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A. Proofs for density estimation
A.1. Proof of Lemma 1

Lemma 1. Let the loss be a Bregman divergence BF . Then, for any λ ∈ Λ ⊆ ∆p, if h∗ =
∑p
k=1 λkDk is in H, then it is

a minimizer of h 7→
∑p
k=1 λkBF

(
Dk ‖ h

)
. If F is further strictly convex, then it is the unique minimizer.

Proof. Fix λ ∈ Λ such that
∑p
k=1 λkDk is in H. By the non-negativity of the Bregman divergence, for all h,

BF (
∑p
k=1 λkDk ‖ h) ≥ 0 and equality is achieved for h =

∑p
k=1 λkDk. Thus, h∗ is a minimizer of h 7→

BF (
∑p
k=1 λkDk ‖ h). Since F is strictly convex, h 7→ BF (

∑p
k=1 λkDk ‖ h) is strictly convex and h∗ is therefore

the unique minimizer.

Now, for any hypothesis h, observe that the following difference is a constant independent of h:

p∑
k=1

λkBF
(
Dk ‖ h

)
− BF

(
p∑
k=1

λkDk ‖ h

)
(12)

=

p∑
k=1

λk [F (Dk)− F (h)− 〈∇F (h),Dk − h〉]−

[
F

(
p∑
k=1

λkDk

)
− F (h)−

〈
∇F (h),

p∑
k=1

λkDk − h

〉]

=

p∑
k=1

λkF (Dk)− F

(
p∑
k=1

λkDk

)
.

Thus, h∗ is also the unique minimizer of h 7→
∑p
k=1 λkBF

(
Dk ‖ h

)
.

A.2. Proof of Lemma 2

Lemma 2. Let the loss be a Bregman divergence BF with F strictly convex and assume that conv({D1, ...,Dp}) ⊆ H.
Observe that BF is jointly convex in both arguments. Then, for any convex set Λ ⊆ ∆p, the solution of the optimization
problem minh∈H maxλ∈Λ

∑p
k=1 λkBF

(
Dk ‖ h

)
exists and is in conv({D1, ...,Dp}).

Proof. Let H′ is the closure of convex hull of H. Observe that H′ is a convex and compact set.

min
h∈H′

max
λ∈Λ

p∑
k=1

λkBF
(
Dk ‖ h

)
≤ min
h∈H

max
λ∈Λ

p∑
k=1

λkBF
(
Dk ‖ h

)
.

We show that minimizer over H′ exists and is in the conv({D1, . . . ,Dp}). Since conv({D1, . . . ,Dp}) ⊆ H ⊆ H′, the
minimizer over H also exists and is in the conv({D1, . . . ,Dp}).

Since BF is convex with respect to its second argument, h 7→
∑p
k=1 λkBF

(
Dk ‖ h

)
is a convex function of h defined

over the convex set H′. Since any maximum of a convex function is also convex, h 7→ maxλ∈Λ

∑p
k=1 λkBF

(
Dk ‖ h

)
is

a convex function and its minimum over the compact set H′ exists.

We now show that the minimizer is in conv({D1, . . . ,Dp}). Notice that, since
∑p
k=1 λkBF

(
Dk ‖ h

)
is linear in λ, we

have

max
λ∈Λ

p∑
k=1

λkBF
(
Dk ‖ h

)
= max
λ∈conv(Λ)

p∑
k=1

λkBF
(
Dk ‖ h

)
.

Thus, it suffices to consider the case Λ ⊆ ∆p. Then, since H′ is a compact and convex set and since BF is convex with
respect to its second argument, by Sion’s minimax theorem, we can write:

min
h∈H′

max
λ∈Λ

p∑
k=1

λkBF (Dk ‖ h) = max
λ∈Λ

min
h∈H′

p∑
k=1

λkBF (Dk ‖ h) .

Let λopt = argmaxλ∈Λ minh∈H′
∑p
k=1 λkBF

(
Dk ‖ h

)
and h∗ =

∑
k λ

opt
k Dk. By assumption, conv({D1, . . . ,Dp}) is

included in H′, thus h∗ is in H′ and, by Lemma 1, h∗ is a minimizer of h 7→
∑p
k=1 λ

opt
k BF (Dk ‖ h). In view of that, if h′
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is a minimizer of h 7→ maxλ∈Λ

∑p
k=1 λkBF

(
Dk ‖ h

)
over H′, then the following holds:

max
λ

p∑
k=1

λkBF (Dk ‖ h′) ≥
p∑
k=1

λopt
k BF (Dk ‖ h′) (def. of max)

≥
p∑
k=1

λopt
k BF (Dk ‖ h∗) (Lemma 1)

= min
h∈H′

p∑
k=1

λopt
k BF (Dk ‖ h) (h∗ minimizer)

= max
λ∈Λ

min
h∈H′

p∑
k=1

λkBF (Dk ‖ h) (def. of λopt
k )

= min
h∈H′

max
λ∈Λ

p∑
k=1

λkBF (Dk ‖ h) . (Sion’s minimax theorem)

By the optimality of h′, the first and last expressions in this chain of inequalities are equal, which implies the equality of
all intermediate terms. In particular, this implies

∑p
k=1 λ

opt
k BF (Dk ‖ h′) =

∑p
k=1 λ

opt
k BF (Dk ‖ h∗). Since F is strictly

convex, by Lemma 1, the minimizer of h 7→
∑p
k=1 λ

opt
k BF

(
Dk ‖ h

)
is unique and h′ = h∗. This completes the proof.

B. Convergence guarantee of FEDBOOST (Theorem 2)

Theorem 2. If Properties 1 hold and η =
√

σ
TG2rα

, then αA, the output of FEDBOOST satisfies,

E
[
L(αA)− L(αopt)

]
≤ 2

√
G2σrα
T

+
α∗M

2T

T∑
t=1

q∑
k=1

α2
k,t

γk,t
.

Proof. By Jensen’s inequality,

L(αA) ≤ 1

T

T∑
t=1

L(αt).

Hence, it suffices to bound

1

T

T∑
t=1

(L(αt)− L(α)) .

For any t,

L(αt)− L(α) ≤ 〈∇L(αt), αt − α〉 (convexity of L)
= 〈δtL, αt − α〉+ 〈∇L(αt)− δtL, αt − α〉

=
1

η
〈∇F (αt)−∇F (vt+1), αt − α〉+ 〈∇L(αt)− δtL, αt − α〉 (def. of vt+1)

=
1

η
(BF (α ‖ αt) + BF (αt ‖ vt+1)− BF (α ‖ vt+1)) + 〈∇L(αt)− δtL, αt − α〉 (Bregman div. def.)

≤ 1

η
(BF (α ‖ αt) + BF (αt ‖ vt+1)− BF (α ‖ αt+1)− BF (αt+1 ‖ vt+1)) (13a)

+ 〈∇L(αt)− δtL, αt − α〉, (13b)

where the last inequality follows because BF (α ‖ vt+1) ≥ BF (α ‖ αt+1) + BF (αt+1 ‖ vt+1) by the generalized
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Pythagorean inequality. For the first term (13a), summing over t gives the following telescoping sum,

T∑
t=1

(BF (α ‖ αt) + BF (αt ‖ vt+1)− BF (α ‖ αt+1)− BF (αt+1 ‖ vt+1)) (14)

= BF (α ‖ α1)− BF (α ‖ αT+1) +

T∑
t=1

BF (αt ‖ vt+1)− BF (αt+1 ‖ vt+1)

≤ BF (α ‖ α1) +

T∑
t=1

(BF (αt ‖ vt+1)− BF (αt+1 ‖ vt+1)) .

Now consider the summation term:

BF (αt ‖ vt+1)− BF (αt+1 ‖ vt+1) = F (αt)− F (αt+1)− 〈∇F (vt+1), αt − αt+1〉

≤ 〈∇F (αt), αt − αt+1〉 −
σ

2
‖αt − αt+1‖2 − 〈∇F (vt+1), αt − αt+1〉 (strong convexity of F )

= 〈∇F (αt)−∇F (vt+1), αt − αt+1〉 −
σ

2
‖αt − αt+1‖2

= η〈δtL, αt − αt+1〉 −
σ

2
‖αt − αt+1‖2 (def. of vt+1)

≤ η‖δtL‖∗‖αt − αt+1‖ −
σ

2
‖αt − αt+1‖2 (Cauchy-Schwarz ineq.)

≤ η2‖δtL‖2∗
2σ

. (15)

Combining the above inequalities,

T∑
t=1

(L(αt)− L(α)) ≤ 1

η
BF (α ‖ α1) +

T∑
t=1

(
η‖δtL‖2∗

2σ
+ 〈∇L(αt)− δtL, αt − α〉

)

≤ 1

η
BF (α ‖ α1) +

ηG2T

2σ
+

T∑
t=1

(〈∇L(αt)− δtL, αt − α〉) .

We now bound (13b) in expectation, the inner product term in the above equation. Denote by∇tL(·) :=
∑
j∈St

mj
m ∇Lj(·),

where m =
∑
j∈St mj . Taking the expectation over j ∈ St,

E

[
T∑
t=1

〈∇L(αt)− δtL, αt − α〉

]
=

T∑
t=1

〈∇L(αt)− E [δtL] , αt − α〉 (16)

=

T∑
t=1

〈∇L(αt)− E [∇tL(α̃t)] , αt − α〉

≤
T∑
t=1

‖∇L(αt)− E [∇tL(α̃t)] ‖∗‖αt − α‖ (Cauchy-Schwarz ineq.)

≤
T∑
t=1

‖∇L(αt)− E [∇tL(α̃t)] ‖∗α∗. (by Prop. 1.2.)

(17)

To understand E[∇tL(α̃t)], we use Taylor’s Theorem in several variables (Folland, 2010). Let f = ∇tL. Expanding f(α̃t)
about αt,

f(α̃t)− f(αt) = ∇f(αt)(α̃t − αt) +R1(α̃t − αt),
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where R1(·) is the reminder term that can be bounded as

‖R1(α̃t − αt)‖∗ ≤
M

2!
‖α̃t − αt‖22,

with ‖∇2f(·)‖ ≤M . Taking expectation over α̃t and using the fact that E[α̃t] = αt, we get

‖E[f(α̃t)]− f(αt)‖ ≤
M

2
E ‖α̃t − αt‖22

=
M

2

q∑
k=1

E
∥∥∥∥αk,t1k,tγk,t

− αk,t
∥∥∥∥2

2

=
M

2

q∑
k=1

α2
k,t E

∥∥∥∥1k,tγk,t
− 1

∥∥∥∥2

2

=
M

2

q∑
k=1

α2
k,t

(
1− γk,t
γk,t

)

≤ M

2

q∑
k=1

α2
k,t

γk,t
.

Combining the resulting inequalities gives

L(αA)− L(α) ≤ 1

ηT
BF (α ‖ α1) +

ηG2

2σ
+
α∗M

2T

T∑
t=1

q∑
k=1

α2
k,t

γk,t
.

Choosing the learning rate yields the theorem.

C. Convergence guarantee for AFLBOOST (Theorem 3)

Theorem 3. Let Properties 1 and 2 hold. Let ηλ =
√

σ
TG2

λrλ
and ηα =

√
σ

TG2
αrα

. Let αA be the output of AFLBOOST.

If γk,t is given by 8, then E[maxλ∈Λ L(αA, λ)−minα∈∆q
maxλ∈Λ L(α, λ)] is at most

4

√
G2
α(σrα + α∗)

T
+ 4

√
G2
λ(σrλ + λ∗)

T
+
M(λ∗ + α∗)

C
.

Proof. By Mohri et al. (2019)[Lemma 5], it suffices to bound

1

T
max
λ∈Λ;
α∈∆q

{
T∑
t=1

L(αt, λ)− L(α, λt)}. (18)

Consider the following inequalities:

L(αt, λ)− L(α, λt) = L(αt, λ)− L(αt, λt) + L(αt, λt)− L(α, λt)

≤ 〈∇λL(αt, λt), λ− λt〉+ 〈∇αL(αt, λt), αt − α〉 (convexity of L)
= 〈δλ,tL, λ− λt〉+ 〈δα,tL, αt − α〉
+ 〈∇λL(αt, λt)− δλ,tL, λ− λt〉+ 〈∇αL(αt, λt)− δα,tL, αt − α〉
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Given these inequalities, we can bound (18) using the sub-additive property of max on the previous inequality as follows:

max
λ∈Λ;
α∈∆q

{
T∑
t=1

L(αt, λ)− L(α, λt)}

≤ max
λ∈Λ;
α∈∆q

T∑
t=1

{〈δλ,tL, λ− λt〉+ 〈δα,tL, αt − α〉} (19a)

+ max
λ∈Λ;
α∈∆q

T∑
t=1

{〈λ,∇λL(αt, λt)− δλ,tL〉+ 〈α,∇αL(αt, λt)− δα,tL〉} (19b)

+

T∑
t=1

〈λt,∇λL(αt, λt)− δλ,tL〉+ 〈αt,∇αL(αt, λt)− δα,tL〉, (19c)

which we will bound in three parts. Consider the first sub-equation (19a): similarly in arriving at (13a), it follows by
definition of wt+1, vt+1 that

〈δλ,tL, λ− λt〉+ 〈δα,tL, αt − α〉 ≤
1

ηλ
(BF (λ ‖ λt) + BF (λt ‖ wt+1)− BF (λ ‖ λt+1)− BF (λt+1 ‖ wt+1))

+
1

ηα
(BF (α ‖ αt) + BF (αt ‖ vt+1)− BF (α ‖ αt+1)− BF (αt+1 ‖ vt+1)).

Summing over t, this gives the following by similar argument as in (14) for all λ, α:

T∑
t=1

〈δλ,tL, λ− λt〉+ 〈δα,tL, αt − α〉 ≤
1

ηλ
(BF (λ ‖ λ1) +

T∑
t=1

BF (λt ‖ wt+1)− BF (λt+1 ‖ wt+1))

+
1

ηα
(BF (α ‖ α1) +

T∑
t=1

BF (αt ‖ vt+1)− BF (αt+1 ‖ vt+1))

In view of the inequality resulting from (15), for all λ, α, this is bounded by

T∑
t=1

〈δλ,tL, λ− λt〉+ 〈δα,tL, αt − α〉 ≤
1

ηλ
BF (λ ‖ λ1) +

1

ηα
BF (α ‖ α1) +

T∑
t=1

η2
λ‖δλ,tL‖2∗ + η2

α‖δα,tL‖2∗
2σ

=
1

ηλ
BF (λ ‖ λ1) +

1

ηα
BF (α ‖ α1) +

T
(
ηλG

2
λ + ηαG

2
α

)
2σ

.

Next, we proceed with the bound for third sub-equation (19c) in expectation via similar argument followed to arrive at
(15):

E[

T∑
t=1

〈λt,∇λL(αt, λt)− δλ,tL〉+ 〈αt,∇αL(αt, λt)− δα,tL〉]

=

T∑
t=1

〈λt,∇λL(αt, λt)− E[∇t,λL(α̃t, λt)]〉+ 〈αt,∇αL(α̃t, λt)− E[∇t,αL(α̃t, λt)]〉,

where ∇t,λL(·) :=
∑
j∈St

mj
m ∇λLj(·), and similarly for ∇t,αL(·). Similar to the proof of (15) and (9), it can be shown

that
T∑
t=1

〈λt,∇λL(αt, λt)− E[∇t,λ]〉 ≤ MTλ∗
2C

.

Similarly,

E[

T∑
t=1

〈αt,∇αL(αt, λt)− δα,tL〉] ≤
MTα∗

2C
.
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Combining the two bounds, we have

E[

T∑
t=1

〈λt,∇λL(αt, λt)− δλ,tL〉+ 〈αt,∇αL(αt, λt)− δα,tL〉] ≤
MT (α∗ + λ∗)

2C
.

We now consider the second sub-equation term (19b), focusing on the first summand with the max over λ and bound this
by the Cauchy-Schwarz inequality, then Jensen’s inequality:

E[max
λ∈Λ
{
T∑
t=1

〈λ,∇λL(αt, λt)− δλ,tL〉}]

≤ E[max
λ∈Λ
{
T∑
t=1

〈λ,∇λL(αt, λt)− E[δλ,tL]〉}] + E[max
λ∈Λ
{
T∑
t=1

〈λ, δλ,tL− E[δλ,tL]〉}]

≤ MTλ∗
2C

+ λ∗Gλ
√
T ,

where λ∗ denotes the max over the compact set Λ. Similarly, we can obtain the following inequality:

E[max
α∈∆q

T∑
t=1

〈α,∇αL(αt, λt)− δα,tL〉] ≤
MTα∗

2C
+ α∗Gα

√
T .

Thus, combining the inequalities gives

max
λ∈Λ;
α∈∆q

T∑
t=1

{〈λ,∇λL(αt, λt)− δλ,tL〉+ 〈α,∇αL(αt, λt)− δα,tL〉} =
MT (λ∗ + α∗)

2C
+ α∗Gα

√
T + λ∗Gλ

√
T .

Combining the bounds for (19a), (19b), and (19c), the following bound holds:

1

T

T∑
t=1

ηαL(αt, λ)− ηλL(α, λt)

≤ 1

T

(
BF (λ ‖ λ1)

ηλ
+

BF (α ‖ α1)

ηα

)
+
T
(
ηλG

2
λ + ηαG

2
α

)
2σ

+
M(λ∗ + α∗)

C
+
α∗Gα + λ∗Gλ√

T
.
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D. Additional density estimation experiments on synthetic data
Continuing the experimental validation of FEDBOOST as described in 5.1, we examine the effect of modulating the com-
munication budgetC on a density estimation task using the same setup as before, but with a power-law distributed synthetic
dataset with parameter p = 1000.

Figure 6. Comparison of loss curves as a function of C using
uniform sampling in density estimation on synthetic data.

Figure 7. Comparison of convergence as C varies using
weighted random sampling for density estimation.

We use a hand-tuned step size η = 0.001 for all values ofC, and include `1 regularization in the experiment using weighted
random sampling (Fig. 7). The experimental setup is otherwise the same for both Fig. 6 and 7. Across all values of C,
weighted random sampling of the hk achieves lower loss than using uniform sampling, which validates that using weighted
random sampling reduces the communication-dependent term of FEDBOOST.


