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Abstract
In this paper, we propose a new randomized
second-order optimization algorithm—Stochastic
Subspace Cubic Newton (SSCN)—for minimiz-
ing a high dimensional convex function f . Our
method can be seen both as a stochastic extension
of the cubically-regularized Newton method of
Nesterov and Polyak (2006), and a second-order
enhancement of stochastic subspace descent of
Kozak et al. (2019). We prove that as we vary
the minibatch size, the global convergence rate of
SSCN interpolates between the rate of stochastic
coordinate descent (CD) and the rate of cubic reg-
ularized Newton, thus giving new insights into the
connection between first and second-order meth-
ods. Remarkably, the local convergence rate of
SSCN matches the rate of stochastic subspace de-
scent applied to the problem of minimizing the
quadratic function 1

2 (x−x∗)>∇2f(x∗)(x−x∗),
where x∗ is the minimizer of f , and hence de-
pends on the properties of f at the optimum
only. Our numerical experiments show that SSCN
outperforms non-accelerated first-order CD algo-
rithms while being competitive to their acceler-
ated variants.

1. Introduction
In this work we consider the optimization problem

min
x∈Rd

{F (x) := f(x) + ψ(x)} , (1)

where f : Rd → R is convex and twice differentiable and
ψ : Rd → R ∪ {+∞} is a simple convex function. We
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are interested in the regime where the dimension d is very
large, which arises in many contexts, such as the training
of modern over-parameterized machine learning models.
In this regime, coordinate descent (CD) methods, or more
generally subspace descent methods, are the methods of
choice.

1.1. Subspace descent methods

Subspace descent methods rely on update rules of the form

x+ = x+ Sh, S ∈ Rd×τ(S), h ∈ Rτ(S), (2)

where S is a thin matrix, typically with a negligible number
of columns compared to the dimension (i.e., τ(S) � d).
That is, they move from x to x+ along the subspace spanned
by the columns of S.

In these methods, the subspace matrix S is typically cho-
sen first, followed by the determination of the parameters
h which define the linear combination of the columns de-
termining the update direction. Several different rules have
been proposed in the literature for choosing the matrix S,
including greedy, cyclic and randomized rules. In this work
we consider a randomized rule. In particular, we assume
that S is sampled from an arbitrary but fixed distribution D
restricted to requiring that S be of full column rank1 with
probability one.

Once S ∼ D is sampled, a rule for deciding the stepsize h
varies from algorithm to algorithm, but is mostly determined
by the underlying oracle model for information access to
function f . For instance, first-order methods require access
to the subspace gradient ∇Sf(x) := S>∇f(x), and are
relatively well studied (Nesterov, 2012; Stich et al., 2013;
Richtárik & Takáč, 2014; Wright, 2015; Kozak et al., 2019).
At the other extreme are variants performing a full subspace
minimization, i.e., f is minimized over the affine subspace
given by

{x+ Sh |h ∈ Rτ(S)};

see (Chang et al., 2008). In particular, in this paper we
are interested in the second-order oracle model; i.e., we

1It is rather simple to extend our results to matrices S which
are column-rank deficient. However, this would introduce a rather
heavy notation burden which we decided to avoid for the sake of
clarity and readability.
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claim access both to the subspace gradient∇Sf(x) and the
subspace Hessian ∇2

Sf(x) := S>∇2f(x)S.

1.2. Contributions

We now summarize our contributions:

(a) New 2nd order subspace method. We propose a new
stochastic subspace method—Stochastic Subspace Cu-
bic Newton (SSCN)—constructed by minimizing an
oracle-consistent global upper bound on the objective
f in each iteration (Section 3). This bound is formed
using both the subspace gradient and the subspace Hes-
sian at the current iterate and relies on Lipschitzness
of the subspace Hessian.

(b) Interpolating global rate. We prove (Section 5) that
SSCN enjoys a global convergence rate that interpo-
lates between the rate of stochastic CD and the rate of
cubic regularized Newton as one varies the expected
dimension of the subspace, E [τ(S)].

(c) Fast local rate. Remarkably, we establish a local con-
vergence bound for SSCN (Section 6) that matches the
rate of stochastic subspace descent (SSD) (Gower &
Richtárik, 2015) applied to solving the problem

min
x∈Rd

1

2
(x− x∗)>∇2f(x∗)(x− x∗), (3)

where x∗ is the solution of (1). Thus, SSCN behaves
as if it had access to a perfect second order model of
f at the optimum, and was given the (intuitively much
simpler) task of minimizing this model instead. Fur-
thermore, note that SSD (Gower & Richtárik, 2015)
applied to minimize a convex quadratic can be inter-
preted as doing an exact subspace search in each itera-
tion, i.e., it minimizes the objective exactly along the
active subspace (Richtárik & Takáč, 2017). Therefore,
the local rate of SSCN matches the rate of the greediest
strategy for choosing h in the active subspace, and as
such, this rate is the best one can hope for a method
that does not incorporate some form of acceleration.

(d) Special cases. We discuss in Section 3.2 how SSCN
reduces to several existing stochastic second order
methods in special cases, either recovering the best
known rates, or improving upon them. This includes
SDSA (Gower & Richtárik, 2015), CN (Griewank,
1981; Nesterov & Polyak, 2006) and RBCN Doikov
& Richtárik (2018). However, our method is more
general and hence allows for more applications.

We discuss more remotely related literature in Section 4.
We now give a simple example of our setting.

Example 1 (Coordinate subspace setup). Let Id ∈ Rd×d be
the identity and let S be a random subset of {1, 2, . . . , d}.
Given that S = Id(:,S) with probability 1, the oracle model
reveals (∇f(x))S and (∇2f(x))(S,S). Therefore, we have
access to a random block of partial derivatives of f and a
block submatrix of its Hessian, both corresponding to the
subset of indices S. Furthermore, the rule (2) updates a
subset S of coordinates only. In this setting, our method is
a new second-order coordinate subspace descent method.

2. Preliminaries
Throughout the paper, we assume that f is convex, twice
differentiable, and sufficiently smooth and that ψ is convex,
albeit possibly non-differentiable.2

Assumption 2.1. Function f : Rd → R is convex and
twice differentiable with M -Lipschitz continuous Hessian.
Function ψ : Rd → R∪{+∞} is proper closed and convex.

We always assume that a minimum of F exists and by x∗

denote any of its minimizers. We let F ∗ := F (x∗).

Since our method always takes steps along random sub-
spaces spanned by the columns of S ∈ Rd×τ(S), it is rea-
sonable to define the Lipschitzness of the Hessian over the
range of S:3

MS := max
x∈Rd

max
h∈Rτ(S),
h6=0

|∇3f(x)[Sh]3|
‖Sh‖3

. (4)

As the next lemma shows, the maximal value of MS for any
S of width τ can be up to ( dτ )

3
2 times smaller than M and

this will lead to a tighter approximation of the objective.
Lemma 2.2. We have

M ≥ max
τ(S)=τ

MS.

Moreover, there is a problem where

max
τ(S)=τ

MS =
(τ
d

) 3
2

M.

Lastly, if Range (S) = Range (S′), then MS = MS′ .

The next lemma provides a direct motivation for our al-
gorithm. It gives a global upper bound on the objective
over a random subspace, given the first and second-order
information at the current point.
Lemma 2.3. Let x ∈ Rd, S ∈ Rd×τ(S), h ∈ Rτ(S) and x+

be as in (2). Then

|f(x+)− f(x)− 〈∇Sf(x), h〉 − 1
2 〈∇

2
Sf(x)h, h〉|

≤ MS

6 ‖Sh‖
3. (5)

2We will also require separability of ψ; see Section 5.1.
3By ‖x‖ := 〈x, x〉1/2we denote the standard Euclidean norm.



Stochastic Subspace Cubic Newton Method

As a consequence, we have

F (x+) ≤ f(x) + TS(x, h), (6)

where TS(x, h) := 〈∇Sf(x), h〉 + 1
2 〈∇

2
Sf(x)h, h〉 +

MS

6 ‖Sh‖
3 + ψ(x+ Sh).

We shall also note that for function ψ we require separability
with respect to the sampling distribution (see Definition 5.5
and the corresponding Assumption 5.6 in Section 5.1).

For better orientation throughout the paper, we provide a
table of frequently used notation in the Appendix.

3. Algorithm
For a given S and current iterate xk, it is a natural idea to
choose h as a minimizer of the upper bound (6) in h for
x = xk, and subsequently set xk+1 = x+ via (2). Note that
we are choosing S randomly according to a fixed distribution
D (with a possibly random number of columns). We have
just described SSCN—Stochastic Subspace Cubic Newton—
formally stated as Algorithm 1.

Algorithm 1 SSCN: Stochastic Subspace Cubic Newton
1: Initialization: x0, distribution D of random matrices

with d rows and full column rank
2: for k = 0, 1, . . . do
3: Sample S from distribution D
4: hk = argminh∈Rτ(S) TS(xk, h)
5: Set xk+1 = xk + Shk

6: end for

Remark 1. Inequality (6) becomes an equality with h = 0.
As a consequence, we must have F (xk+1) ≤ F (xk), and
thus the sequence {F (xk)}k≥0 is non-increasing.

3.1. Solving the subproblem

Algorithm 1 requires TS to be minimized in h each iteration.
As this operation does not have a closed-form solution in
general, it requires an optimization subroutine itself of a
possibly non-trivial complexity, which we discuss here.

The subproblem without ψ. Let us now consider the
case when ψ(x) ≡ 0 in which our problem (1) does not
contain any nondifferentiable components. Various tech-
niques for minimizing regularized quadratic functions were
developed during the development of Trust-region methods
(see (Conn et al., 2000)), and applied to Cubic regulariza-
tion in (Nesterov & Polyak, 2006). The classical approach
consists in performing some diagonalization of the matrix
∇2

Sf(x) first, by computing the eigenvalue or tridiagonal
decomposition, which costs O(τ(S)3) arithmetical opera-
tions. Then, to find the minimizer, it merely remains to solve
a one-dimensional nonlinear equation (this part can be done

by Õ(1) iterations of the one-dimensional Newton method,
with a linear cost per step). More details and analysis of this
procedure can be found in (Gould et al., 2010).

The next example gives a setting in which an explicit for-
mula for the minimizer of TS can be deduced.
Example 2. Let ei be the ith unit basis vector in Rd. If
S ∈ {e1, . . . , ed} with probability 1 and ψ(x) = 0, the
update rule can be written as xk+1 = xk − αki ei, with

αki =
2∇if(xk)

∇2
i f(xk) +

√
(∇2

iif(xk))
2

+ 2Mei |∇if(xk)|
,

thus the cost of solving the subproblem is O(1).

Subproblem with simple ψ. In some scenarios, mini-
mization of TS can be done using a simple algorithm if
ψ is simple enough. We now give an example of this.
Example 3. If S ∈ {e1, . . . , ed} with probability 1, the
subproblem can be solved using a binary search given that
the evaluation of ψ is cheap. In particular, if we can eval-
uate ψ(xk + Sh)− ψ(xk) in Õ(1), the cost of solving the
subproblem will be Õ(1).

The subproblem with general ψ. In the case of general
regularizers, recent line of work by Carmon & Duchi (2019)
explores to the use of first-order optimization methods (Gra-
dient Methods) for computing an approximate minimizer of
TS. We note that the backbone of such Gradient Methods is
an implementation of the following operation (for a given
vector b ∈ Rτ(S), and positive scalars α, β):

arg min
h∈Rτ(S)

〈b, h〉+
α

2
‖Sh‖2 +

β

3
‖Sh‖3 + ψ(xk + Sh).

To the best of our knowledge, the most efficient gradient
method is the Fast Gradient Method (FGM) of Nesterov
(2019), achieving an O(1/k6) convergence rate. However,
FGM can deal with any ψ as long as the above subproblem
is cheap to solve. We shall also note that gradient methods
do not require a storage of ∇2

Sf(x); but rather iteratively
access partial Hessian-vector products∇2

Sf(x)h.

Line search. Note that in Algorithm 1 we use the Lip-
schitz constants MS of the subspace Hessian (see Defini-
tion (4)) as the regularization parameters. In many applica-
tion, MS can be estimated cheaply (see Section 7). In gen-
eral, however,MS might be unknown or hard to estimate. In
such a case, one might use a simple one-dimensional search
on each iteration: multiply the estimate of MS by the factor
of two until the bound (6) is satisfied, and divide it by two
at the start of each iteration. Note that the average number
of such line search steps per iteration can be bounded by
two (see (Grapiglia & Nesterov, 2017) for the details).
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3.2. Special cases

There are several scenarios where SSCN becomes an already
known algorithm. We list them below:

• Quadratic minimization. If M = 0 and ψ = 0,
SSCN reduces to the stochastic dual subspace ascent
(SDSA) method (Gower & Richtárik, 2015), first an-
alyzed in an equivalent primal form as a sketch-and-
project method in (Gower & Richtárik, 2015). In such
a case, SSCN performs both first-order, second-order
updates, and exact minimization over a subspace at the
same time due to the quadratic structure of the objec-
tive (Richtárik & Takáč, 2017). The convergence rate
we provide in Section 6 exactly matches the rate of
sketch-and-project as well. As a consequence, we re-
cover a subclass of matrix inversion algorithms (Gower
& Richtárik, 2017) together with stochastic spectral
(coordinate) descent (Kovalev et al., 2018) along with
their convergence theory.

• Full-space method. If S = Id with probability
1, SSCN reduces to cubically regularized Newton
(CN) (Griewank, 1981; Nesterov & Polyak, 2006). In
this case, we recover both existing global convergence
rates and superlinear local convergence rates.

• Separable non-quadratic part of f . The RBCN
method of Doikov & Richtárik (2018) aims to min-
imize (1) with

f(x) = g(x) + φ(x),

where g, φ are both convex, and φ is separable.4 They
assume that

∇2g(x) � A ∈ Rd×d, ∀x ∈ Rd,

while φ has Lipschitz continuous Hessian. In each
iteration, RBCN constructs an upper bound on the ob-
jective using first order information from g only. This
is unlike SSCN, which uses second order information
from g. In a special case when∇2g(x) = A for all x,
SSCN and RBCN are identical algorithms. However,
RBCN is less general: it requires separable φ, and thus
does not cover some of our applications, and takes di-
rections along coordinates only. Further, the rates we
provide are better even in the setting where the two
methods coincide (∇2g(x) = A). The simplest way
to see that is by looking at local convergence – RBCN
does not achieve the local convergence rate of block
CD to minimize (3), which is the best one might hope
for.

Besides these particular cases, for a general twice-
differentiable f , SSCN is a new second-order method.

4Separability is defined in Section 5.1.

4. Related Literature
Several methods in the literature are related to SSCN. We
briefly review them below.

• Cubic regularization of Newton method was proposed
first by Griewank (1981), and received substantial at-
tention after the work of Nesterov & Polyak (2006),
where its global complexity guarantees were estab-
lished. During the last decade, there was a steady
increase of research in second-order methods, discov-
ering Accelerated (Nesterov, 2008; Monteiro & Svaiter,
2013), Adaptive (Cartis et al., 2011a;b), and Univer-
sal (Grapiglia & Nesterov, 2017; 2019; Doikov & Nes-
terov, 2019) schemes (the latter ones are adjusting
automatically to the smoothness properties of the ob-
jective).

• There is a vast literature on first-order coordinate de-
scent (CD) methods. While CD with τ = 1 is con-
sistently the same method within the literature (Nes-
terov, 2012; Richtárik & Takáč, 2014; Wright, 2015),
there are several ways to deal with τ > 1. The first
approach constructs a separable upper bound on the
objective (in expectation) in the direction of a ran-
dom subset of coordinates (Qu & Richtárik, 2016a;b),
which is minimized to obtain the next iterate. The sec-
ond approach—SDNA (Qu et al., 2016)—works with
a tighter non-separable upper bound. SDNA is, there-
fore, more costly to implement but requires a smaller
number of iterations to converge. The literature on
first-order subspace descent algorithms is slightly less
rich, the notable examples are random pursuit (Stich
et al., 2013) or stochastic subspace descent (Kozak
et al., 2019).

• Randomized subspace Newton (RSN) (Gower et al.,
2019) is a method of the form

xk+1 = xk − 1

L̂
S
(
∇2

Sf(xk)
)−1∇Sf(xk)

for some specific fixed L̂. In particular, it can be seen
as a method minimizing the following upper bound on
the function, which follows from their assumption:

hk = arg min
h
〈∇Sf(xk), h〉+

L̂

2
〈∇2

Sf(xk)h, h〉.

This is followed by an update over the subspace:
xk+1 = xk + Shk. Since both RSN and SSCN are
analyzed under different assumptions, the global linear
rates are not directly comparable. However, the local
rate of SSCN is superior to RSN. We shall also note
that RSN is a stochastic subspace version of a method
from (Karimireddy et al., 2018).
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• Subsampled Newton (SN) methods (Byrd et al., 2011;
Erdogdu & Montanari, 2015; Xu et al., 2016; Roosta-
Khorasani & Mahoney, 2019) and subsampled cubic
regularized Newton methods (Kohler & Lucchi, 2017;
Xu et al., 2017; Wang et al., 2018) and stochastic (cu-
bic regularized) Newton methods (Tripuraneni et al.,
2018; Cartis & Scheinberg, 2018; Kovalev et al., 2019)
are stochastic second-order algorithms to tackle finite
sum minimization. Their major disadvantage is a re-
quirement of an immense sample size, which makes
them often impractical if used as theory prescribes. A
notable exception that does not require a large sample
size was recently proposed by Kovalev et al. (2019).
However, none of these methods are directly compara-
ble to SSCN as they are not subspace descent methods,
but rather randomize over data points (or sketch the
Hessian from “inside” (Pilanci & Wainwright, 2017)).

5. Global Complexity Bounds
We first start presenting the global complexity results of
SSCN.

5.1. Setup

Throughout this section, we require some kind of unifor-
mity of the distribution D over subspaces given by S. In
particular, we require

PS := S
(
S>S

)−1
S>,

the projection matrix onto the range of S, to be a scalar
multiple of identity matrix in expectation.

Assumption 5.1. ∃τ > 0 such that distribution D satisfies

E
[
PS
]

=
τ

d
Id. (7)

A direct consequence of Assumption 5.1 is that τ is an
expected width of S, as the next lemma states.

Lemma 5.2. If Assumption 5.1 holds, then E [τ(S)] = τ .

As mentioned before, the global complexity results are in-
terpolating between convergence rate of (first-order) CD
and (global) convergence rate of Cubic Newton. However,
first-order CD requires Lipschitzness of gradients, and thus
we will require it as well.

Assumption 5.3. Function f has L-Lipschitz continuous
gradients, i.e., ∇2f(x) � LId for all x ∈ Rd.

We will also need an extra assumption on ψ. It is well
known that proximal (first-order) CD with fixed step size
does not converge if ψ is not separable – in such case, even
if f(xk) = f(x∗) we might have f(xk+1) > f(x∗). There-
fore, we might not hope that SSCN will converge without

additional assumptions on ψ. Informally speaking, separa-
bility of ψ with respect to directions given by columns of S
is required. To define it formally, let us introduce first the
notion of a separable set.

Definition 5.4. Set Q ⊆ Rd is called D-separable, if
∀x, y ∈ Q,S ∈ D: PSx+ (Id −PS)y ∈ Q.

Using the set separability, we next define a separability of a
function.

Definition 5.5. Function φ : Rd → R ∪ {+∞} is D-
separable if domφ is D-separable, and there is map φ′ :
domφ→ Rd such that

1. ∀x ∈ domφ : φ(x) = 〈φ′(x), e〉,5

2. ∀x, y ∈ domφ,S ∈ D : φ′(PSx + (Id − PS)y) =
PSφ′(x) + (Id −PS)φ′(y).

Example 4. If D is a set of matrices whose columns are
standard basis vectors, D-separability reduces to classical
(coordinate-wise) separability.
Example 5. If D is set of matrices which are column-wise
submatrices of orthogonal U, D-separability of φ reduces
to classical coordinate-wise separability of φ(U>x).
Example 6. φ(x) = 1

2‖x‖
2 is D-separable for any D.

Assumption 5.6. Function ψ is Range (D)-separable.

We are now ready to present the convergence rate of SSCN.

5.2. Theory

First, let us introduce the critical lemma from which the
main global complexity results are derived. The next lemma
states, what is the expected progress we have for one step
of SSCN.

Lemma 5.7. Let Assumptions 2.1, 5.1, 5.3 and 5.6 hold.
Then, for every k ≥ 0 and y ∈ Rd we have

E
[
F (xk+1) |xk

]
≤
(
1− τ

d

)
F (xk) + τ

dF (y)

+ τ
d

(
d−τ
d

L
2 ‖y − x

k‖2 + M
3 ‖y − x

k‖3
)
.

(8)

Now we are ready to present global complexity results for
the general class of convex functions. The convergence rate
is obtained by summing (8) over the different iterations k,
and with a specific choice of y.

Theorem 5.8. Let Assumptions 2.1, 5.1, 5.3 and 5.6 hold.
Denote

R
def
= sup

x∈Rd

{
‖x− x∗‖ : F (x) ≤ F (x0)

}
, (9)

5By e ∈ Rd we mean the vector of all ones.
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and suppose that R < +∞. Then, for every k ≥ 1 we have

E
[
F (xk)

]
− F ∗

≤ d−τ
τ ·

4.5LR2

k +
(
d
τ

)2 · 9MR3

k2 + F (x0)−F∗

1+ 1
4 ( τd k)

3 .
(10)

Note that convergence rate of the minibatch version6 of
first-order CD is O

(
d
τ
LR2

k

)
. At the same time, (global)

convergence rate of cubically regularized Newton method
is O

(
MR3

k2

)
. Therefore, Theorem 5.8 shows that the global

rate of SSCN well interpolates between the two extremes,
depending on the sample size τ we choose.
Remark 2. According to estimate (10), in order to have
E
[
F (xk)

]
− F ∗ ≤ ε, it is enough to perform

k = O
(
d−τ
τ

LR2

ε + d
τ

√
MR3

ε + d
τ

(F (x0)−F∗
ε

)1/3)
iterations of SSCN.

Next, we move to the strongly convex case.

Assumption 5.9. Function f is µ-strongly convex, i.e.,
∇2f(x) � µId for all x ∈ Rd.

Remark 3. Strong convexity of the objective (assumed for
Theorem 5.10 later) implies: R < +∞. Furthermore, due to
monotonicity of the sequence {F (xk)}k≥0 (see Remark 1),
we have ‖xk − x∗‖ ≤ R for all k. Therefore, it is sufficient
to require Lipschitzness of gradients over the sublevel set,
which holds with L = λmax(∇2f(x∗)) +MR.

As both extremes cubic regularized Newton (where S = Id

always) and (first-order) CD (S = ei for randomly chosen
i) enjoy (global) linear rate under strong convexity, linear
convergence of SSCN is expected as well. At the same time,
the leading complexity term should be in between the two
extremes. Such a result is established as Theorem 5.10.

Theorem 5.10. Let Assumptions 2.1, 5.1, 5.6 and 5.9 hold.
Then, E

[
F (xk)

]
− F ∗ ≤ ε, as long as the number of

iterations of SSCN is

k = O
((

d−τ
τ

L
µ + d

τ

√
MR
µ + d

τ

)
· log F (x0)−F∗

ε

)
.

Indeed, if S = Id with probability 1 and MR ≥ µ, the
leading complexity term becomes

√
MR
µ log 1

ε which cor-
responds to the global complexity of cubically regularized
Newton for minimizing strongly convex functions (Nesterov
& Polyak, 2006). On the other side of the spectrum if S = ei
with probability 1

d , the leading complexity term becomes
dL
µ log 1

ε , which again corresponds to convergence rate of
CD (Nesterov, 2012). Lastly, if 1 < τ < d, the global linear
rate interpolates the rates mentioned above.

6Sampling τ coordinates at a time for objectives with L-
Lipschitz gradients.

Remark 4. Proof of Theorem 5.10 only uses the following
consequence of strong convexity:

µ

2
‖x− x∗‖2 ≤ F (x)− F ∗, x ∈ Rd (11)

and thus the conditions of Theorem 5.10 might be slightly
relaxed.7 For detailed comparison of various relaxations of
strong convexity, see (Karimi et al., 2016).

6. Local Convergence
Throughout this section, assume that ψ = 0. We first present
the key descent lemma, which will be used to obtain local
rates. Let

HS(x) := ∇2
Sf(x) +

√
MS

2
‖∇Sf(x)‖ 1

2 Iτ(S).

Lemma 6.1. We have

f(xk)− f(xk+1) ≥ 1

2
‖∇Sf(xk)‖2

H−1
S (xk)

. (12)

Before stating the convergence theorem, it will be suitable to
define the stochastic condition number of H∗ := ∇2f(x∗):

ζ := λmin

(
H

1
2
∗ E
[
S
(
S>H∗S

)−1
S>
]
H

1
2
∗

)
, (13)

as it will drive the local convergence rate of SSCN.

Theorem 6.2 (Local Convergence). Let Assump-
tions 2.1, 5.9 hold, and suppose that ψ = 0. For any ε > 0
there exists δ > 0 such that if F (x0)− F ∗ ≤ δ, we have

E
[
F (xk)− F ∗

]
≤ (1− (1− ε) ζ)

k (
F (x0)− F ∗

)
(14)

and therefore the local complexity of SSCN is

O
(
ζ−1 log

1

ε

)
.

If further M = 0 (i.e., f is quadratic), then ε = 0 and
δ =∞, and thus the rate is global.

The proof of Theorem 6.2 along with the exact formulas for
ε, δ can be found in Section E of the Appendix. Theorem 6.2
provides a local linear convergence rate of SSCN. While
one might expect a superlinear rate to be achievable, this is
not the case, and we argue that the rate from Theorem 6.2 is
the best one can hope for.

In particular, if M = 0, Algorithm 1 becomes subspace
descent for minimizing positive definite quadratic which is a
specific instance of sketch-and-project (Gower & Richtárik,

7However, this relaxation is not sufficient to obtain the local
convergence results.
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2015). However, sketch-and-project only converges linearly
– the iteration complexity of sketch-and-project to minimize
(x− x∗)>A(x− x∗) with A � 0 is

O
([
λmin

(
A

1
2E
[
S
(
S>AS

)−1
S>
]
A

1
2

)]−1
log

1

ε

)
.

Notice that this rate is matched by Theorem 6.2 in this case.

Next, we compare the local rate of SSCN to the rate of
SDNA (Qu et al., 2016). To best of our knowledge, SDNA
requires the least oracle calls to minimize f among all first-
order non-accelerated methods.
Remark 5. SDNA is a first-order analogue to Algorithm 1
with S = Id(:,S). In particular, given matrix L such that
L � ∇2f(x) � 0 for all x, the update rule of SDNA is

x+ = x− S
(
S>LS

)−1∇Sf(x),

where S = Id(:,S) for a random subset of columns S. SDNA
enjoys linear convergence rate with leading complexity term(
µλmin

(
E
[
S(S>LS)−1S>

]))−1
. The leading complexity

term of SSCN is ζ−1, and we can bound

ζ ≥ λmin (H∗)λmin

(
E
[
S
(
S>H∗S

)−1
S>
])

≥ µλmin

(
E
[
S
(
S>LS

)−1
S>
])
.

Hence, the local rate of SSCN is no worse than the rate of
SDNA. Furthermore, both of the above inequalities might
be very loose in some cases (i.e., there are examples where

ζ
µλminE[S(LS)−1S>]

can be arbitrarily high). Therefore, local
convergence rate of SSCN might be arbitrarily better than
the convergence rate of SDNA. As a consequence, the local
convergence of SSCN is better than convergence rate of any
non-accelerated first order method.8.

Lastly, the local convergence rate provided by Theorem 6.2
recovers the superlinear rate of cubic regularized Newton’s
method, as the next remark states.
Remark 6. If S = Id with probability 1, Algorithm 1 be-
comes cubic regularized Newton method (Griewank, 1981;
Nesterov & Polyak, 2006). For H∗ := ∇2f(x∗) we have

ζ = λmin

(
H

1
2
∗H
−1
∗ H

1
2
∗

)
= λmin(Id) = 1.

As a consequence of Theorem 6.2, for any ε > 0 there exists
δ > 0 such that if F (x)− F (x∗) ≤ δ, we have

F (x+)− F (x∗) ≤ ε(F (x)− F (x∗)).

Therefore, we obtain a superlinear convergence rate.
8The rate of SSCN and rate of accelerated subspace descent

methods are not directly comparable – while the (local) rate of
SSCN might be better than rate of ACD, the reverse might hap-
pen as well. However, both ACD and SSCN are faster than non-
accelerated subspace descent.

7. Applications
7.1. Linear Models

Consider only S = Id(:,S) for simplicity. Let

F (x) :=
1

n

n∑
i=1

φi(〈ai, x〉) + ψ(x), (15)

and f(x) := 1
n

∑n
i=1 φi(〈ai, x〉) and suppose that

|∇3φi(y)| ≤ c. Then clearly,

∇3f(x)[h]3 =
1

n

n∑
i=1

∇3φi(〈ai, x〉)〈ai, h〉3

for any h ∈ Rd. While evaluating E :=
max‖h‖=1,x∇3f(x)[h]3 is infeasible, we might bound it
instead via

E ≤ max
‖h‖=1

c

n

n∑
i=1

|〈ai, h〉|3 ≤
c

n

n∑
i=1

‖ai‖3, (16)

which means that M = c
n

∑n
i=1 ‖ai‖3 is a feasible choice.

On the other hand, for S = {j} we have

max
‖hj‖=1,x

∇3f(x)[hj ]
3 = max

x
∇3f(x)[ej ]

3 ≤ c

n

n∑
i=1

|aij |3

and thus we might set Mj = c
n

∑n
i=1 |aij |3. The next

lemma compares the above choices of M and Mj .

Lemma 7.1. We have M ≥ maxjMj . At the same time,
there exist vectors {ai} that

max
j
Mj =

M

d
3
2

.

Proof. The first part is trivial. For the second part, consider
ai,j ∈ {−1, 1}.

Remark 7. One might avoid the last inequality from (16)
using polynomial optimization; however, this might be more
expensive than solving the original optimization problem
and thus is not preferable. Another strategy would be to use
a line search, see Section 3.1.

Both the formula for M and the formula for Mj require the
prior knowledge of c ≥ 0 such that |∇3φi(y)| ≤ c for all
i. The next lemma shows how to compute such c for the
logistic regression (binary classification model).

Lemma 7.2. Let φi(y) = log(1 + e−biy), where bi ∈
{−1, 1}. Then c = 1

6
√
3

.

Proof. ∇3φi(y) = − e
x(ex−1)
(1+ex)3 ⇒

∣∣∇3φi(y)
∣∣ ≤ 1

6
√
3

.



Stochastic Subspace Cubic Newton Method

Cost of performing a single iteration For the sake of
simplicity, let τ(S) = 1, ψ = 0. Any CD method (i.e,.
method with update rule (2) with S ∈ {e1, . . . , ed}) can
be efficiently implemented by memorizing the residuals
〈ai, xk〉, which is cheap to track since xk+1−xk is a sparse
vector. The overall cost of updating the residuals is O(n)
while the cost of computing ∇if(x) and ∇2

i,if(x) (given
the residuals are stored) is O(n). Therefore the overall cost
of performing a single iteration is O(n). Generalizing to
τ(S) = τ ≥ 1, the overall cost of single iteration of SSCN
can be estimated as O(nτ2 + τ3), where O(nτ2) comes
from evaluating subspace gradient and Hessian, whileO(τ3)
comes from solving the cubic subproblem.

7.2. Dual of linear models

So far, all results and applications for CRDS we mentioned
were problems with large model size d. In this section
we describe how SSCN can be efficient to tackle big data
problems in some settings. Let A ∈ Rn×d is data matrix
and consider a specific instance of (15) where

min
x∈Rd

FP (x) :=
1

d

n∑
i=1

ρi(A(:,i)x) +
λ

2
‖x‖2. (17)

where ρi is convex for all i. One can now formulate a dual
problem of (17) as follows:

max
y∈Rn

FD(y) := − 1

2λn2
∥∥A>y∥∥2− 1

n

n∑
i=1

ρ∗i (e
>
i x). (18)

Note that (18) is of form (15), and therefore if ρ∗i has Lip-
schitz Hessian, we can apply SSCN to efficiently solve it
(same as Section 7.1). Given the solution of (18), we can
recover the solution of (17) (duality theory). Thus, SSCN
can be used as a data-stochastic method to solve finite-sum
optimization problems.

The trick described in this section is rather well known. It
was first used in (Shalev-Shwartz & Zhang, 2013), where
CD applied to the problem (18) (SDCA) was shown to
be competitive with the variance reduced methods like
SAG (Roux et al., 2012), SVRG (Johnson & Zhang, 2013)
or SAGA (Defazio et al., 2014).

8. Experiments
We now numerically verify our theoretical claims. Due to
space limitation, we only present a fraction of all exper-
iments here, the remaining part, together with the exact
setup for this experiment can be found in Section B of the
Appendix.

We consider binary classification with LIBSVM (Chang &
Lin, 2011) data modelled by regularized logistic regression.
We compare SSCN against three different instances of (first-
order) randomized coordinate descent: CD with uniform

sampling, CD with importance sampling (Nesterov, 2012),
and accelerated CD with importance sampling (Allen-Zhu
et al., 2016; Nesterov & Stich, 2017).

In order to be comparable with the mentioned first-order
methods, we consider S ∈ {e1, . . . , ed} with probability 1
– the complexity of performing each iteration is about the
same for each algorithm now. At the same time, computing
Mei for all 1 ≤ i ≤ d is of cost O(nd) – the same cost as
computing coordinate-wise smoothness constants for (accel-
erated) coordinate descent (see Section 7.1 for the details).
Figure 3 shows the result.

Figure 1. Comparison of CD with uniform sampling, CD with
importance sampling, accelerated CD with importance sampling
and SSCN with uniform sampling on LibSVM datasets.

In all examples, SSCN outperformed CD with uniform sam-
pling. Moreover, the performance of SSCN was always
either about the same or significantly better to CD with
importance sampling. Furthermore, SSCN was also compet-
itive to accelerated CD with importance sampling (in about
half of the cases, SSCN was faster, while in the other half,
accelerated CD was faster).

The next experiment studies the effect of τ(S) on the conver-
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gence. We SSCN against fastest non-accelerated first-order
method – SDNA, both with varying τ(S). Figure 2 presents
the result. As expected, SSCN has outperformed SDNA.

Figure 2. SSCN vs. SDNA on LibSVM datasets. All algorithms
with uniform sampling. Legend indicates the values of τ(S).

9. Future Work
Lastly, we list several possible extensions of our work.

Acceleration. We believe it would be valuable to incorpo-
rate Nesterov’s momentum into Algorithm 1. Ideally, one
would like to get the global rate in between convergence rate
of accelerated cubic regularized Newton (Nesterov, 2008)
and accelerated CD (Allen-Zhu et al., 2016; Nesterov &
Stich, 2017). On the other hand, the local rate (for strongly
convex objectives) should recover accelerated sketch-and-
project (Tu et al., 2017; Gower et al., 2018). If accelerated
sketch-and-project is optimal (this is yet to be established),
then accelerated SSCN (again, given that it recovers ac-
celerated sketch-and-project) would be a locally optimal
algorithm as well.

Non-separable ψ. As mentioned in Section 5.1, one
should not hope for linear convergence of SSCN if ψ is
not separable, as the iterates can “jump” away from the
optimum in such case. This issue has been resolved for
first-order methods using control variates (Hanzely et al.,
2018), resulting in SEGA. Therefore, the development of
second-order SEGA remains an interesting open problem.

Inexact method. SSCN is applicable in the setup, where
function f is accessible via zeroth-order oracle only. In
such a case, for any S ∈ Rτ×d we can estimate ∇Sf(x)
and∇2

Sf(x) using O(τ2) function value evaluations. How-
ever, since both ∇Sf(x) and ∇2

Sf(x) are only evaluated
inexactly, a slight modification of our theory is required.

Non-uniform sampling. Note that our local theory allows
for arbitrary non-uniform distribution of S, which might be
potentially exploited. At the same time, in some applica-
tions, it might be feasible to use a greedy selection rule for
S (our theory does not support that).

While developing optimal and implementable importance
sampling for the local convergence is beyond the scope of

this paper,9 we sketch several possible sampling strategies
that might yield faster convergence.10

• Let P(S ∈ {e1, e2, . . . , ed}) = 1. If we evaluate the
diagonal of the Hessian close to optimum (cost O(nd)
for linear models) and sample proportionally to it, we
obtain local linear rate with leading complexity term
Tr(∇2f(x∗))
λmin∇2f(x∗) .

• It is unclear how to design an efficient importance sam-
pling for minibatch (i.e., 1 < E [τ(S)] < d) methods.
Determinantal point processes (DPP) (Rodomanov &
Kropotov, 2019; Mutný et al., 2019) were proposed to
speed up SDNA from (Qu et al., 2016) (i.e., analogous
CD with static matrix upper bound) – we thus believe
they might be applicable on our setting too. However,
in such a case, one would need to evaluate the whole
Hessian close to optimum, which is infeasible for ap-
plications where d is large.

• It is known that SDNA (see related literature) is faster
than minibatch CD under the ESO assumption (Qu &
Richtárik, 2016a;b). Therefore, we might instead apply
minibatch importance sampling for ESO assumption
from (Hanzely & Richtárik, 2019) (which corresponds
to optimizing the upper bound on iteration complex-
ity). Using the mentioned sampling, we only require
evaluating the diagonal of Hessian at some point close
to optimum, which is of the same cost as computing
the full gradient for linear models – thus is feasible.

• It is a natural question to ask whether one can speed
up the convergence using a greedy rule instead of
the random one. For standard CD, greedy rule was
shown to have a superior iteration complexity to
any randomized rule (Nutini et al., 2015; Karim-
ireddy et al., 2019). For simplicity, consider case
where P(S ∈ {e1, e2, . . . , ed}) = 1. Far from
the optimum, (approximate) greedy rule at iteration
k chooses index i = argmaxj |∇jf(xk)| 32M−

1
2

ej .
Close to optimum, if a diagonal of a Hessian was
evaluated, (approximate) greedy index would be
argmaxj |∇jf(xk)|2∇j,jf(x)−1. For linear models,
both of the mentioned cases are implementable using
the efficient nearest neighbour search (Dhillon et al.,
2011) with sublinear complexity in terms of d.
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d’Alché Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Sys-
tems 32, pp. 616–625. Curran Associates, Inc.,
2019. URL http://papers.nips.cc/paper/
8351-rsn-randomized-subspace-newton.
pdf.

Grapiglia, G. and Nesterov, Y. Regularized Newton methods
for minimizing functions with Hölder continuous Hes-
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Appendix
A. Table of Frequently Used Notation

Table 1. Summary of frequently used notation.
From main paper

F : Rd → R Objective function (1)
f : Rd → R Smooth part of the objective (1)

ψ : Rd → R ∪ {+∞} Non-smooth part of the objective (1)
x∗ Global optimum of (1)
F ∗ := F (x∗), the optimum value of the objective

S ∈ Rd,τ(S) Random matrix sampled from distribution D (2)
S Random subset of {1, . . . , d} (2)
µ The constant of strong convexity As. 5.9
MS Lipschitz constant of∇2f(x) on the range of S (4)
M Lipschitz constant of∇2f(x) on Rd; M = MId

L Lipschitz constant of∇f(x) on Rd
AS := S>AS ∈ Rτ(S)×τ(S), for a given matrix A ∈ Rd×d
∇Sf(x) := S>∇f(x)
∇2

Sf(x) := (∇2f(x))S = S>∇2f(x)S

HS(x) := ∇2
Sf(x) +

√
MS

2 ‖∇Sf(x)‖ 1
2 Iτ(S) Lem. 6.1

ζ := λmin

((
∇2f(x∗)

) 1
2 E
[
S(∇2

Sf(x∗))−1S>
] (
∇2f(x∗)

) 1
2

)
(13)

PS := S
(
S>S

)−1
S>, the projection onto range of S Sec. 5.1

R := sup
x∈Rd

{
‖x− x∗‖ : F (x) ≤ F (x0)

}
(9)

Standard
E [·] Expectation
P(·) Probability
Iq Identity matrix in Rq×q

λmax(·), λmin(·) Maximal eigenvalue, minimal eigenvalue
〈·, ·〉 Scalar product of vectors: 〈x, y〉 := x>y

‖ · ‖ Standard Euclidean norm: ‖x‖ :=
√
〈x, x〉

‖ · ‖B Weighted Euclidean norm: ‖x‖B :=
√
〈Bx, x〉

ei i-th vector from the standard basis in Rd

e Vector of ones in Rd; i.e., e :=
∑d
i=1 ei

From Appendix

λf (x) :=
(
∇f(x)>

(
∇2f(x)

)−1∇f(x)
) 1

2

, Newton decrement (22)
χ0 := {x; f(x) ≤ f(x0)}, sublevel set

Tr (·) Trace Sec. D.1
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B. Extra Experiments
B.1. Logistic regression

Regularized logistic regression is a machine learning model for binary classification. Given data matrix A ∈ Rn×d, labels
b ∈ {−1, 1}n and regularization parameter λ ∈ R+, the training corresponds to solving the following optimization problem

f(x) =
1

m

m∑
i=1

log (1 + exp (Ai,:x · b)) +
λ

2
‖x‖2.

In the first experiment, we compare SSCN to first-order coordinate descent (CD) on LIBSVM (Chang & Lin, 2011). We
consider three different instances of CD: CD with uniform sampling, CD with importance sampling (Nesterov, 2012), and
accelerated CD with importance sampling (Allen-Zhu et al., 2016; Nesterov & Stich, 2017).

In order to be comparable with the mentioned first-order methods, we consider S ∈ {e1, . . . , ed} with probability 1 – the
complexity of performing each iteration is about the same for each algorithm now. At the same time, computing Mei for
all 1 ≤ i ≤ d is of cost O(nd) – the same cost as computing coordinate-wise smoothness constants for (accelerated) CD
(see Section 7.1 for the details). Figure 3 shows the result for non-normalized data, while Figure 4 shows the results for
normalized data (thus importance sampling is identical to uniform).

In all examples, SSCN outperformed CD with uniform sampling. Moreover, the performance of SSCN was always either
about the same or significantly better to CD with importance sampling. Furthermore, SSCN was also competitive to
accelerated CD with importance sampling (in about half of the cases, SSCN was better, while in the other half, ACD was
better).

In the second experiment, we compare methods with τ > 1: SSCN and SDNA (Qu et al., 2016) (analogous first-order
method). Again, we consider the logistic regression problem on LIBSVM data. We consider τ ∈ {1, 5, 25}. In all cases, we
sample uniformly – every subset of size τ have equal chance to be chosen at every iteration (independent of the past).

There is, however, one tricky part in terms of implementation. While we can evaluate and store Mei (i ≤ d) cheaply for
linear models, this is not the case for evaluating/storing MS (at least we do not know how to do it efficiently). Therefore, we
use MS = M for |S| > 1 for SSCN. Figure 5 shows the result.
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Figure 3. Comparison of CD with uniform sampling, CD with importance sampling, accelerated CD with importance sampling and SSCN
(Algorithm 1) with uniform sampling on LibSVM datasets.
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Figure 4. Comparison of coordinate descent, accelerated coordinate descent and SSCN (all with uniform sampling) on LibSVM datasets.
In each case we have normalized the data matrix to have identical norms of all columns.
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Figure 5. SSCN vs. SDNA on LibSVM datasets. All algorithms with uniform sampling.
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B.2. Log-Sum-Exp

In this section, let us consider unconstrained minimization of the following Log-Sum-Exp function

f(x) = σ log

(
m∑
i=1

exp
(
〈ai,x〉−bi

σ

))
, x ∈ Rn,

where σ > 0 is a smoothing parameter, while ai ∈ Rn, 1 ≤ i ≤ m and b ∈ Rm are given data. This function has both
Lipschitz continuous gradient and Lipschitz continuous Hessian (see Example 1 in (Doikov & Nesterov, 2019)).

In our experiments, we first generate randomly elements of {ãi}mi=1 and b from uniform distribution on [−1, 1]. Then, we

form an auxiliary function f̃(x) := σ log
( m∑
i=1

exp
( 〈ãi,x〉−bi

σ

))
, using these parameters, and set

ai := ãi −∇f̃(0), 1 ≤ i ≤ m.

Thus, we essentially obtain the optimum x∗ of f in the origin, since∇f(0) = 0. We use x0 := e (vector of all ones) as a
starting point, and always set m := 6n.

For this problem, we compare the performance of SSCN with the first-order Coordinate Descent (CD), using uniform
samples of coordinates S ⊆ [n] of a fixed size τ = |S|.

Note, that keeping scalar products {〈ai, xk〉}mi=1 precomputed for a current point xk, we are able to compute the partial
gradient ∇Sf(xk) in time O(τm) and the partial Hessian ∇2

Sf(xk) in time O(τ2m). To find the next direction hk of
SSCN (solving the Cubic subproblem), we call Nonlinear Conjugate Gradient method, and use the following condition as a
stopping criterion:

‖∇hTS(xk;hk)‖ ≤ 10−4,

where TS(xk;h) := 〈∇Sf(xk), h〉 + 1
2 〈∇

2
Sf(xk)h, h〉 + Mk

6 ‖Sh‖
3 is the Cubic model, and Mk ≥ 0 is a regularization

constant.

For both methods, we use one-dimensional search at every iteration, to fit the corresponding parameter:

1. For the Coordinate Descent, we find Lk such that f(xk)− f(xk+1) ≥ 1
2Lk
‖∇Sf(xk)‖2, where xk+1 is the next point

of the method: xk+1 = xk + 1
Lk

S∇Sf(xk).

2. For SSCN, we find Mk such that (6) is satisfied, i.e. f(xk)− f(xk+1) ≥ −TS(xk, hk).

Therefore, we need to evaluate the function value inside the procedure, which is not very expensive.

The results are shown on Figures 6,7, for n = 500 and 1000 respectively11. We see, that SSCN outperforms CD significantly
in terms of the iteration rate. For SSCN with a medium batchsize τ , we may obtain the best performance in terms of the
total computational time.

11Clock time was evaluated using the machine with Intel Core i7-8700 CPU, 3.20GHz; 16 GB RAM.
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Figure 6. SSCN and Coordinate Descent (CD) methods, minimizing Log-Sum-Exp function, n = 500.
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Figure 7. SSCN and Coordinate Descent (CD) methods, minimizing Log-Sum-Exp function, n = 1000.
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C. Missing Proofs and Lemmas From Section 2
C.1. Explicit update

Lemma C.1. Let x+ = argminy〈g′, y − x〉+ H′

2 ‖x− y‖
2 + M ′

6 ‖x− y‖
3, where H ′,M ′ > 0. Then we have

x+ = x− 2g′

H ′ +
√
H ′2 + 2M ′‖g′‖

(19)

Proof. By first-order optimality conditions we have g′ +H ′(x+ − x) + M ′

2 ‖x
+ − x‖(x+ − x) = 0 which immediately

yields

x+ = x− g′

H ′ + M ′

2 ‖x+ − x‖
. (20)

Rearranging the terms and taking the norm we have M ′

2 ‖x
+ − x‖2 + H ′‖x+ − x‖ + ‖g′‖ = 0. Solving the quadratic

equation we arrive at

‖x+ − x‖ =

√
H ′2 + 2M ′‖g′‖ −H ′

M ′
.

Plugging it back to (20), we get (19).

C.2. Proof of Lemma 2.3

Df (x+, x)− 1

2
(x+ − x)>∇2f(x)(x+ − x)

=

∫ 1

0

〈∇f(x+ t(x+ − x))− f(x), x+ − x〉 dt− 1

2
(x+ − x)>∇2f(x)(x+ − x)

=

∫ 1

0

∫ 1

0

〈t∇2f(x+ st(x+ − x)), x+ − x, x+ − x〉 ds dt− 1

2
(x+ − x)>∇2f(x)(x+ − x)

=

∫ 1

0

∫ 1

0

〈t∇2f(x+ st(x+ − x))− t∇2f(x), x+ − x, x+ − x〉 ds dt

=

∫ 1

0

∫ 1

0

∫ 1

0

〈t2s∇3f(x+ rst(x+ − x)), x+ − x, x+ − x, x+ − x〉 dr ds dt.

Using (2) we get

|f(x+)− f(x) + 〈∇f(x),Sh〉+
1

2
h>∇2

Sf(x)h| (2)
=

∣∣∣∣∫ 1

0

∫ 1

0

∫ 1

0

〈t2s∇3f(x+ rstSh),Sh,Sh,Sh〉 dr ds dt
∣∣∣∣

(4)

≤
∫ 1

0

∫ 1

0

∫ 1

0

t2sMS‖hS‖3 dr ds dt

=
MS

6
‖hS‖3.

C.3. Proof of Lemma 2.2

First, M ≥ MS is trivial. At the same time M = MS if ∇3f(x) is identity tensor always, which corresponds to
f(x) = 1

6

∑d
i=1 x

3
i . Therefore, the inequality is tight.

To show sharpness of MS ≥
(
τ
d

) 3
2 M , consider f(x) = 1

6 (x>e)3. In this case, we have12 ∇3f(x) = [e]3 and S = ei. In
such case, M = d

3
2 and MS = τ

3
2 .

Note that f is non-convex in both examples. However, it is is convex on a set where xi ≥ 0 for all i.

12By [e] ∈ Rd×d×d we mean third order outer product of vector e.
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D. Proofs for Section 5
D.1. Proof of Lemma 5.2

Let Tr (A) be a trace of square matrix A. We have

E [τ(S)] = E
[
Tr
(
Iτ(S)

)]
= E

[
Tr
(
S>S

(
S>S

)−1)]
= E

[
Tr
(
S
(
S>S

)−1
S>
)]

= Tr
(
E
[
S
(
S>S

)−1
S>
])

(7)
= Tr

(τ
d
Id
)

= τ.

D.2. Proof of Lemma 5.7

For any h′ ∈ Rd denote

ΩS(x, h′)
def
= 〈∇f(x),PSh′〉+

1

2
〈∇2f(x)PSh′,PSh′〉+

MS

6
‖PSh′‖3 + ψ(x+ PSh′).

Clearly, it holds
min
h′∈Rd

ΩS(x, h′) = min
h∈Rτ(S)

TS(x, h).

Therefore, for any fixed y ∈ Rd we have

F (xk+1)
(6)

≤ f(xk) + min
h′∈Rd

ΩS(xk, h′) ≤ f(xk) + ΩS(xk; y − xk).

Therefore,

E
[
F (xk+1) |xk

]
≤ f(xk) + E

[
ΩS(xk; y − xk)

]
= f(xk) +

τ

d
〈∇f(xk), y − xk〉+ E

[
1

2
〈PS∇2f(xk)PS(y − xk), y − xk〉

]

+
M

6
E
[
‖PS(y − xk)‖3

]
+ E

[
ψ(xk + PS(y − xk))

]
.

.

Let us get rid of the expectations above. Firstly, we have

E
[
ψ(x+ PS(y − xk))

]
= E

[〈
ψ′
((
Id −PS

)
xk + PSy

)
, e
〉]

= E
[〈(

Id −PS
)
ψ′
(
xk
)
, e
〉]

+ E
[〈
PSψ′ (y) , e

〉]
=

(
1− τ

d

)
ψ(xk) +

τ

d
ψ(y).

For the cubed norm it can be estimated as follows

E
[
‖PSh′‖3

]
≤ ‖h′‖ · E

[
‖PSh′‖2

]
=

τ

d
‖h′‖3, ∀h′ ∈ Rd.

Lastly, note that

E
[
PS∇2f(xk)PS

]
= E

[
PS
(
∇2f(xk)

) 1
2

]
E
[(
∇2f(xk)

) 1
2 PS

]
+E

[(
PS
(
∇2f(xk)

) 1
2 − E

[
PS
(
∇2f(xk)

) 1
2

])(
PS
(
∇2f(xk)

) 1
2 − E

[
PS
(
∇2f(xk)

) 1
2

])>]
=

τ2

d2
∇2f(xk) + E

[(
PS − τ

d
Id
)
∇2f(xk)

(
PS − τ

d
Id
)]

� τ2

d2
∇2f(xk) + LE

[(
PS − τ

d
Id
)2]

=
τ2

d2
∇2f(xk) +

τ(d− τ)

d2
LId.
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Therefore, we conclude

E
[
F (xk+1) |xk

]
≤ f(xk) +

τ

d
〈∇f(xk), y − xk〉+

τ(d− τ)

d2
· L

2
‖y − xk‖2

+
τ2

d2
· 1

2
〈∇2f(xk)(y − xk), y − xk〉+

τ

d
· M

6
‖y − xk‖3

+
τ

d
ψ(y) +

(
1− τ

d

)
ψ(xk).

Finally, by convexity and from Lipschitz continuity of the Hessian (5), we have the following upper estimate:

〈∇f(xk), y − xk〉+
τ

d
· 1

2
〈∇2f(xk)(y − xk), y − xk〉

=
d− τ
d
〈∇f(xk), y − xk〉+

τ

d

(
〈∇f(xk), y − xk〉+

1

2
〈∇2f(xk)(y − xk), y − xk〉

)
≤ d− τ

d

(
f(y)− f(xk)

)
+
τ

d

(
f(y)− f(xk) +

M

6
‖y − xk‖3

)
≤ f(y)− f(xk) +

M

6
‖y − xk‖3.

which completes the proof.

D.3. Proof of Theorem 5.8

Let us denote the following auxiliary sequences:

ak
def
= k2, Ak

def
= A0 +

k∑
i=1

ai, k ≥ 1,

and

A0
def
=

4

3

(
d

τ

)3

.

Then, we have an estimate

Ak = A0 +

k∑
i=1

i2 ≥ A0 +

k∫
0

x2dx = A0 +
k3

3
. (21)

Now, let us fix iteration counter k ≥ 0 and set

αk
def
=

d

τ

ak+1

Ak+1
⇔ 1− τ

d
αk =

Ak
Ak+1

.

Note that we have αk ≤ 1 by the choice of A0, since it holds

max
ξ≥0

ξ2

A0 + ξ3

3

=
τ

d
.
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Let us plug y ≡ αkx∗ + (1− αk)xk into (8). By convexity we obtain

E
[
F (xk+1) |xk

]
≤

(
1− τ

d

)
F (xk) +

τ

d
αkF

∗ +
τ

d
(1− αk)F (xk)

+
τ

d

(
d− τ
d

L‖xk − x∗‖2

2
α2
k +

M‖xk − x∗‖3

3
α3
k

)

=
Ak
Ak+1

F (xk) +
ak+1

Ak+1
F ∗ +

d

τ

d− τ
d

L‖xk − x∗‖2

2

(
ak+1

Ak+1

)2

+

(
d

τ

)2
M‖xk − x∗‖3

3

(
ak+1

Ak+1

)3

≤ Ak
Ak+1

F (xk) +
ak+1

Ak+1
F ∗ +

d− τ
τ

LR2

2

(
ak+1

Ak+1

)2

+

(
d

τ

)2
MR3

3

(
ak+1

Ak+1

)3

.

Therefore, for the residual δk
def
= E

[
F (xk)

]
− F ∗ we have the following bound

Ak+1δk+1 ≤ Akδk +
d− τ
τ

LR2

2

a2k+1

Ak+1
+

(
d

τ

)2
MR3

3

a3k+1

A2
k+1

, k ≥ 0.

Summing up these inequalities for different k, we obtain

Akδk ≤ A0δ0 +
d− τ
τ

LR2

2

k∑
i=1

a2i
Ai

+

(
d

τ

)2
MR3

3

k∑
i=1

a3i
A2
i

, k ≥ 1.

To finish the proof it remains to notice that

k∑
i=1

a2i
Ai

(21)

≤
k∑
i=1

i4

A0 + 1
3 i

3
≤ 3

k∑
i=1

i ≤ 3k2,

and
k∑
i=1

a3i
A2
i

(21)

≤
k∑
i=1

i6

(A0 + 1
3 i

3)2
≤ 9k.

D.4. Proof of Theorem 5.10

Given that Assumption 5.9 (strong convexity) is satisfied, the following inequality holds

µ

2
‖x− x∗‖2 ≤ F (x)− F ∗, ∀x ∈ Rd,

and thus we have a bound for the radius of level sets (9):

R2 ≤ 2

µ
(F (x0)− F ∗).

Combining the above with (10) we obtain the following convergence estimate:

E
[
F (xk)− F ∗

]
≤

(
d− τ
τ
· 18L

µk
+

(
d

τ

)2

· 18MR

µk2
+

1

1 + 1
4

(
τ
dk
)3
)
·
(
F (x0)− F ∗

)
, k ≥ 1.

Therefore, we get the linear decrease of the expected residual

E
[
F (xk)− F ∗

]
≤ 1

2

(
F (x0)− F ∗

)
,

as soon as the following three bounds for k are all reached:
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1. d−τ
τ ·

18L
µk ≤

1
6 ⇔ k ≥ 108d−ττ ·

L
µ .

2.
(
d
τ

)2 · 18MR
µk2 ≤

1
6 ⇔ k ≥ d

τ

√
108MR

µ .

3. 1

1+ 1
4

(
τ
d k

3
)3 ≤ 1

6 ⇔ k ≥ d
τ 201/3.

E. Proofs for Section 6
E.1. Several technical Lemmas

It will be convenient to denote the Newton decrement as follows:

λf (x) :=
(
∇f(x)>

(
∇2f(x)

)−1∇f(x)
) 1

2

(22)

and a sublevel set of x0 as χ0; i.e., χ0 := {x; f(x) ≤ f(x0)}.

Lemma E.1. (Local bounds) Suppose that x0 is such that f(x0) − f(x∗) ≤ %4
2(minx∈χ0 λmin∇2

Sf(x))
4

LM2
S‖S‖2

for some % > 0.
Then, we have √

MS

2
‖S>∇f(xk)‖ 1

2 Iτ(S) � %∇2
Sf(xk). (23)

Suppose further that f(x0)− f(x∗) ≤ ϕ2 µ(λmin∇2
Sf(x

∗))
2

2M2
S

for some ϕ > 0. Then we have

(1− ϕ)∇2
Sf(x∗) � ∇2

Sf(xk) � (1 + ϕ)∇2
Sf(x∗). (24)

Lastly, if f(x0)− f(x∗) ≤ ω−1
(

2µ
3
2

(1+γ−1)M

)
where ω(y) := y − log(1 + y) and γ > 0, we have

f(xk)− f(x∗) ≤ 1

2
(1 + γ)λf (xk)2. (25)

Proof. For the sake of simplicity, let x = xk and S = Sk throughout this proof. For the first part, we have√
MS

2
‖S>∇f(x)‖ 1

2 Iτ(S) �
√
MS

2
‖S‖ 1

2 ‖∇f(x)‖ 1
2 Iτ(S)

�
√
MS

2
‖S‖ 1

2 2
1
4L

1
4

(
f(x0)− f(x∗)

) 1
4 Iτ(S)

� % min
x∈χ0

λmin∇2
Sf(x)Iτ(S) � %∇2

Sf(x).

For the second part, we have

∇2
Sf(x)−∇2

Sf(x∗) � MS‖x− x∗‖Iτ(S)

� MS

√
2(f(x)− f(x∗))

µ
Iτ(S)

� MS

√
2(f(x0)− f(x∗))

µ
Iτ(S)

� ϕ∇2
Sf(x∗).

Therefore, we can conclude that ∇2
Sf(x) � (1 + ϕ)∇2

Sf(x∗). Analogously we can show∇2
Sf(x∗) � (1− ϕ)−1∇2

Sf(x)
and thus (24) follows.
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Lastly, if f(x0)− f(x∗) ≤ ω
(

2µ
3
2

(1+γ−1)M

)
, then due to (Nesterov, 2018) we have

ω (λf (x)) ≤ f(x)− f(x∗) ≤ f(x0)− f(x∗) ≤ ω

(
2µ

3
2

(1 + γ−1)M

)

and thus λf (x) ≤ 2µ
3
2

(1+γ−1)M . Now (25) follows from Lemma E.2 and Lemma E.3.

Lemma E.2. Function f is M

2µ
3
2

self-concordant.

Proof. See Example 5.1.1 in (Nesterov, 2018).

Lemma E.3. Consider any γ ∈ R+ and suppose that f is ς self-concordant. Then if λf (x) < 2
(1+γ−1)ς we have

f(x)− f(x∗) ≤ 1

2
(1 + γ)λf (x)2 (26)

Proof. Define ω∗(z) := −z − ln(1 − z). Note first that, h(x) := ς2

4 f(x) is 2 self concordant (Nesterov, 2018). As a
consequence, if λh(x) < 1 we have (Nesterov, 2018)

h(x)− h(x∗) ≤ ω∗(λh(x)).

If further λh(x) ≤ 1
1+γ−1 due to Lemma E.4, we get

ω∗(λh(x)) ≤ (1 + γ)
λh(x)2

2
.

As λh(x) = ς
2λf (x), we get (26).

Lemma E.4. Let c ∈ R+ and 0 ≤ y ≤ 1
1+c . Then we have ω∗(y) ≤

(
1 + 1

c

)
y2

2 .

Proof. See Lemma 5.1.5 in (Nesterov, 2018).

E.2. Proof of Lemma 6.1

Note that the update rule of SSCN yields immediately (using first-order optimality conditions)

−S>∇f(x) =

(
∇2

Sf(x) +
1

2
MS‖x+ − x‖Iτ(S)

)(
x+ − x

)
(27)

and therefore

∥∥S>∇f(x)
∥∥ 1

2 =

((
x+ − x

)>(∇2
Sf(x) +

1

2
MS‖x+ − x‖Iτ(S)

)2 (
x+ − x

)) 1
4

≥

((
x+ − x

)>(1

2
MS‖x+ − x‖Iτ(S)

)2 (
x+ − x

)) 1
4

=

√
MS

2
‖x+ − x‖. (28)

Furthermore, taking dot product of (27) with (x+ − x) yields〈
S>∇f(x), x+ − x

〉
+
〈
∇2

Sf(x)
(
x+ − x

)
, x+ − x

〉
+

1

2
MS‖x+ − x‖3 = 0
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and thus

f(x)− f(x+)
(5)
≥
〈
S>∇f(x), x− x+

〉
− 1

2

〈
∇2

Sf(x)(x+ − x), x+ − x
〉
− MS

6
‖x+ − x‖3

=
1

2

〈
∇2

Sf(x)(x+ − x), x+ − x
〉

+
MS

3
‖x+ − x‖3

(∗)
≥ 1

2

(
x+ − x

)>(∇2
Sf(x) +

1

2
MS‖x+ − x‖Iτ(S)

)(
x+ − x

)
(27)
=

1

2
∇f(x)>S

(
∇2

Sf(x) +
1

2
MS‖x+ − x‖Iτ(S)

)−1
S>∇f(x)

(28)
≥ 1

2
∇f(x)>S

(
∇2

Sf(x) +

√
MS

2
‖S>∇f(x)‖ 1

2 Iτ(S)

)−1
S>∇f(x).

Above, in inequality (∗) we have used the fact that matrix
(
∇2

Sf(x) + 1
2MS‖x+ − x‖Iτ(S)

)
is invertible since f is strongly

convex and thus ∇2
Sf(x) � 0.

E.3. Proof of Theorem 6.2

First, suppose that f(x0)− f(x∗) ≤ %4 2(minx∈χ0 λmin∇2
Sf(x

k))
4

LM2
S‖S‖2

for some % > 0. Using the fact that ∇2
Sf(xk) is invertible

(S has full column rank and∇2f(xk) � 0) we have

E
[

1

2
‖S>∇f(xk)‖2

(H(xk))−1

]
(23)
≥ E

[
1

2
∇f(xk)>S

(
(1 + %)∇2

Sf(xk)
)−1

S>∇f(xk)

]
=

1

2(1 + %)
∇f(xk)>E

[
S
(
∇2

Sf(xk)
)−1

S>
]
∇f(xk). (29)

If further f(x0)− f(x∗) ≤ ϕ2 µ(λmin∇2
Sf(x

∗))
2

2M2
S

for some ϕ > 0 we get

E
[

1

2
‖S>∇f(xk)‖2

(H(xk))−1

]
(29)
≥

∇f(xk)>E
[
S
(
∇2

Sf(xk)
)−1

S>
]
∇f(xk)

2(1 + %)

(24)
≥

∇f(xk)>E
[
S
(
∇2

Sf(x∗)
)−1

S>
]
∇f(xk)

2(1 + %)(1 + ϕ)

(13)
≥

∇f(xk)>
(
ζ
(
∇2f(x∗)

)−1)∇f(xk)

2(1 + %)(1 + ϕ)

(24)
≥ (1− ϕ)ζλf (xk)2

2(1 + %)(1 + ϕ)
(30)

Lastly, if f(x0)− f(x∗) ≤ ω−1
(

2µ
3
2

(1+γ−1)M

)
where ω(y) := y − log(1 + y) and γ > 0, we get

E
[

1

2
‖S>∇f(xk)‖2

(H(xk))−1

]
(30)
≥ (1− ϕ)ζλf (xk)2

2(1 + %)(1 + ϕ)

(25)
≥ (1− ϕ)ζ(f(xk)− f(x∗))

(1 + %)(1 + ϕ)(1 + γ)
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and thus (14) follows. In particular for any %, γ > 0, 1 > ϕ > 0, we can choose

δ = min

{
%4

2
(
minx∈χ0 λmin∇2

Sf(x)
)4

LM2
S

, ϕ2µ
(
λmin∇2

Sf(x∗)
)2

2M2
S

, ω−1

(
2µ

3
2

(1 + γ−1)M

)}

and
ε = 1− 1− ϕ

(1 + %)(1 + ϕ)(1 + γ)
.


