl-
edge transferred to T + 1 based on domain overlap with
the past task t. Discussed in section 2.1, the word embed-
ding representation Et ∈ WordPool is obtained from the
column-vectors of parameter W at the end of the task t.

Figure 2 (component 2 ), Algorithm 1 (lines #7-9) and
Algorithm 2 (lines #20-23) illustrate the mechanism of topic

modeling (DocNADE) with pre-trained word embeddings
E from several sources (i.e., multi-source transfer learning)
when learning topics ZT+1 for the future task T + 1.

3 Selective-Data Augmentation Learning (SAL): Be-
yond the weight-based approaches in LML, the data-based
approaches (Robins, 1995) augment the training data of a
future task with the data collected from the past tasks, allow-
ing for (a) multi-task learning (MTL) (Collobert & Weston,
2008; Ruder, 2017) to share representations among tasks
and (b) minimizing catastrophic forgetting by data replay
(augmentation). However, the data augmentation (DA) ap-
proaches are inefficient when the data collection grows large
and often penalize positive transfer in MTL due to domain
shifts in the stream of data over lifetime.

Our approach of SAL works in the following two steps:

Step 1 Document Distillation (Algorithm 1: line #17 and
Algorithm 2: lines #27-38): Given document collections
[Ω1,...,ΩT ] of the past tasks, we ignore documents found
not relevant in modeling a future task due to domain shifts.
To do so, we first build a topic model with parameters ΘT+1

over ΩT+1 and compute an average perplexity (PPLT+1)
score on its test set ΩT+1

test . Then, we prepare an augmented
set ΩT+1

aug ⊂ [Ω1, ...ΩT ] such that each document vt ∈
ΩT+1

aug of a past task t satisfies: PPL(vt; ΘT+1) ≤ PPLt+1.
In essence, this unsupervised document distillation scheme
detects domain-overlap in the past and future tasks based on
representation ability of ΘT+1 for documents of the past.

Step 2 Selective Co-training (Algorithm 1: lines #18-20):
We re-train topic modeling over ΩT+1 simultaneously using
ΩT+1

aug , leveraging topical homologies in (selective) docu-
ments of the past and future tasks, as:

∆SAL =
∑

(vt,t)∈ΩT+1
aug

λtSAL L(vt; ΘT+1)

L(ΩT+1; ΘT+1) =
∑

v∈ΩT+1

L(v; ΘT+1) + ∆SAL

Here, λtSAL is per-task contribution that modulates influence
of shared representations while co-training with selected
documents of the past task t. The SAL approach jointly
helps in transferring prior knowledge from several domains,
minimizing catastrophic forgetting and reduce training time
due to selective data replay over lifetime.

Overall loss in LNTM framework: Combining the dif-
ferent approaches within the proposed lifelong learning
paradigm, the overall loss in modeling documents ΩT+1

being the future (new) task T + 1 is given by:

L(ΩT+1; ΘT+1) =
∑

v∈ΩT+1

L(v; ΘT+1)+ ∆TR + ∆SAL

Computation complexity of LNTM: In DocNADE (section
2.1) without LNTM, the complexity of computing the joint
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Figure 3. PPL, P@R (precision@Recall), COH and r-time of LNTM system on future task, i.e., 20NSshort over the stream S1
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Figure 4. PPL, P@R (precision@Recall), COH and r-time of LNTM system on future task, i.e., 20TMNtitle over the stream S2

distribution p(v) is in O(DH + KDH). The complexity
of computing ∆TR and ∆SAL are in O(KH + KH) and
O(DH +KDH), respectively. The overall complexity of
LNTM = {EmbTF, TR, SAL} is inO(DH+KDH+KH+
KH +DH +KDH) ∼ O(DH +KDH +KH).

Phase 2: Lifelong Knowledge Accumulation: For each
topic modeling task t, the phase 1 generates knowledge in
form of topic and word embeddings that is respectively ac-
cumulated in TopicPool← row-vectors(W ∈ Θt) and
WordPool ← column-vectors(W ∈ Θt). Additionally,
each decoding parameter U ∈ Θt is retained to be used in
minimizing catastrophic forgetting (i.e., ∆TR).

3. Experiments and Analysis
Streams of Document Collections: To demonstrate the
applicability of our proposed LNTM framework, we pre-
pare a stream of document collections consisting of four
long-text (high-resource) corpora in sequence: AGnews,
TMN, R21578 and 20NS (20NewsGroups), and three short-
text (low-resource) corpora ΩT+1 as future tasks T + 1:
20NSshort, TMNtitle and R21578title. Thus, we
perform lifelong topic learning over following three streams:
S1: AGnews→ TMN→ R21578→ 20NS→ 20NSshort

S2: AGnews→ TMN→ R21578→ 20NS→ TMNtitle

S3: AGnews→ TMN→ R21578→ 20NS→ R21578title

such that we demonstrate improved topic modeling for the
three sparse document collections (ΩT+1) at T + 1. The
order of Ωs is based on their decreasing sizes. See the
supplementary for data description and domain overlap.

Baselines: Discussed in section 2.1, we adopt DocNADE
(NTM: a neural topic modeling tool) and compare it with the
proposed framework LNTM = {EmbTF, TR, SAL}. More-
over, we show topic learning in zero-shot, few-shot and data
augmentation settings in the following section.

Reproducibility: PPL (Algorithm 2: line #10) is used for
model selection and adjusting parameters Θt and hyper-
parameters Φt. See the supplementary for the hyper-
parameters settings. Figures 3, 4 and 5 show average run-
time (r-time) for each training epoch of different LNTM
approaches, run on an NVIDIA Tesla K80 Processor (RAM:
12 GB) to a maximum of 100 epochs.

To evaluate the capabilities of LNTM framework, we em-
ploy three measures: precision@recall (P@R) in informa-
tion retrieval (IR) task for document representation, topic
coherence (COH) for topic quality and perplexity (PPL) for
generative performance of topic modeling over lifetime.
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Figure 5. PPL, P@R (precision@Recall), COH and r-time of LNTM system on future task, i.e., R21578title over the stream S3
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Figure 6. Precision-recall curve on three future task datasets at different recall fractions. LNTM-all→ LNTM + EmbTF + TR + SAL

3.1. Document Representation via Retrieval (IR)

To evaluate the quality of document representation learned
within LNTM, we perform an unsupervised document re-
trieval task for each collection over lifetime. In doing so,
we compute average P@R on the test set for a task t, where
each test document is treated as a test query to retrieve a
fraction/top R of the closest documents in the training set.
We compute cosine similarity between document vectors
(i.e., the last hidden hD of DocNADE) and average the num-
ber of retrieved documents with the same label as the query.
Figures 3, 4 and 5 show P@5, P@10 and P@0.02 on the
all test collections of the streams S1, S2 and S3, respectively
accounting for knowledge transfer and forgetting.

Precision@Recall on future tasks: Figures 3, 4 and 5 re-
port P@5, P@10 and P@0.02 scores (green boxes) on three
future tasks: 20NSshort, TMNtitle and R21578title,
respectively leveraging prior knowledge over lifetime. Com-
pared to NTM without lifelong learning (blue boxes), all
the proposed approaches: EmbTF, TR and SAL (green
boxes) within LNTM outperform it for all the future tasks,
e.g., P@0.02: (.324 vs .290), (.562 vs .521) and (.690 vs
.657) on 20NSshort, TMNtitle and R21578title, re-
spectively due to LNTM+EmbTF+TR+SAL. Observe that the

SAL leads to higher gains when combined with the other
LNTM approaches, suggesting a positive knowledge trans-
fer from both the past learning and document collections.

Precision@Recall on past tasks incurring forgetting (orange
boxes): To demonstrate the ability of LNTM framework in
minimizing catastrophic forgetting, we also report P@R
scores on the past tasks1 using parameters of a future task
ΘT+1. Figures 3, 4 and 5 report P@0.02 for each of the past
tasks over lifetime using S1, S2 and S3 streams, suggesting
that the proposed approaches in LNTM help in preventing
catastrophic forgetting. For each stream, compare scores in
the orange and blue boxes column-wise correspondingly for
each task. E.g., P@0.02 for TMN in S1, S2 and S3 incurring
forgetting are (.647 vs .651), (.650 vs .651) and (.648 vs
.651), respectively advocating for representation capabilities
of the future tasks for the past learning within LNTM.

Zero-shot and Data-augmentation Investigations: Addi-
tionally, we analyze representation capabilities of LNTM in
zero-shot and data-augmentation settings, where we com-
pute P@R on all future tasks T + 1 respectively using pa-

1Due to partially overlapping vocabulary in Ωs over a stream,
we overwrite column-vectors of W∈Θt by column-vectors of
W∈ΘT+1 for all words vi appearing in both tasks t and T + 1
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rameters: (a) ΘT learned from the past task T and no ΩT+1

used, and (b) ΘT+1 learned on a future task by combining
all document collections [Ω1, ...,ΩT+1] in a stream. Figures
6a, 6b and 6c show precision-recall plots for 20NSshort,
TMNtitle and R21578title datasets, respectively. Ob-
serve that the proposed approach LNTM-all (i.e., LNTM +
EmbTF + TR+ SAL) outperforms NTM (i.e., DocNADE with-
out lifelong learning), zero-shot, data-augment and EmbSUM

baselines at all the retrieval fractions. Here, EmbSUM repre-
sents a document by summing the embedding vectors of its
words using Glove embeddings (Pennington et al., 2014).

3.2. Topic Quality via Coherence (COH)

Beyond document representation, topic models essentially
enable interpretability by generating topics (sets of key
terms) that explain thematic structures hidden in document
collections. Topics are often incoherent when captured in
data sparsity (low-resource) settings, leading to restrict the
interpretability. Thus, we compute topic coherence (COH)
scores proposed by Röder et al. (2015) to estimate the qual-
ity (meaningfulness of words) of topics captured within
LNTM framework. Following Gupta et al. (2019), we com-
pute COH (Figures 3, 4 and 5) on the top-10 words in each
topic. The higher scores imply topic coherency.

COH scores on future tasks: Within LNTM, we show
a gain of 10.2% (0.735 vs 0.667), 5.8%(0.750 vs 0.709)
and 5.5%(0.752 vs 0.713) respectively on the three sparse
datasets, suggesting quality topics discovered.

Figures 7, 8 and 9 show topic coherence (COH) scores on
document collections in streams S1,S2 and S3, respectively.
We also show scores incurring forgetting on past tasks in
each of the three streams. Our proposed lifelong topic mod-
eling framework reports gains in topic coherence scores for
each of the target (future) tasks and also minimizes catas-
trophic forgetting on the past tasks.

3.3. Generalization via Perplexity (PPL)

To evaluate generative performance of topic models, we
estimate the log-probabilities for unseen test documents
ΩT+1

test of the future tasks, and compute the average held-out
perplexity per word (Algorithm 2: line #10). Note that lower
the PPL (negative log-likelihood), better the topic model.
Figures 3, 4 and 5 show PPL scores on all (test) document
collections in the streams S1, S2 and S3, respectively.

PPL on future tasks: Figure 3 shows PPL scores on the
future task using 20NSshort without (blue boxes) and with
(green boxes) lifelong settings. Compared to NTM, the con-
figuration LNTM+EmbTF+TR+SAL reports an improved score
of (641 vs 646). Similarly, Figures 4 and 5 depict that the
generalization capability is boosted, i.e., (666 vs 706) and
(183 vs 192) on TMNtitle and R21578title, respectively

due to word-embedding based multi-domain multi-source
knowledge transfer (LNTM+EmbTF) over lifetime.

PPL on past tasks incurring forgetting(orange boxes): We
also report PPL on the all past document collections of the
streams S1, S2 and S3 using parameters ΘT+1 of a future
task. Comparing the proposed approaches of LNTM, we ob-
serve that they retain PPL over lifetime for each document
collection in each of the streams; however at the cost of for-
getting due to sensitivity of the log-likelihood computation
towards neural network parameters. Note that ΘT+1 retains
representation ability for all t < T + 1 quantified by IR.

AGnews TMN R21578 20NS 20NSshort

0.718

COH

Scores on historical data incurring 
Catastrophic Forgetting

NTM without 
Lifelong 
Learning

LNTM + EmbTF

LNTM + TR

LNTM + EmbTF 
+ TR

LNTM + EmbTF 
+ TR + SAL

0.728

0.719

0.670

LNTM

LNTM over a stream of document collections 

COH COH COH COH

0.735

0.709 0.540 0.417 0.667

0.731 0.699 0.554 0.403

0.731 0.700 0.554 0.403

0.731 0.699 0.554 0.403

0.730 0.700 0.554 0.398
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Figure 11. Illustration of LNTM (LNTM-all) for each task over
stream S1, where orange colored boxes indicate scores incurring
forgetting while modeling a future task (gray boxes) at each step

3.4. Analysis: Quantitative and Qualitative

Knowledge Transfer vs Forgetting: While learning
within lifelong framework, there is a trade-off in knowl-
edge transfer for future and forgetting of past. In Figure 10,
we provide an ablation over λTR ∈ {0.001, 0.1} for LNTM
= {TR} approach to show how λTR regulates the trade-off.
Observe that the lower values of λTR leads to maximizing
knowledge transfer (green boxes) for a future task (within
a gray box), however at the cost of forgetting (red) of past
learning and vice-versa when λTR increases. Here at each
step (y-axis), we perform the ablation in pairs of document
collections over the stream S1 and show PPL and P@R. The
study suggests to set λTR such that the trade-off is balanced.

Lifelong Topic Learning over the stream S1: Similar to
Figures (3, 4 and 5), we additionally provide an illustration
of lifelong topic learning over S1, where each task in se-
quence is treated as a future task accounting for the trade-off
and forgetting over lifetime. Figure 11 provides illustration
of LNTM (LNTM-all) for each dataset (as future task in
gray box) in the streams of document collection used. Here,
we show scores: PPL and P@0.02 of generalization and
IR task, where the y-axis indicates each step of the life-
long learning process of topic modeling over a stream of
document collections. Observe that the orange color box
indicates scores incurring forgetting while modeling a target
(in gray box). Once the step 4 is executed, we use three

Table 2. Analysis: Qualitative topics of TMNtitle

Model Topic-words (Top 5)

NTM
T1: nuclear, break, jobs, afghanistan, ipad
T2: gulf, bruins, japanese, michigan, radiation

LNTM + TR
T1: arts, android, iphone, tablet, ipad
T2: rail, medicare, wildfire, radioactive, recession

LNTM-all
T1: linkedin, android, tablet, ipad, iphone
T2: tornadoes, fukushima, radioactive, radiation, medicare

sparse targets (as step 5) to show applicability of lifelong
topic modeling to address data-sparsity issues.

Qualitative Topics: Table 2 shows topics (top-5 words) cap-
tured on TMNtitle (sparse) document collection of the
stream S2, extracted using row-vectors of W ∈ ΘT+1. Ob-
serve that NTM generates incoherent topics (terms marked
in red); however the two topics (T1 and T2) becomes coher-
ent within LNTM framework, representing thematic struc-
tures about product-line and disaster, respectively. It sug-
gest that the quality of topics is improved due to a positive
transfer of knowledge via EmbTF, TR and SAL approaches.

4. Conclusion
We have presented a novel lifelong neural topic modeling
framework that models a stream of document collections
and exploits prior knowledge from several domains over
lifetime in form of pre-trained topics, word embeddings
and generative homologies in historical collections. Experi-
mental results show that our proposed approaches of joint
topic regularization, selective-data augmented learning and
word-embedding guided topic learning within the lifelong
framework help modeling three sparse datasets, quantified
by information retrieval, topic coherence and generalization.
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