
Training Binary Neural Networks through Learning with Noisy Supervision

Kai Han 1 2 Yunhe Wang 2 Yixing Xu 2 Chunjing Xu 2 Enhua Wu 1 3 Chang Xu 4

Abstract
This paper formalizes the binarization operations
over neural networks from a learning perspec-
tive. In contrast to classical hand crafted rules
(e.g. hard thresholding) to binarize full-precision
neurons, we propose to learn a mapping from full-
precision neurons to the target binary ones. Each
individual weight entry will not be binarized in-
dependently. Instead, they are taken as a whole
to accomplish the binarization, just as they work
together in generating convolution features. To
help the training of the binarization mapping, the
full-precision neurons after taking sign operations
is regarded as some auxiliary supervision signal,
which is noisy but still has valuable guidance. An
unbiased estimator is therefore introduced to mit-
igate the influence of the supervision noise. Ex-
perimental results on benchmark datasets indicate
that the proposed binarization technique attains
consistent improvements over baselines.

1. Introduction
Deep convolutional neural networks (CNNs) have achieved
much success in many real-world applications such as image
recognition (He et al., 2016; Han et al., 2018c), object de-
tection (Ren et al., 2015), and semantic segmentation (Chen
et al., 2016). These CNN models usually consume high
computational resource, and thus they cannot be easily
deployed on embedded devices. A series of model com-
pression and acceleration methods (Han et al., 2016; Chen
et al., 2020) have been proposed to reduce the number of
parameters and FLOPs of CNNs, including network prun-
ing (Han et al., 2016; Li et al., 2017; Shu et al., 2019),
tensor decomposition (Denton et al., 2014), knowledge dis-

1State Key Lab of Computer Science, Institute of Software,
CAS & University of Chinese Academy of Sciences 2Noah’s Ark
Lab, Huawei Technologies 3University of Macau 4School of Com-
puter Science, Faculty of Engineering, University of Sydney. Cor-
respondence to: Yunhe Wang <yunhe.wang@huawei.com>, En-
hua Wu <ehwu@umac.mo>, Chang Xu <c.xu@sydney.edu.au>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Figure 1. Framework of learning binary neurons with noisy super-
vision. A network f is utilized to predict the binary weights with
supervision of the noisy labels obtained by sign function.

tillation (Hinton et al., 2015; Chen et al., 2019), efficient
model design (Howard et al., 2017; Han et al., 2020), and
model quantization (Gupta et al., 2015; Hubara et al., 2016).
These methods have significantly promoted the development
of deep learning towards real-world mobile applications.

Binary neural networks (BNNs) (Hubara et al., 2016; Raste-
gari et al., 2016; Lin et al., 2017; Liu et al., 2018; Shen et al.,
2020) push neural network quantization to the extreme. 1-
bit weights and activations in BNNs can dramatically save
computational cost for better real-time inference. Bina-
ryNet (Hubara et al., 2016) first proposed binary networks
with both 1-bit weights and activations. XNOR-Net (Raste-
gari et al., 2016) further improved BinaryNet by introducing
channel-wise scale factor of weights and activation. Dorefa-
Net (Zhou et al., 2016) utilized layer-wise scale factor to
achieve XNOR-Net like performance. ABC-Net (Lin et al.,
2017) enhanced the performance by using more weight
bases and activation bases, but computation complexity is in-
creased at the same time. These approaches have constantly
boosted the performance of BNNs. For example, binary
AlexNet in XNOR-Net (Rastegari et al., 2016) achieves a
44.2% top-1 accuracy on the ImageNet classification task,
while reducing the convolution parameters for nearly 32×
over the full-precision model (56.6% top-1 accuracy).

In constructing the binary neural network, most of existing

Training Binary Neural Networks through Learning with Noisy Supervision

approaches employ hard thresholding (e.g. sign function)
to quantize the weights and process each element indepen-
dently. “Straight through estimator” (STE) (Bengio et al.,
2013) is applied to calculate the gradient of sign function.
However, the performance of the existing BNNs is far worse
than that of the full-precision counterparts, e.g. up to 11.6%
accuracy drop of binary AlexNet in XNOR-Net. Simply
binarizing each individual weight independently does not
fully explore the relationship between neurons and may not
bring in the optimal solution. Moreover, estimated gradients
by STE often lead to inaccurate weights that contain the
noise, i.e. some of the binary weights have been incorrectly
flipped into the opposite values.

In this paper, we learn to binarize neurons with noisy su-
pervision, as shown in Fig. 1. In contrast to classical hand
crafted rules to binarize the weights, we suggest a mapping
from full-precision neurons to the binary ones. This map-
ping function can be approximated with a neural network
that treats full-precision weights in a filter as a whole for
the input. To help the learning of the mapping function, we
take the pretrained binary weights as noisy supervisions that
are close to the ideal binary neurons. An unbiased estima-
tor is introduced for learning with noisy supervisions and
avoiding noise disturbance. In an end-to-end fine-tuning, the
proposed method can be a nice alternative of the sign func-
tion in BNNs by mining the relationship between neurons
and taking advantage of noisy supervisions. Theoretical
analysis suggests that the introduced unbiased estimator can
converge to the optimal solution of binary weights under
the clean distribution. Experiments on benchmark datasets
including CIFAR-10 and ImageNet demonstrate that BNNs
established using the proposed Learning with Noisy Super-
vision (LNS) method achieve state-of-the-art performance.

2. Related Work
In this section, we give a brief review of the related work in
the field of binary neural networks and learning with noisy
labels.

2.1. Binary Neural Networks

Binary neural networks with extremely low memory and
computation cost appeal great interest from the commu-
nity. Binaryconnect (Courbariaux et al., 2015) was proposed
to train deep neural networks with binary weights. Bina-
ryNet (Hubara et al., 2016) further quantize both the weights
and the activations to 1-bit values, starting the research on
pure binary neural networks. XNOR-Net (Rastegari et al.,
2016) introduce channel-wise scale factor to improve per-
formance. Dorefa-Net (Zhou et al., 2016) simplifies to
layer-wise scale factor and achieve similar performance
with XNOR-Net. ABC-Net (Lin et al., 2017) proposes
to enhance the performance by using more weight bases

and activation bases, but it admittedly needs more memory
and computation cost than BinaryNet. There are also sev-
eral works designing blocks or architectures for binary net-
works (Liu et al., 2018; Shen et al., 2019). Bireal-Net (Liu
et al., 2018) introduces layer-wise identity short-cut, and
AutoBNN (Shen et al., 2019) widen or squeeze the channels
in an automatic manner. All these binary models utilize
STE (Bengio et al., 2013) for gradient back-propagation
which would introduce inaccurate gradients for model opti-
mization.

Some works propose new gradient calculation approach
instead of STE. Bireal-Net (Liu et al., 2018) and DSQ (Gong
et al., 2019) use specially designed activation function for
back-propagation. PCNN (Gu et al., 2019) proposes a new
discrete back-propagation via projection algorithm to build
BNNs. However, most of existing methods quantize each
weight independently and ignore their internal relationship.

2.2. Learning with Noisy Labels

To learn more accurate predictions and correct biased infor-
mation from noisy labels, a number of methods are proposed
for learning with noisy labels, which can be divided into
three categories:

Label correction aims to correct the wrong labels in the
raw labels. The existing methods usually utilize a clean
label inference module to correct the noisy labels to the
true ones. The inference module can be modeled by neu-
ral networks (Lee et al., 2018), graphical models (Xiao
et al., 2015), or conditional random fields (Vahdat, 2017).
However, the extra clean data or expensive noise detection
process is required in these methods, which is unpractical
in real-world applications.

Refined training strategies introduce new learning frame-
work for robustness to noisy labels (Jiang et al., 2018; Han
et al., 2018b; Yu et al., 2019; Wang et al., 2018; Tanaka
et al., 2018). These methods such as MentorNet (Jiang
et al., 2018) and Co-teaching (Han et al., 2018b; Yu et al.,
2019), change the standard learning process with complex
interventions which usually need much effort to adapt and
tune.

Loss correction methods improve the standard loss function
to suit for noisy labels. One common approach is modeling
the noise transition matrix which defines the probability of
one class flipped to another one (Natarajan et al., 2013).
Backward and Forward (Patrini et al., 2017) introduce two
alternative procedures for loss correction, provided knowing
the noise transition matrix. A linear layer is added on top of
the neural networks for noisy prediction correction in (Gold-
berger & Ben-Reuven, 2017). Masking (Han et al., 2018a)
derive a structure-aware probabilistic model to incorporate
the structure prior. Noise robust loss function is another

Training Binary Neural Networks through Learning with Noisy Supervision

technique dealing with noisy labels, such as generalized
cross entropy (Zhang & Sabuncu, 2018), label smoothing
regularization (Pereyra et al., 2017), and symmetric cross
entropy (Wang et al., 2019).

Binary weights can also be recognized as prediction of a
binary classifier, and the biased weights derived from the
sign function are exactly the noisy label. Therefore, we
present to develop a mapping that can correct the noisy
binary weights and obtain BNNs with better performance.

3. Approach
In this section we detail the formulation of our method,
including binary weight mapping model and an unbiased
estimator with noisy supervision.

3.1. Binary Weight Mapping

In existing binary neural networks such as Bina-
ryNet (Hubara et al., 2016), Bireal-Net (Liu et al., 2018)
and Dorefa-Net (Zhou et al., 2016), the weights are usually
quantized with the sign function and a scale factor. In par-
ticular, the weights before quantization in a convolutional
filter are denoted as W ∈ Rc×k×k, where c is the number
of input channels, k × k is the kernel size. For simplicity
in the following, we omit the scale factor, and quantized
binary weights Q̃ ∈ {+1,−1}c×k×k can be obtained by

Q̃ = sign(W), (1)

where sign(·) outputs +1 for positive input and −1 for neg-
ative input. The feature map X ∈ Rn×c×h×w before con-
volution are also quantized in a similar way as the weights:
B = sign(X), where B ∈ {+1,−1}n×c×h×w, n is the
number of samples, and h and w are the height and weight
of feature map, respectively. With the binarized weights and
feature maps, the convolution computation only involves
binary operations, i.e. AND and POPCOUNT:

Y = B ~ Q̃, (2)

where ~ represents convolution operation with binary oper-
ations. During training, the back-propagation process of the
quantization follows the straight through estimator (Bengio
et al., 2013):

∂`cls
∂W

≈ clip
(
∂`cls

∂Q̃
,−1, 1

)
, (3)

where `cls is the cross entropy loss function if the neural
network is for image classification, and W are the latent
full-precision weights to be optimized in iterations. After
training, the quantized weights Q̃ = sign(W) will be kept
for the inference.

The simple sign function to binarize the weights cannot
take the relationship between elements into consideration

Figure 2. Binary weight mapping. Different from simple sign func-
tion, the binarized weight here may be different from the sign of
the latent weight in our method (the element in gray is an example).

and may not be the optimal. In fact, the ideal process to
transform the full-precision weights to binary could be com-
plicated and unknown. Instead of trying to fit the hand-
crafted binarization rules, we propose to binarize neurons
through a learned mapping function as shown in Fig. 2. The
full-precision weights are taken as a whole, and thus their
internal relation can be fully explored and exploited by the
mapping model to accomplish the binarization. Formally,
the binarization process can be written as

Q̂ = fθ(W), (4)

where fθ is the mapping model with training parameters θ.
Compared to sign function, the binarization function in Eq. 4
is learnable and more flexible, which can approximate the
binarization for the need to quantize the weights. Sign func-
tion only operates on each individual element independently,
while the mapping function approximated by a neural net-
work (Eq. 4) can quantize each element by considering its
connections with other elements.

We can embed the binary neuron mapping model in every
convolutional layer which is needed to be quantized and
train the entire neural network end-to-end. However, there
is only the final loss (e.g. `cls) for supervising the entire
network. The mapping model in each layer may be hard to
optimize for lack of direct supervision.

3.2. Learning with Noisy Supervision

If the ground-truth binary weights Q are provided, we can
force the mapping model to learn the target under the super-
vision:

`(Q̂,Q) = ‖Q̂−Q‖2F , (5)

where ‖ · ‖F is the Frobenius norm of a tensor. Denoting
q̂ as each element in the predictions Q̂, and q as the corre-
sponding ground-truth label in Q, Eq. 5 can be represented
as the following for simplicity:

`(Q̂,Q) = ‖Q̂−Q‖2F =
∑

(q̂ − q)2. (6)

The loss in Eq. 5 is simple and easy to optimize. However,
the ground-truth Q is hard to obtain in practice.

If we pretrain a binary neural network as normal (Zhou et al.,
2016), we can easily obtain the pretrained binary model with

Training Binary Neural Networks through Learning with Noisy Supervision

latent weights W and the corresponding binarized weights
Q̃ in each layer. Since the gradients to W in Eq. 3 are esti-
mated and inaccurate, the weights W and the quantized Q̃
after optimization are also inaccurate and contain noise, that
is, some of the weights have been incorrectly flipped into
the opposite values. Nevertheless, as the noise corrupted Q,
Q̃ still has valuable guidance to provide auxiliary supervi-
sion for learning the mapping model. Eq. 5 can therefore be
reformulated as

`(Q̂, Q̃) = ‖Q̂− Q̃‖2F =
∑

(q̂ − q̃)2, (7)

where q̃ is the noisy label for the mapping model. Com-
pared to Eq. 5, the target in Eq. 7 is changed to the noisy
binary weights. The mapping function fθ learned by min-
imzing the loss in Eq. 7 could be seriously influenced by the
noise supervision and may be harmful to the binary neural
networks.

To make the full use of the noisy supervision while miti-
gating the influence of the noise, we seek the solution to
learn from the noisy label. Inspired by the developments in
noisy label learning (Natarajan et al., 2013), we introduce
a loss correction approach to avoid the noise disturbance
in the mapping function learning. We view the pretrained
weights Q̃ in BNNs as the noisy labels which is the cor-
rupted version of Q. We assume that the noisy labels follow
the class-conditional random noise model,

P (q̃ = −1|q = +1) = ρ+1, (8)
P (q̃ = +1|q = −1) = ρ−1, (9)

where ρ+1 is the probability that the negative weight is
flipped into +1, ρ−1 is the probability that the positive
weight is flipped into −1, and ρ+1 + ρ−1 < 1. The noise
rates ρ+1 and ρ−1 are two hyper-parameters. In binary neu-
ral networks, the number of positive weights and negative
weights are similar, so the noise rate ρ+1 and ρ−1 should be
similar as well, i.e. ρ = ρ+1 = ρ−1.

We aim to amend the loss function in Eq. 7 to ˜̀(Q̂, Q̃) so
that we have

E
[
˜̀(Q̂, Q̃)

]
= `(Q̂,Q), (10)

that is E
[
˜̀(q̂, q̃)

]
= `(q̂, q). Considering the cases q = +1

and q = −1 separately, we have the following equations

(1− ρ+1)˜̀(q̂,+1) + ρ+1
˜̀(q̂,−1) = `(q̂,+1), (11)

and

(1− ρ−1)˜̀(q̂,−1) + ρ−1 ˜̀(q̂,+1) = `(q̂,−1). (12)

Solving these two equations for ˜̀(q̂,+1) and ˜̀(q̂,−1) gives

˜̀(q̂,+1) =
(1− ρ−1)l(q̂,+1)− ρ+1l(q̂,−1)

1− ρ+1 − ρ−1
, (13)

and

˜̀(q̂,−1) = (1− ρ+1)l(q̂,−1)− ρ−1l(q̂,+1)

1− ρ+1 − ρ−1
. (14)

By introducing q̃ ∈ {+1,−1}, Eqs. 13 and 14 can be
merged into a unified loss function

˜̀(q̂, q̃) =
(1− ρ−q̃)`(q̂, q̃)− ρq̃`(q̂,−q̃)

1− ρ+1 − ρ−1
. (15)

Viewing each element q̃ as one noisy sample, we can learn a
mapping model in the presence of noisy label by minimizing
the sample average

f̂ = argmin
f∈F

R̂˜̀(f) =
1

|Q̂|

∑
˜̀(q̂, q̃), (16)

where F can be general function class, e.g. the neural net-
works, and R̂˜̀ stands for the empirical ˜̀-risk on the observed
samples. For any fixed f ∈ F , the above sample average
risk can converge to the `-risk under the clean distribution
D: R`,D(f) even that the predictor is learned with noisy
labels whereas the `-risk is computed using true labels as
stated in Eq. 10. Theoretically, the performance bound for
f̂ with respect to the clean distribution D is shown in the
following Theorem 1.

Theorem 1. (Natarajan et al., 2013) With probability at
least 1− δ,

R`,D(f̂) ≤ min
f∈F

R`,D(f) + 4LρR(F) + 2

√
log(1/δ)

2n
.

where R(F) := EXi,εi [supf∈F
1
nεif(Xi)] is the

Rademacher complexity of the function class F and Lρ ≤
2L/(1 − ρ+1 − ρ−1) is the Lipschitz constant of the loss
function ˜̀. Note that εi’s are iid Rademacher random vari-
ables.

The unbiased auxiliary loss Eq. 15 is therefore helpful
to learn a BNN with binary neural mapping. For the i-th
quantized layer, the auxiliary loss ˜̀

i is investigated:

˜̀
i = ˜̀(Q̂, Q̃) =

∑
˜̀(q̂, q̃). (17)

The introduced auxiliary loss over the predicted binary neu-
rons from the latent full-precision weights is differential.
Both the latent weights W and the mapping parameters θ
need to be optimized. The gradient of ˜̀i with respect to q̂ is
easy to obtain:

∂ ˜̀i
∂q̂

=
(1− ρ−q̃)∂`(q̂,q̃)∂q̂ − ρq̃ ∂`(q̂,−q̃)∂q̂

1− ρ+1 − ρ−1

=
2(1− ρ−q̃)(q̂ − q̃)− 2ρq̃(q̂ + q̃)

1− ρ+1 − ρ−1

= 2(q̂ − q̃)− 4ρq̃ q̃

1− ρ+1 − ρ−1
.

(18)

Training Binary Neural Networks through Learning with Noisy Supervision

Algorithm 1 Feed-Forward and Back-Propagation Process
of Binary Neuron Mapping with Noisy Supervision.
Require: Pretrained latent weights W , input feature map

B, the weights of mapping model θ, the loss function
L, the learning rate η.

1: Feed Foward:
2: if in training stage then
3: Obtain the noisy labels by sign function: Q̃ =

Sign(W) (Eq.1);
4: Compute the predicted binary weights via the map-

ping model: Q̂ = f(W) (Eq. 4);
5: Compute the auxiliary loss with noisy supervision:

˜̀(Q̂,Q) =
∑ ˜̀(q̂, q̃) (Eq. 17).

6: end if
7: Perform binary convolution: Y = B ~ Q̂.
8: Backward Propagation:
9: Compute the gradient of B: ∂L

∂B = ∂`cls
∂B , where ∂`cls

∂B
can be calculated as normal neural networks;

10: Compute the gradient of W : ∂L
∂W = ∂`cls

∂W + ∂`i
∂W , where

∂`i
∂W is given by Eq. 20 and ∂`cls

∂W can be calculated as
normal neural networks;

11: Compute the gradient of θ: ∂L
∂θ = ∂`cls

∂θ + ∂`i
∂θ where

∂`i
∂θ is given by Eq. 19 and ∂`cls

∂θ can be calculated as
normal neural networks;

12: Parameter Update:
13: Update the latent weights W ← W − η ∂`

∂W , and the
weights of mapping model θ ← θ − η ∂`∂θ ;

Then the gradient to θ is given by

∂ ˜̀i
∂θ

=
∑
q̂

∂ ˜̀i
∂q̂

∂q̂

∂θ
, (19)

where ∂q̂
∂θ can be calculated with standard chain rule as fθ(·)

is a neural network. The latent weights W are the input
to the mapping model fθ(·) to output the binary weight
predictions q̂, so the gradients are

∂ ˜̀i
∂W

=
∑
q̂

∂ ˜̀i
∂q̂

∂q̂

∂W
. (20)

where ∂q̂
∂W can be calculated with back-propagation in the

neural network. With the gradients ofW and θ, the mapping
model with noisy neuron correction loss ˜̀

i is differential
and can be optimized in an end-to-end manner.

For a binary neural network with original classification loss
`cls, the overall object function of our method is

L = `cls + α
∑
i

˜̀
i, (21)

where α is the trade-off hyper-parameter. The proposed
LNS method can be embedded into the training process of

binary neural networks and trained in the end-to-end manner.
The forward and back-propagation process of our method
are listed in Algorithm 1. After training, we obtain the
optimized latent weights W and mapping parameters θ. We
transform the latent full-precision weights to binary weights
Q̂ using the mapping neural network, and only keep those
binary weights for the inference.

4. Experiments
In this section, we evaluate the proposed method on two
image classification datasets: CIFAR-10 (Krizhevsky &
Hinton, 2009) and ImageNet (ILSVRC12) (Deng et al.,
2009), and compare our method with other BNNs.

4.1. Datasets and Experimental Setting

CIFAR-10 CIFAR-10 dataset (Krizhevsky & Hinton,
2009) consists of 60,000 32×32 color images belonging
to 10 categories, with 6,000 images per category. There
are 50,000 training images and 10,000 test images. For
hyper-parameter tuning, 10,000 training images are ran-
domly sampled for validation and the rest images are for
training. Data augmentation strategy includes random crop
and random flipping as in (He et al., 2016) during training.
For testing, we evaluate the single view of the original image
for fair comparison.

ImageNet ImageNet ILSVRC 2012 (Deng et al., 2009)
is a large-scale image classification dataset which contains
over 1.2 million high-resolution natural images for training
and 50k validation images in 1,000 classes. The commonly
used data augmentation strategy including random crop
and flipping in PyTorch examples (Paszke et al., 2019) is
adopted for training. We report the single-crop evaluation
result using 224× 224 center crop from images.

Implementation Details All the models are implemented
using PyTorch (Paszke et al., 2019) and conducted on
NVIDIA Tesla V100 GPUs. For CIFAR-10, ResNet-20
is used as baseline model. The binary baseline models are
trained for 400 epochs with a batch size of 128 and an initial
learning rate 0.1. We use the SGD optimizer with the mo-
mentum of 0.9 and set the weight decay to 0. Our method is
fine-tuned based on the pretrained baseline for 120 epochs
using SGD optimizer. The learning rate starts from 0.01 and
decayed by 0.1 every 30 epochs. For ImageNet, AlexNet
and ResNet-18 are adopted for evaluation. We train the
binary baseline models for 120 epochs with a batch size of
256. SGD optimizer is applied with the momentum of 0.9
and the weight decay of 0. The learning rate is set as 0.1
initially and is multiplied by 0.1 at the 70th, 90th and 110th
epoch, respectively. Our method is fine-tuned from the pre-
trained baseline for 45 epochs with the initial learning rate

Training Binary Neural Networks through Learning with Noisy Supervision

(a) Cross entropy loss w.r.t. epoch on
CIFAR-10 train set. The mean and std val-
ues are plotted.

(b) Accuracy w.r.t. epoch on CIFAR-10 test
set. The mean and std values are plotted.

(c) Binary weight flip rate w.r.t. epoch dur-
ing training. The mean and std values are
plotted (where std values are very small).

Figure 3. Comparison of our method and simple fine-tuning (Ours with lr=0.001/0.0001 are not plotted for tidy figure as they are similar).

0.01 which is decayed by 0.1 every 15 epochs.

In each layer, there is a neural network for binary weight
mapping. We simply use a three-layer CNN with weight
shape of 2c × c × 3 × 3, 2c × 2c × 3 × 3 and c × 2c ×
3× 3, respectively. We set padding as 1 and stride as 1 in
every layer of the mapping model to keep the size of output
unchanged. Batch normalization and ReLU activation are
inserted after the intermediate convolutional layers. The
mapping model is updated for several epochs for warm start
meanwhile the other weights are fixed before fine-tuning.

4.2. Experiments on CIFAR-10

We first conduct detailed studies on CIFAR-10 dataset for
the proposed method. The widely used ResNet-20 archi-
tecture is adopted as the basic architecture, and Dorefa-Net
is used as the baseline quantization method. Following the
common setting in (Zhou et al., 2016), all the layers except
for the first convolutional layer and the last fully-connected
layer for classification are quantized into 1-bit. We train
the baseline binary model for 400 epochs and obtain an
accuracy of 85.06%. Based on this pretrained model, we
further fine-tune with or without our method.

Table 1. Ablation study on CIFAR-10. For the compared methods,
we run them 5 times and show “best (mean±std)”.

Method Acc (%)
Dorefa-Net (Zhou et al., 2016) (Baseline) 85.06

Fine-tuning 85.32 (85.26±0.06)
Ours w/o Noisy-supervision 85.43 (85.36±0.06)

LNS (Ours) 85.78 (85.56±0.11)

Effectiveness of Our Method. To verify the effectiveness
of our method, we fine-tune the baseline model without
mapping model and our method for 120 epochs with all
the same experimental settings as stated in implementation
details. In our method, we setting the hyper-parameters as
α = 1.0 and ρ = 0.005. We run them 5 times and show the
best, mean and standard values in Table 1. After fine-tuning
using our method, we can see that our method without noisy

supervision achieves a mean accuracy of 85.36%, adding
noisy supervision further improve the accuracy to 85.56%,
while simply fine-tuning achieves 85.26%. Both simple fine-
tuning and our method can improve the baseline model, but
the performance of our method is much better than simple
fine-tuning. The results indicate the effectiveness of the
proposed binary neuron mapping and the corresponding
noisy supervision. The highest accuracy of our method can
achieve 85.78%, which is the state-of-the-art as shown in
the latter analysis.

We also plot the loss curve and accuracy curve to observe
the effect of our method during training. The cross entropy
loss curves of simple fine-tuning and our method are shown
in Fig. 3(a), and the test accuracy curves of them are shown
in Fig. 3(b). The initial loss value and accuracy are 0.37 and
85.06%, respectively, from the pretrained baseline model.
At first, we find that Fine-tuning has a much larger loss than
our method with the same initial learning rate (lr=0.01), so
we decrease the learning rate. Although the loss in Fine-
tuning (lr=0.001/0.0001) is decreased, the accuracy on test
set has no improvement. From Fig 3(a), we can see that the
simple fine-tuning changes the loss at the first as it disturbs
the pretrained binary weights largely, while our method
does not change the loss much as the mapping model only
changes a small portion of the weights. When we decrease
the learning rate at the 30th, 60th and 90th epoch, the loss
values in Fine-tuning and our method will have a relatively
large drop. At the last several epochs, simple fine-tuning
method with different learning rate achieve a smaller train
loss, but a lower test accuracy than our method (Fig. 3(b)).
This means that our method can alleviate over-fitting by
imposing a noisy supervision on each layer as the noisy
weights are often those that over-fit the training data.

From the loss curve and accuracy curve, we know that the
training process of our method is more stable than that of
simple fine-tuning method. We show the flip rate of the
binary weights after each epoch in Fig. 3(c), where flip rate
means the ratio of binary weights that are flipped into the

Training Binary Neural Networks through Learning with Noisy Supervision

opposite values. The flip rate decrease gradually during
training in all these curves. The flip rate in Fine-tuning is
always higher than our method, which means our method
only change a small portion of binary weights which are
likely to be noise to explore better performance.

Figure 4. Accuracy v.s. α on CIFAR-10 val set.

Figure 5. Accuracy v.s. ρ on CIFAR-10 val set.

Analysis of Hyper-parameters. There are two hyper-
parameters in our method, i.e. α for balancing the cross
entropy classification loss and the noisy neuron correction
loss, and ρ for controlling the noise rate in the binary weight
transformation. We run all the models 5 times and report the
mean and std values of the accuracy on CIFAR-10 validation
set.

We first fix ρ = 0.01 and tune α in range of {0, 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5} to see the influence of α.
The results are shown in Fig. 4. The mean accuracy is
85.35% when α = 0, which is higher than the simple fine-
tuning. This verifies the effectiveness of the mapping model
without self-supervision. When we increase the value of α,
the accuracy is improved over that at α = 0. The highest
mean accuracy occurs around α = 1, i.e. 85.53%. We can
see that our method works at a large range of α and can
choose α around 1 for the best performance on CIFAR-10.

For the noise rate ρ, we fix α as 1 and test ρ in {0,
0.001, 0.002, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2}.
From the results in Fig. 5, we can see that the mean
accuracy at different noise rate is different. When ρ is small
(around 0.001), the mean accuracy is about 85.4%, which
is higher than baseline and simple fine-tuning method.
Our method achieve the best mean accuracy at ρ = 0.005,
which means the ground-truth noise rate is about 0.5%.
When ρ is too large, such as ρ = 0.2, the mean accuracy
drops significantly, even below the simple fine-tuning
method. This is due to that there are not so much noise in
the pretrained binary weights, setting ρ too large disturbs
the good weights and is harmful to the performance.

Table 2. Comparison with SOTA on CIFAR-10. Dorefa-Net and
XNOR-Net are implemented by ourselves. For our method, we
run it 5 times and show “best (mean±std)” as in (He et al., 2016).

Method Acc (%)
Dorefa-Net (Zhou et al., 2016) (Baseline) 85.06

XNOR-Net (Rastegari et al., 2016) 85.23
TBN (Wan et al., 2018) 84.34
DSQ (Gong et al., 2019) 84.11

LNS (Ours) 85.78 (85.56±0.11)

Comparison with SOTA. We compare our method with
some other state-of-the-art binary neural networks such as
Dorefa-Net (Zhou et al., 2016), XNOR-Net (Rastegari et al.,
2016), and DSQ (Gong et al., 2019). The results of compar-
ison are listed in Table 2. Note that only the best accuracy
is reported for other methods. From the results, our method
outperforms the competitors by a large margin and achieves
the state-of-the-art result (85.78% accuracy).

4.3. Experiments on ImageNet

In order to validate our method on large-scale dataset,
we conduct more experiments on ImageNet classifica-
tion dataset. Two common network architectures, i.e.
AlexNet (Krizhevsky et al., 2012) and ResNet-18 (He et al.,
2016), are used for experiments.

Effectiveness of Our Method. We test the effect of our
method by deploying the proposed method on ResNet-18.
The baseline here is the binary ResNet-18 which is quan-
tized using Dorefa-Net (Zhou et al., 2016). We fine-tune the
pretrained binary ResNet-18 with or without our method for
60 epochs. These two models use the same hyper-parameter
settings. The simple fine-tuning without using our method
can improve the Top-1 accuracy to 52.8%. Our method
achieves 53.1%, much higher than the baseline and the sim-
ple fine-tuning.

Comparison with SOTA. While the ablation study has
evaluated the effectiveness of the proposed method, we also
compare our method with the state-of-the-art methods to

Training Binary Neural Networks through Learning with Noisy Supervision

Table 3. Comparison with SOTA of ResNet-18 architecture on ImageNet. ‘W’ and ‘A’ refer to the weight and activation bitwidth,
respectively. † represents the result from our implementation.

Method W A Memory FLOPs Top-1 Top-5
ResNet-18 (He et al., 2016) 32 32 374 Mbit 1810 M 69.6% 89.2%

BWN (Rastegari et al., 2016) 1 32 34 Mbit 975 M 60.8% 83.0%
HWGQ (Cai et al., 2017) 1 2 34 Mbit 193 M 59.6% 82.2%
TBN (Wan et al., 2018) 1 2 34 Mbit 193 M 55.6% 79.0%

BinaryNet (Hubara et al., 2016) 1 1 28 Mbit 149 M 42.2% 67.1%
Dorefa-Net (Zhou et al., 2016)† 1 1 34 Mbit 163 M 52.5% 76.7%

XNOR-Net (Rastegari et al., 2016) 1 1 34 Mbit 167 M 51.2% 73.2%
Bireal-Net (Liu et al., 2018) 1 1 34 Mbit 163 M 56.4% 79.5%

Bireal-Net (Liu et al., 2018)+PReLU (Baseline) 1 1 34 Mbit 163 M 59.0% 81.3%
PCNN (J=1) (Gu et al., 2019) 1 1 34 Mbit 167 M 57.3% 80.0%

Quantization networks (Yang et al., 2019) 1 1 34 Mbit 163 M 53.6% 75.3%
Bop (Helwegen et al., 2019) 1 1 34 Mbit 163 M 54.2% 77.2%

GBCN (Liu et al., 2019) 1 1 34 Mbit 167 M 57.8% 80.9%
IR-Net (Qin et al., 2020) 1 1 34 Mbit 163 M 58.1% 80.0%

LNS (Ours) 1 1 34 Mbit 163 M 59.4% 81.7%

Table 4. Effectiveness of our method on ResNet-18 architecture on
ImageNet.

Method Top-1 Top-5
Dorefa-Net (Zhou et al., 2016) (Baseline) 52.5% 76.7%

Fine-tuning 52.8% 76.8%
LNS (Ours) 53.1% 77.0%

show the superiority of our method. The compared binary
neural network methods include BinaryNet (Hubara et al.,
2016), Dorefa-Net (Zhou et al., 2016), XNOR-Net (Raste-
gari et al., 2016), Bireal-Net (Liu et al., 2018), PCNN (Gu
et al., 2019), Bop (Helwegen et al., 2019), GBCN (Liu
et al., 2019), etc. Two representative 2-bit neural networks,
i.e. HWGQ (Cai et al., 2017) and TBN (Wan et al., 2018),
are also included. Following the common settings (Hubara
et al., 2016; Liu et al., 2018), we do not quantize the first
convolutional layer and the last fully connected layer for
classification.

In ResNet-18 experiments, except for BinaryNet and ABC-
Net, all the other methods including our method do not
quantize the down-sample layers for fair comparison. The
statistics of the compared methods are listed in Table 3. The
FLOPs are calculated as real-valued floating-point multipli-
cation plus 1/64 of the amount of 1-bit multiplication as the
binary operations including AND and POPCOUNT can be
performed in a parallel of 64 by the mainstream CPUs (Liu
et al., 2018). We use the ResNet-18 architecture in Bireal-
Net as baseline and insert PReLU activation (He et al., 2015)
after every binary convolutional layer. This strong baseline
has a Top-1 accuracy of 59.0%. Our method is fine-tuned
based on the pretrained baseline and finally achieve 59.4%
Top-1 and 81.7% Top-5 accuracies, which are higher than
the compared models and achieve the state-of-the-art re-
sults for binary ResNet-18. It is encouraging to see that our
method can beat some methods with 2-bit activations, such
as HWGQ (Cai et al., 2017) and TBN (Wan et al., 2018).

This gives us the confidence to achieve higher performance
with lower bit-width in neural networks.

We also compare our method with several state-of-the-art
models for AlexNet architecture which does not has residual
connections. from the results in Table 5, tt can be seen
that our method outperforms the compared models such
as BinaryNet (Hubara et al., 2016), and Dorefa-Net (Zhou
et al., 2016), which validates the superiority of our method
for different architectures. Moreover, our method with only
layer-wise scale factor can achieve higher Top-1 accuracy
than XNOR-Net (Rastegari et al., 2016) which uses channel-
wise scale factor and more parameters.

Table 5. Comparison with SOTA of AlexNet architecture on Ima-
geNet. †Results from our implementation.

Method Memory Top-1
FP32-AlexNet (Krizhevsky et al., 2012) 1860 Mbit 56.6%

BinaryNet (Hubara et al., 2016) 180 Mbit 41.8%
Dorefa-Net (Zhou et al., 2016) 180 Mbit 43.6%

Dorefa-Net (Baseline)† 180 Mbit 43.9%
XNOR-Net (Rastegari et al., 2016) 181 Mbit 44.2%

LNS (Ours) 180 Mbit 44.4%

5. Conclusion
In this paper, we have presented a novel binary neuron map-
ping method with noisy supervision that leads to state-of-
the-art performance for binary neural networks. We apply
a learnable mapping model instead of the sign function for
weight quantization. The unbiased estimator of mean square
error loss is applied to learn from the pretrained binary mod-
els. We show that the specially designed loss can converge
to `-risk under the clean distribution of binary weights. The
experiments on various datasets and neural architectures
have verified the effectiveness of the proposed method. The
resulted binary neural networks achieve the state-of-the-art
performance compared with other approaches.

Training Binary Neural Networks through Learning with Noisy Supervision

Acknowledgement
The authors thank the anonymous reviewers for their help-
ful comments in revising the paper. This work was sup-
ported in part by National Key R&D Program of China
(2017YFB1002701), NSFC (61632003,61672502), Macau
S&T Development Fund (0018/2019/AKP), UM Research
Fund (MYRG2019-00006-FST), and in part by the Aus-
tralian Research Council under Project DE-180101438.

References
Bengio, Y., Leonard, N., and Courville, A. C. Estimating

or propagating gradients through stochastic neurons for
conditional computation. arXiv: Learning, 2013.

Cai, Z., He, X., Sun, J., and Vasconcelos, N. Deep learning
with low precision by half-wave gaussian quantization.
In CVPR, 2017.

Chen, H., Wang, Y., Xu, C., Yang, Z., Liu, C., Shi, B., Xu,
C., Xu, C., and Tian, Q. Data-free learning of student
networks. In ICCV, 2019.

Chen, H., Wang, Y., Xu, C., Shi, B., Xu, C., Tian, Q., and
Xu, C. Addernet: Do we really need multiplications in
deep learning? In CVPR, 2020.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. Semantic image segmentation with deep
convolutional nets and fully connected crfs. In ICLR,
2016.

Courbariaux, M., Bengio, Y., and David, J.-P. Binarycon-
nect: Training deep neural networks with binary weights
during propagations. In NeurIPS, pp. 3123–3131, 2015.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In CVPR, pp. 248–255. Ieee, 2009.

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and
Fergus, R. Exploiting linear structure within convolu-
tional networks for efficient evaluation. In NeurIPS, pp.
1269–1277, 2014.

Goldberger, J. and Ben-Reuven, E. Training deep neural-
networks using a noise adaptation layer. In ICLR, 2017.

Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F., and
Yan, J. Differentiable soft quantization: Bridging full-
precision and low-bit neural networks. In ICCV, 2019.

Gu, J., Li, C., Zhang, B., Han, J., Cao, X., Liu, J., and
Doermann, D. Projection convolutional neural networks
for 1-bit cnns via discrete back propagation. In AAAI,
2019.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan,
P. Deep learning with limited numerical precision. In
ICML, pp. 1737–1746, 2015.

Han, B., Yao, J., Niu, G., Zhou, M., Tsang, I., Zhang, Y.,
and Sugiyama, M. Masking: A new perspective of noisy
supervision. In NeurIPS, 2018a.

Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., Tsang, I.,
and Sugiyama, M. Co-teaching: Robust training of deep
neural networks with extremely noisy labels. In NeurIPS,
2018b.

Han, K., Guo, J., Zhang, C., and Zhu, M. Attribute-aware
attention model for fine-grained representation learning.
In ACM MM, 2018c.

Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., and Xu, C.
Ghostnet: More features from cheap operations. In CVPR,
2020.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. In ICLR, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In ICCV, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

Helwegen, K., Widdicombe, J., Geiger, L., Liu, Z., Cheng,
K.-T., and Nusselder, R. Latent weights do not exist:
Rethinking binarized neural network optimization. In
NeurIPS, 2019.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks. In NeurIPS, pp.
4107–4115, 2016.

Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L. Men-
tornet: Learning data-driven curriculum for very deep
neural networks on corrupted labels. In ICML, 2018.

Krizhevsky, A. and Hinton, G. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Training Binary Neural Networks through Learning with Noisy Supervision

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NeurIPS, pp. 1097–1105, 2012.

Lee, K.-H., He, X., Zhang, L., and Yang, L. Cleannet:
Transfer learning for scalable image classifier training
with label noise. In CVPR, 2018.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.
Pruning filters for efficient convnets. In ICLR, 2017.

Lin, X., Zhao, C., and Pan, W. Towards accurate binary
convolutional neural network. In NeurIPS, 2017.

Liu, C., Ding, W., Hu, Y., Zhang, B., Liu, J., and Guo,
G. Gbcns: Genetic binary convolutional networks for
enhancing the performance of 1-bit dcnns. In AAAI, 2019.

Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., and Cheng, K.-
T. Bi-real net: Enhancing the performance of 1-bit cnns
with improved representational capability and advanced
training algorithm. In ECCV, 2018.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari,
A. Learning with noisy labels. In NeurIPS, 2013.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In NeurIPS, 2019.

Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., and
Qu, L. Making deep neural networks robust to label noise:
A loss correction approach. In CVPR, 2017.

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, L., and
Hinton, G. Regularizing neural networks by penalizing
confident output distributions. In ICLR, 2017.

Qin, H., Gong, R., Liu, X., Shen, M., Wei, Z., Yu, F., and
Song, J. Forward and backward information retention for
accurate binary neural networks. In CVPR, 2020.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.
Xnor-net: Imagenet classification using binary convolu-
tional neural networks. In ECCV, pp. 525–542. Springer,
2016.

Ren, S., He, K., Girshick, R., and Sun, J. Faster R-CNN:
Towards real-time object detection with region proposal
networks. In NeurIPS, 2015.

Shen, M., Han, K., Xu, C., and Wang, Y. Searching for
accurate binary neural architectures. In ICCV Workshops,
2019.

Shen, M., Liu, X., Gong, R., and Han, K. Balanced binary
neural networks with gated residual. In ICASSP, 2020.

Shu, H., Wang, Y., Jia, X., Han, K., Chen, H., Xu, C., Tian,
Q., and Xu, C. Co-evolutionary compression for unpaired
image translation. In ICCV, 2019.

Tanaka, D., Ikami, D., Yamasaki, T., and Aizawa, K. Joint
optimization framework for learning with noisy labels. In
CVPR, 2018.

Vahdat, A. Toward robustness against label noise in training
deep discriminative neural networks. In NeurIPS, 2017.

Wan, D., Shen, F., Liu, L., Zhu, F., Qin, J., Shao, L., and
Tao Shen, H. Tbn: Convolutional neural network with
ternary inputs and binary weights. In ECCV, 2018.

Wang, Y., Liu, W., Ma, X., Bailey, J., Zha, H., Song, L., and
Xia, S.-T. Iterative learning with open-set noisy labels.
In CVPR, 2018.

Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., and Bailey, J.
Symmetric cross entropy for robust learning with noisy
labels. In ICCV, 2019.

Xiao, T., Xia, T., Yang, Y., Huang, C., and Wang, X. Learn-
ing from massive noisy labeled data for image classifica-
tion. In CVPR, 2015.

Yang, J., Shen, X., Xing, J., Tian, X., Li, H., Deng, B.,
Huang, J., and Hua, X.-s. Quantization networks. In
CVPR, 2019.

Yu, X., Han, B., Yao, J., Niu, G., Tsang, I., and Sugiyama,
M. How does disagreement help generalization against
label corruption? In ICML, 2019.

Zhang, Z. and Sabuncu, M. Generalized cross entropy loss
for training deep neural networks with noisy labels. In
NeurIPS, 2018.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y.
Dorefa-net: Training low bitwidth convolutional neural
networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

