A. Proofs for density estimation

A.1. Proof of Lemma 1

Lemma 1. Let the loss be a Bregman divergence B_{F}. Then, for any $\lambda \in \Lambda \subseteq \Delta_{p}$, if $h^{*}=\sum_{k=1}^{p} \lambda_{k} \mathcal{D}_{k}$ is in \mathcal{H}, then it is a minimizer of $h \mapsto \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right)$. If F is further strictly convex, then it is the unique minimizer.

Proof. Fix $\lambda \in \Lambda$ such that $\sum_{k=1}^{p} \lambda_{k} \mathcal{D}_{k}$ is in \mathcal{H}. By the non-negativity of the Bregman divergence, for all h, $\mathrm{B}_{F}\left(\sum_{k=1}^{p} \lambda_{k} \mathcal{D}_{k} \| h\right) \geq 0$ and equality is achieved for $h=\sum_{k=1}^{p} \lambda_{k} \mathcal{D}_{k}$. Thus, h^{*} is a minimizer of $h \mapsto$ $\mathrm{B}_{F}\left(\sum_{k=1}^{p=1} \lambda_{k} \mathcal{D}_{k} \| h\right)$. Since F is strictly convex, $h \mapsto \mathrm{~B}_{F}\left(\sum_{k=1}^{p} \lambda_{k} \mathcal{D}_{k} \| h\right)$ is strictly convex and h^{*} is therefore the unique minimizer.

Now, for any hypothesis h, observe that the following difference is a constant independent of h :

$$
\begin{align*}
& \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right)-\mathrm{B}_{F}\left(\sum_{k=1}^{p} \lambda_{k} \mathcal{D}_{k} \| h\right) \tag{12}\\
& =\sum_{k=1}^{p} \lambda_{k}\left[F\left(\mathcal{D}_{k}\right)-F(h)-\left\langle\nabla F(h), \mathcal{D}_{k}-h\right\rangle\right]-\left[F\left(\sum_{k=1}^{p} \lambda_{k} \mathcal{D}_{k}\right)-F(h)-\left\langle\nabla F(h), \sum_{k=1}^{p} \lambda_{k} \mathcal{D}_{k}-h\right\rangle\right] \\
& =\sum_{k=1}^{p} \lambda_{k} F\left(\mathcal{D}_{k}\right)-F\left(\sum_{k=1}^{p} \lambda_{k} \mathcal{D}_{k}\right)
\end{align*}
$$

Thus, h^{*} is also the unique minimizer of $h \mapsto \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right)$.

A.2. Proof of Lemma 2

Lemma 2. Let the loss be a Bregman divergence B_{F} with F strictly convex and assume that $\operatorname{conv}\left(\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}\right\}\right) \subseteq \mathcal{H}$. Observe that B_{F} is jointly convex in both arguments. Then, for any convex set $\Lambda \subseteq \Delta_{p}$, the solution of the optimization problem $\min _{h \in \mathcal{H}} \max _{\lambda \in \Lambda} \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right)$ exists and is in $\operatorname{conv}\left(\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}\right\}\right)$.

Proof. Let \mathcal{H}^{\prime} is the closure of convex hull of \mathcal{H}. Observe that \mathcal{H}^{\prime} is a convex and compact set.

$$
\min _{h \in \mathcal{H}^{\prime}} \max _{\lambda \in \Lambda} \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right) \leq \min _{h \in \mathscr{H}} \max _{\lambda \in \Lambda} \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right) .
$$

We show that minimizer over \mathcal{H}^{\prime} exists and is in the $\operatorname{conv}\left(\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}\right\}\right)$. Since $\operatorname{conv}\left(\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}\right\}\right) \subseteq \mathcal{H} \subseteq \mathcal{H}^{\prime}$, the minimizer over \mathcal{H} also exists and is in the $\operatorname{conv}\left(\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}\right\}\right)$.
Since B_{F} is convex with respect to its second argument, $h \mapsto \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right)$ is a convex function of h defined over the convex set \mathcal{H}^{\prime}. Since any maximum of a convex function is also convex, $h \mapsto \max _{\lambda \in \Lambda} \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right)$ is a convex function and its minimum over the compact set \mathcal{H}^{\prime} exists.
We now show that the minimizer is in $\operatorname{conv}\left(\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}\right\}\right)$. Notice that, since $\sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right)$ is linear in λ, we have

$$
\max _{\lambda \in \Lambda} \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right)=\max _{\lambda \in \operatorname{conv}(\Lambda)} \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right) .
$$

Thus, it suffices to consider the case $\Lambda \subseteq \Delta_{p}$. Then, since \mathcal{H}^{\prime} is a compact and convex set and since B_{F} is convex with respect to its second argument, by Sion's minimax theorem, we can write:

$$
\min _{h \in \mathcal{H}^{\prime}} \max _{\lambda \in \Lambda} \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right)=\max _{\lambda \in \Lambda} \min _{h \in \mathcal{H}^{\prime}} \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right) .
$$

Let $\lambda^{\text {opt }}=\operatorname{argmax}_{\lambda \in \Lambda} \min _{h \in \mathcal{H}^{\prime}} \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right)$ and $h^{*}=\sum_{k} \lambda_{k}^{\text {opt }} \mathcal{D}_{k}$. By assumption, $\operatorname{conv}\left(\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}\right\}\right)$ is included in \mathcal{H}^{\prime}, thus h^{*} is in \mathcal{H}^{\prime} and, by Lemma $1, h^{*}$ is a minimizer of $h \mapsto \sum_{k=1}^{p} \lambda_{k}^{\mathrm{opt}} \mathrm{B}_{F}\left(\mathcal{D}_{k} \| h\right)$. In view of that, if h^{\prime}
is a minimizer of $h \mapsto \max _{\lambda \in \Lambda} \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right)$ over \mathcal{H}^{\prime}, then the following holds:

$$
\begin{array}{rlr}
\underset{\lambda}{\max } \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h^{\prime}\right) & \geq \sum_{k=1}^{p} \lambda_{k}^{\text {opt }} \mathrm{B}_{F}\left(\mathcal{D}_{k} \| h^{\prime}\right) & \text { (def. of max) } \\
& \geq \sum_{k=1}^{p} \lambda_{k}^{\text {opt }} \mathrm{B}_{F}\left(\mathcal{D}_{k} \| h^{*}\right) & \text { (Lemma 1) } \\
& =\min _{h \in \mathcal{H}^{\prime}} \sum_{k=1}^{p} \lambda_{k}^{\text {opt }} \mathrm{B}_{F}\left(\mathcal{D}_{k} \| h\right) & \left(h^{*}\right. \text { minimizer) } \\
& =\max _{\lambda \in \Lambda} \min _{h \in \mathcal{H}^{\prime}} \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right) & \\
& =\min _{h \in \mathcal{H}^{\prime}} \max _{\lambda \in \Lambda} \sum_{k=1}^{p} \lambda_{k} \mathrm{~B}_{F}\left(\mathcal{D}_{k} \| h\right) . & \text { (def. of } \lambda_{k}^{\text {opt })} \\
\text { (Sion's minimax theorem) }
\end{array}
$$

By the optimality of h^{\prime}, the first and last expressions in this chain of inequalities are equal, which implies the equality of all intermediate terms. In particular, this implies $\sum_{k=1}^{p} \lambda_{k}^{\text {opt }} \mathrm{B}_{F}\left(\mathcal{D}_{k} \| h^{\prime}\right)=\sum_{k=1}^{p} \lambda_{k}^{\text {opt }} \mathrm{B}_{F}\left(\mathcal{D}_{k} \| h^{*}\right)$. Since F is strictly convex, by Lemma 1 , the minimizer of $h \mapsto \sum_{k=1}^{p} \lambda_{k}^{\text {opt }} \mathrm{B}_{F}\left(\mathcal{D}_{k} \| h\right)$ is unique and $h^{\prime}=h^{*}$. This completes the proof.

B. Convergence guarantee of FEDBoost (Theorem 2)

Theorem 2. If Properties 1 hold and $\eta=\sqrt{\frac{\sigma}{T G^{2} r_{\alpha}}}$, then α^{A}, the output of FedBoost satisfies,

$$
\mathbb{E}\left[\mathrm{L}\left(\alpha^{A}\right)-\mathrm{L}\left(\alpha_{\text {opt }}\right)\right] \leq 2 \sqrt{\frac{G^{2} \sigma r_{\alpha}}{T}}+\frac{\alpha_{*} M}{2 T} \sum_{t=1}^{T} \sum_{k=1}^{q} \frac{\alpha_{k, t}^{2}}{\gamma_{k, t}} .
$$

Proof. By Jensen's inequality,

$$
\mathrm{L}\left(\alpha^{A}\right) \leq \frac{1}{T} \sum_{t=1}^{T} \mathrm{~L}\left(\alpha_{t}\right) .
$$

Hence, it suffices to bound

$$
\frac{1}{T} \sum_{t=1}^{T}\left(\mathrm{~L}\left(\alpha_{t}\right)-\mathrm{L}(\alpha)\right) .
$$

For any t,

$$
\begin{align*}
\mathrm{L}\left(\alpha_{t}\right)-\mathrm{L}(\alpha) & \leq\left\langle\nabla \mathrm{L}\left(\alpha_{t}\right), \alpha_{t}-\alpha\right\rangle \\
& =\left\langle\delta_{t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle+\left\langle\nabla \mathrm{L}\left(\alpha_{t}\right)-\delta_{t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle \\
& =\frac{1}{\eta}\left\langle\nabla F\left(\alpha_{t}\right)-\nabla F\left(v_{t+1}\right), \alpha_{t}-\alpha\right\rangle+\left\langle\nabla \mathrm{L}\left(\alpha_{t}\right)-\delta_{t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle \\
& =\frac{1}{\eta}\left(\mathrm{~B}_{F}\left(\alpha \| \alpha_{t}\right)+\mathrm{B}_{F}\left(\alpha_{t} \| v_{t+1}\right)-\mathrm{B}_{F}\left(\alpha \| v_{t+1}\right)\right)+\left\langle\nabla \mathrm{L}\left(\alpha_{t}\right)-\delta_{t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle \quad \text { (Bregman div. def.) } \\
& \leq \frac{1}{\eta}\left(\mathrm{~B}_{F}\left(\alpha \| \alpha_{t}\right)+\mathrm{B}_{F}\left(\alpha_{t} \| v_{t+1}\right)-\mathrm{B}_{F}\left(\alpha \| \alpha_{t+1}\right)-\mathrm{B}_{F}\left(\alpha_{t+1} \| v_{t+1}\right)\right) \tag{13a}\\
& +\left\langle\nabla \mathrm{L}\left(\alpha_{t}\right)-\delta_{t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle, \tag{13b}
\end{align*}
$$

where the last inequality follows because $\mathrm{B}_{F}\left(\alpha \| v_{t+1}\right) \geq \mathrm{B}_{F}\left(\alpha \| \alpha_{t+1}\right)+\mathrm{B}_{F}\left(\alpha_{t+1} \| v_{t+1}\right)$ by the generalized

Pythagorean inequality. For the first term (13a), summing over t gives the following telescoping sum,

$$
\begin{align*}
\sum_{t=1}^{T}\left(\mathrm{~B}_{F}\left(\alpha \| \alpha_{t}\right)\right. & \left.+\mathrm{B}_{F}\left(\alpha_{t} \| v_{t+1}\right)-\mathrm{B}_{F}\left(\alpha \| \alpha_{t+1}\right)-\mathrm{B}_{F}\left(\alpha_{t+1} \| v_{t+1}\right)\right) \tag{14}\\
& =\mathrm{B}_{F}\left(\alpha \| \alpha_{1}\right)-\mathrm{B}_{F}\left(\alpha \| \alpha_{T+1}\right)+\sum_{t=1}^{T} \mathrm{~B}_{F}\left(\alpha_{t} \| v_{t+1}\right)-\mathrm{B}_{F}\left(\alpha_{t+1} \| v_{t+1}\right) \\
& \leq \mathrm{B}_{F}\left(\alpha \| \alpha_{1}\right)+\sum_{t=1}^{T}\left(\mathrm{~B}_{F}\left(\alpha_{t} \| v_{t+1}\right)-\mathrm{B}_{F}\left(\alpha_{t+1} \| v_{t+1}\right)\right)
\end{align*}
$$

Now consider the summation term:

$$
\begin{align*}
\mathrm{B}_{F}\left(\alpha_{t} \| v_{t+1}\right) & -\mathrm{B}_{F}\left(\alpha_{t+1} \| v_{t+1}\right)=F\left(\alpha_{t}\right)-F\left(\alpha_{t+1}\right)-\left\langle\nabla F\left(v_{t+1}\right), \alpha_{t}-\alpha_{t+1}\right\rangle \\
& \leq\left\langle\nabla F\left(\alpha_{t}\right), \alpha_{t}-\alpha_{t+1}\right\rangle-\frac{\sigma}{2}\left\|\alpha_{t}-\alpha_{t+1}\right\|^{2}-\left\langle\nabla F\left(v_{t+1}\right), \alpha_{t}-\alpha_{t+1}\right\rangle \quad \text { (strong convexity of } F \text {) } \\
& =\left\langle\nabla F\left(\alpha_{t}\right)-\nabla F\left(v_{t+1}\right), \alpha_{t}-\alpha_{t+1}\right\rangle-\frac{\sigma}{2}\left\|\alpha_{t}-\alpha_{t+1}\right\|^{2} \\
& =\eta\left\langle\delta_{t} \mathrm{~L}, \alpha_{t}-\alpha_{t+1}\right\rangle-\frac{\sigma}{2}\left\|\alpha_{t}-\alpha_{t+1}\right\|^{2} \\
& \leq \eta\left\|\delta_{t} \mathrm{~L}\right\|_{*}\left\|\alpha_{t}-\alpha_{t+1}\right\|-\frac{\sigma}{2}\left\|\alpha_{t}-\alpha_{t+1}\right\|^{2} \\
& \leq \frac{\eta^{2}\left\|\delta_{t} \mathrm{~L}\right\|_{*}^{2}}{2 \sigma} . \quad \text { (Cauchy-Schwarz ineq.) } \tag{15}
\end{align*}
$$

Combining the above inequalities,

$$
\begin{aligned}
\sum_{t=1}^{T}\left(\mathrm{~L}\left(\alpha_{t}\right)-\mathrm{L}(\alpha)\right) & \leq \frac{1}{\eta} \mathrm{~B}_{F}\left(\alpha \| \alpha_{1}\right)+\sum_{t=1}^{T}\left(\frac{\eta\left\|\delta_{t} \mathrm{~L}\right\|_{*}^{2}}{2 \sigma}+\left\langle\nabla \mathrm{L}\left(\alpha_{t}\right)-\delta_{t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle\right) \\
& \leq \frac{1}{\eta} \mathrm{~B}_{F}\left(\alpha \| \alpha_{1}\right)+\frac{\eta G^{2} T}{2 \sigma}+\sum_{t=1}^{T}\left(\left\langle\nabla \mathrm{~L}\left(\alpha_{t}\right)-\delta_{t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle\right)
\end{aligned}
$$

We now bound (13b) in expectation, the inner product term in the above equation. Denote by $\nabla_{t} \mathrm{~L}(\cdot):=\sum_{j \in S_{t}} \frac{m_{j}}{m} \nabla \mathrm{~L}_{j}(\cdot)$, where $m=\sum_{j \in S_{t}} m_{j}$. Taking the expectation over $j \in S_{t}$,

$$
\begin{align*}
\mathbb{E}\left[\sum_{t=1}^{T}\left\langle\nabla \mathrm{~L}\left(\alpha_{t}\right)-\delta_{t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle\right] & =\sum_{t=1}^{T}\left\langle\nabla \mathrm{~L}\left(\alpha_{t}\right)-\mathbb{E}\left[\delta_{t} \mathrm{~L}\right], \alpha_{t}-\alpha\right\rangle \tag{16}\\
& =\sum_{t=1}^{T}\left\langle\nabla \mathrm{~L}\left(\alpha_{t}\right)-\mathbb{E}\left[\nabla_{t} \mathrm{~L}\left(\tilde{\alpha}_{t}\right)\right], \alpha_{t}-\alpha\right\rangle \\
& \leq \sum_{t=1}^{T}\left\|\nabla \mathrm{~L}\left(\alpha_{t}\right)-\mathbb{E}\left[\nabla_{t} \mathrm{~L}\left(\tilde{\alpha}_{t}\right)\right]\right\|_{*}\left\|\alpha_{t}-\alpha\right\| \quad \text { (Cauchy-Schwarz ineq.) } \\
& \leq \sum_{t=1}^{T}\left\|\nabla \mathrm{~L}\left(\alpha_{t}\right)-\mathbb{E}\left[\nabla_{t} \mathrm{~L}\left(\tilde{\alpha}_{t}\right)\right]\right\|_{*} \alpha_{*} . \tag{17}
\end{align*}
$$

To understand $\mathbb{E}\left[\nabla_{t} \mathrm{~L}\left(\tilde{\alpha}_{t}\right)\right]$, we use Taylor's Theorem in several variables (Folland, 2010). Let $f=\nabla_{t} \mathrm{~L}$. Expanding $f\left(\tilde{\alpha}_{t}\right)$ about α_{t},

$$
f\left(\tilde{\alpha}_{t}\right)-f\left(\alpha_{t}\right)=\nabla f\left(\alpha_{t}\right)\left(\tilde{\alpha}_{t}-\alpha_{t}\right)+R_{1}\left(\tilde{\alpha}_{t}-\alpha_{t}\right)
$$

where $R_{1}(\cdot)$ is the reminder term that can be bounded as

$$
\left\|R_{1}\left(\tilde{\alpha}_{t}-\alpha_{t}\right)\right\|_{*} \leq \frac{M}{2!}\left\|\tilde{\alpha}_{t}-\alpha_{t}\right\|_{2}^{2}
$$

with $\left\|\nabla^{2} f(\cdot)\right\| \leq M$. Taking expectation over $\tilde{\alpha}_{t}$ and using the fact that $\mathbb{E}\left[\tilde{\alpha}_{t}\right]=\alpha_{t}$, we get

$$
\begin{aligned}
\left\|\mathbb{E}\left[f\left(\tilde{\alpha}_{t}\right)\right]-f\left(\alpha_{t}\right)\right\| & \leq \frac{M}{2} \mathbb{E}\left\|\tilde{\alpha}_{t}-\alpha_{t}\right\|_{2}^{2} \\
& =\frac{M}{2} \sum_{k=1}^{q} \mathbb{E}\left\|\frac{\alpha_{k, t} \mathbf{1}_{k, t}}{\gamma_{k, t}}-\alpha_{k, t}\right\|_{2}^{2} \\
& =\frac{M}{2} \sum_{k=1}^{q} \alpha_{k, t}^{2} \mathbb{E}\left\|\frac{\mathbf{1}_{k, t}}{\gamma_{k, t}}-1\right\|_{2}^{2} \\
& =\frac{M}{2} \sum_{k=1}^{q} \alpha_{k, t}^{2}\left(\frac{1-\gamma_{k, t}}{\gamma_{k, t}}\right) \\
& \leq \frac{M}{2} \sum_{k=1}^{q} \frac{\alpha_{k, t}^{2}}{\gamma_{k, t}}
\end{aligned}
$$

Combining the resulting inequalities gives

$$
\mathrm{L}\left(\alpha^{A}\right)-\mathrm{L}(\alpha) \leq \frac{1}{\eta T} \mathrm{~B}_{F}\left(\alpha \| \alpha_{1}\right)+\frac{\eta G^{2}}{2 \sigma}+\frac{\alpha_{*} M}{2 T} \sum_{t=1}^{T} \sum_{k=1}^{q} \frac{\alpha_{k, t}^{2}}{\gamma_{k, t}}
$$

Choosing the learning rate yields the theorem.

C. Convergence guarantee for AFLBoost (Theorem 3)

Theorem 3. Let Properties 1 and 2 hold. Let $\eta_{\lambda}=\sqrt{\frac{\sigma}{T G_{\lambda}^{2} r_{\lambda}}}$ and $\eta_{\alpha}=\sqrt{\frac{\sigma}{T G_{\alpha}^{2} r_{\alpha}}}$. Let α^{A} be the output of AFLBoost. If $\gamma_{k, t}$ is given by 8 , then $\mathbb{E}\left[\max _{\lambda \in \Lambda} \mathrm{L}\left(\alpha^{A}, \lambda\right)-\min _{\alpha \in \Delta_{q}} \max _{\lambda \in \Lambda} \mathrm{L}(\alpha, \lambda)\right]$ is at most

$$
4 \sqrt{\frac{G_{\alpha}^{2}\left(\sigma r_{\alpha}+\alpha_{*}\right)}{T}}+4 \sqrt{\frac{G_{\lambda}^{2}\left(\sigma r_{\lambda}+\lambda_{*}\right)}{T}}+\frac{M\left(\lambda_{*}+\alpha_{*}\right)}{C} .
$$

Proof. By Mohri et al. (2019)[Lemma 5], it suffices to bound

$$
\begin{equation*}
\frac{1}{T} \max _{\substack{\lambda \in \Lambda ; \\ \alpha \in \Delta_{q}}}\left\{\sum_{t=1}^{T} \mathrm{~L}\left(\alpha_{t}, \lambda\right)-\mathrm{L}\left(\alpha, \lambda_{t}\right)\right\} \tag{18}
\end{equation*}
$$

Consider the following inequalities:

$$
\begin{aligned}
\mathrm{L}\left(\alpha_{t}, \lambda\right)-\mathrm{L}\left(\alpha, \lambda_{t}\right) & =\mathrm{L}\left(\alpha_{t}, \lambda\right)-\mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)+\mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\mathrm{L}\left(\alpha, \lambda_{t}\right) \\
& \leq\left\langle\nabla_{\lambda} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right), \lambda-\lambda_{t}\right\rangle+\left\langle\nabla_{\alpha} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right), \alpha_{t}-\alpha\right\rangle \\
& =\left\langle\delta_{\lambda, t} \mathrm{~L}, \lambda-\lambda_{t}\right\rangle+\left\langle\delta_{\alpha, t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle \\
& +\left\langle\nabla_{\lambda} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\lambda, t} \mathrm{~L}, \lambda-\lambda_{t}\right\rangle+\left\langle\nabla_{\alpha} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\alpha, t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle
\end{aligned}
$$

Given these inequalities, we can bound (18) using the sub-additive property of max on the previous inequality as follows:

$$
\begin{align*}
& \max _{\substack{\lambda \in \Lambda ; \\
\alpha \in \Delta_{q}}}\left\{\sum_{t=1}^{T} \mathrm{~L}\left(\alpha_{t}, \lambda\right)-\mathrm{L}\left(\alpha, \lambda_{t}\right)\right\} \\
& \leq \max _{\substack{\lambda \in \Delta_{i} ;}} \sum_{t=1}^{T}\left\{\left\langle\delta_{\lambda, t} \mathrm{~L}, \lambda-\lambda_{t}\right\rangle+\left\langle\delta_{\alpha, t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle\right\} \tag{19a}\\
&+\max _{\substack{\lambda \in \Lambda ; \\
\alpha \in \Delta_{q} ;}}^{T} \sum_{t=1}^{T}\left\{\left\langle\lambda, \nabla_{\lambda} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\lambda, t} \mathrm{~L}\right\rangle+\left\langle\alpha, \nabla_{\alpha} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\alpha, t} \mathrm{~L}\right\rangle\right\} \tag{19b}\\
&+\sum_{t=1}^{T}\left\langle\lambda_{t}, \nabla_{\lambda} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\lambda, t} \mathrm{~L}\right\rangle+\left\langle\alpha_{t}, \nabla_{\alpha} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\alpha, t} \mathrm{~L}\right\rangle, \tag{19c}
\end{align*}
$$

which we will bound in three parts. Consider the first sub-equation (19a): similarly in arriving at (13a), it follows by definition of w_{t+1}, v_{t+1} that

$$
\begin{aligned}
\left\langle\delta_{\lambda, t} \mathrm{~L}, \lambda-\lambda_{t}\right\rangle+\left\langle\delta_{\alpha, t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle & \leq \frac{1}{\eta_{\lambda}}\left(\mathrm{B}_{F}\left(\lambda \| \lambda_{t}\right)+\mathrm{B}_{F}\left(\lambda_{t} \| w_{t+1}\right)-\mathrm{B}_{F}\left(\lambda \| \lambda_{t+1}\right)-\mathrm{B}_{F}\left(\lambda_{t+1} \| w_{t+1}\right)\right) \\
& +\frac{1}{\eta_{\alpha}}\left(\mathrm{B}_{F}\left(\alpha \| \alpha_{t}\right)+\mathrm{B}_{F}\left(\alpha_{t} \| v_{t+1}\right)-\mathrm{B}_{F}\left(\alpha \| \alpha_{t+1}\right)-\mathrm{B}_{F}\left(\alpha_{t+1} \| v_{t+1}\right)\right)
\end{aligned}
$$

Summing over t, this gives the following by similar argument as in (14) for all λ, α :

$$
\begin{aligned}
\sum_{t=1}^{T}\left\langle\delta_{\lambda, t} \mathrm{~L}, \lambda-\lambda_{t}\right\rangle+\left\langle\delta_{\alpha, t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle & \leq \frac{1}{\eta_{\lambda}}\left(\mathrm{B}_{F}\left(\lambda \| \lambda_{1}\right)+\sum_{t=1}^{T} \mathrm{~B}_{F}\left(\lambda_{t} \| w_{t+1}\right)-\mathrm{B}_{F}\left(\lambda_{t+1} \| w_{t+1}\right)\right) \\
& +\frac{1}{\eta_{\alpha}}\left(\mathrm{B}_{F}\left(\alpha \| \alpha_{1}\right)+\sum_{t=1}^{T} \mathrm{~B}_{F}\left(\alpha_{t} \| v_{t+1}\right)-\mathrm{B}_{F}\left(\alpha_{t+1} \| v_{t+1}\right)\right)
\end{aligned}
$$

In view of the inequality resulting from (15), for all λ, α, this is bounded by

$$
\begin{aligned}
\sum_{t=1}^{T}\left\langle\delta_{\lambda, t} \mathrm{~L}, \lambda-\lambda_{t}\right\rangle+\left\langle\delta_{\alpha, t} \mathrm{~L}, \alpha_{t}-\alpha\right\rangle & \leq \frac{1}{\eta_{\lambda}} \mathrm{B}_{F}\left(\lambda \| \lambda_{1}\right)+\frac{1}{\eta_{\alpha}} \mathrm{B}_{F}\left(\alpha \| \alpha_{1}\right)+\sum_{t=1}^{T} \frac{\eta_{\lambda}^{2}\left\|\delta_{\lambda, t} \mathrm{~L}\right\|_{*}^{2}+\eta_{\alpha}^{2}\left\|\delta_{\alpha, t} \mathrm{~L}\right\|_{*}^{2}}{2 \sigma} \\
& =\frac{1}{\eta_{\lambda}} \mathrm{B}_{F}\left(\lambda \| \lambda_{1}\right)+\frac{1}{\eta_{\alpha}} \mathrm{B}_{F}\left(\alpha \| \alpha_{1}\right)+\frac{T\left(\eta_{\lambda} G_{\lambda}^{2}+\eta_{\alpha} G_{\alpha}^{2}\right)}{2 \sigma}
\end{aligned}
$$

Next, we proceed with the bound for third sub-equation (19c) in expectation via similar argument followed to arrive at (15):

$$
\begin{aligned}
\mathbb{E}\left[\sum_{t=1}^{T}\left\langle\lambda_{t}, \nabla_{\lambda} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\lambda, t} \mathrm{~L}\right\rangle\right. & \left.+\left\langle\alpha_{t}, \nabla_{\alpha} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\alpha, t} \mathrm{~L}\right\rangle\right] \\
& =\sum_{t=1}^{T}\left\langle\lambda_{t}, \nabla_{\lambda} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\mathbb{E}\left[\nabla_{t, \lambda} \mathrm{~L}\left(\tilde{\alpha}_{t}, \lambda_{t}\right)\right]\right\rangle+\left\langle\alpha_{t}, \nabla_{\alpha} \mathrm{L}\left(\tilde{\alpha}_{t}, \lambda_{t}\right)-\mathbb{E}\left[\nabla_{t, \alpha} \mathrm{~L}\left(\tilde{\alpha}_{t}, \lambda_{t}\right)\right]\right\rangle
\end{aligned}
$$

where $\nabla_{t, \lambda} \mathrm{~L}(\cdot):=\sum_{j \in S_{t}} \frac{m_{j}}{m} \nabla_{\lambda} \mathrm{L}_{j}(\cdot)$, and similarly for $\nabla_{t, \alpha} \mathrm{~L}(\cdot)$. Similar to the proof of (15) and (9), it can be shown that

$$
\sum_{t=1}^{T}\left\langle\lambda_{t}, \nabla_{\lambda} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\mathbb{E}\left[\nabla_{t, \lambda}\right]\right\rangle \leq \frac{M T \lambda_{*}}{2 C}
$$

Similarly,

$$
\mathbb{E}\left[\sum_{t=1}^{T}\left\langle\alpha_{t}, \nabla_{\alpha} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\alpha, t} \mathrm{~L}\right\rangle\right] \leq \frac{M T \alpha_{*}}{2 C}
$$

Combining the two bounds, we have

$$
\mathbb{E}\left[\sum_{t=1}^{T}\left\langle\lambda_{t}, \nabla_{\lambda} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\lambda, t} \mathrm{~L}\right\rangle+\left\langle\alpha_{t}, \nabla_{\alpha} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\alpha, t} \mathrm{~L}\right\rangle\right] \leq \frac{M T\left(\alpha_{*}+\lambda_{*}\right)}{2 C}
$$

We now consider the second sub-equation term (19b), focusing on the first summand with the max over λ and bound this by the Cauchy-Schwarz inequality, then Jensen's inequality:

$$
\begin{aligned}
& \mathbb{E}\left[\max _{\lambda \in \Lambda}\left\{\sum_{t=1}^{T}\left\langle\lambda, \nabla_{\lambda} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\lambda, t} \mathrm{~L}\right\rangle\right\}\right] \\
& \leq \mathbb{E}\left[\max _{\lambda \in \Lambda}\left\{\sum_{t=1}^{T}\left\langle\lambda, \nabla_{\lambda} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\mathbb{E}\left[\delta_{\lambda, t} \mathrm{~L}\right]\right\rangle\right\}\right]+\mathbb{E}\left[\max _{\lambda \in \Lambda}\left\{\sum_{t=1}^{T}\left\langle\lambda, \delta_{\lambda, t} \mathrm{~L}-\mathbb{E}\left[\delta_{\lambda, t} \mathrm{~L}\right]\right\rangle\right\}\right] \\
& \leq \frac{M T \lambda_{*}}{2 C}+\lambda_{*} G_{\lambda} \sqrt{T}
\end{aligned}
$$

where λ_{*} denotes the max over the compact set Λ. Similarly, we can obtain the following inequality:

$$
\mathbb{E}\left[\max _{\alpha \in \Delta_{q}} \sum_{t=1}^{T}\left\langle\alpha, \nabla_{\alpha} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\alpha, t} \mathrm{~L}\right\rangle\right] \leq \frac{M T \alpha_{*}}{2 C}+\alpha_{*} G_{\alpha} \sqrt{T}
$$

Thus, combining the inequalities gives

$$
\max _{\substack{\lambda \in \Lambda ; \\ \alpha \in \Delta_{q}}} \sum_{t=1}^{T}\left\{\left\langle\lambda, \nabla_{\lambda} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\lambda, t} \mathrm{~L}\right\rangle+\left\langle\alpha, \nabla_{\alpha} \mathrm{L}\left(\alpha_{t}, \lambda_{t}\right)-\delta_{\alpha, t} \mathrm{~L}\right\rangle\right\}=\frac{M T\left(\lambda_{*}+\alpha_{*}\right)}{2 C}+\alpha_{*} G_{\alpha} \sqrt{T}+\lambda_{*} G_{\lambda} \sqrt{T}
$$

Combining the bounds for (19a), (19b), and (19c), the following bound holds:

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \eta_{\alpha} \mathrm{L}\left(\alpha_{t}, \lambda\right) & -\eta_{\lambda} \mathrm{L}\left(\alpha, \lambda_{t}\right) \\
& \leq \frac{1}{T}\left(\frac{\mathrm{~B}_{F}\left(\lambda \| \lambda_{1}\right)}{\eta_{\lambda}}+\frac{\mathrm{B}_{F}\left(\alpha \| \alpha_{1}\right)}{\eta_{\alpha}}\right)+\frac{T\left(\eta_{\lambda} G_{\lambda}^{2}+\eta_{\alpha} G_{\alpha}^{2}\right)}{2 \sigma}+\frac{M\left(\lambda_{*}+\alpha_{*}\right)}{C}+\frac{\alpha_{*} G_{\alpha}+\lambda_{*} G_{\lambda}}{\sqrt{T}}
\end{aligned}
$$

D. Additional density estimation experiments on synthetic data

Continuing the experimental validation of FedBoost as described in 5.1, we examine the effect of modulating the communication budget C on a density estimation task using the same setup as before, but with a power-law distributed synthetic dataset with parameter $p=1000$.

Figure 6. Comparison of loss curves as a function of C using uniform sampling in density estimation on synthetic data.

Figure 7. Comparison of convergence as C varies using weighted random sampling for density estimation.

We use a hand-tuned step size $\eta=0.001$ for all values of C, and include ℓ_{1} regularization in the experiment using weighted random sampling (Fig. 7). The experimental setup is otherwise the same for both Fig. 6 and 7. Across all values of C, weighted random sampling of the h_{k} achieves lower loss than using uniform sampling, which validates that using weighted random sampling reduces the communication-dependent term of FEDBoost.

