
Data Amplification: Instance-Optimal
Property Estimation

Yi Hao
Dept. of Electrical and Computer Engineering

University of California, San Diego
La Jolla, CA 92093
yih179@ucsd.edu

Alon Orlitsky
Dept. of Electrical and Computer Engineering

University of California, San Diego
La Jolla, CA 92093
alon@ucsd.edu

Abstract

The best-known and most commonly used technique for distribution-property esti-
mation uses a plug-in estimator, with empirical frequency replacing the underlying
distribution. We present novel linear-time-computable estimators that significantly
“amplify” the effective amount of data available. For a large variety of distribution
properties including four of the most popular ones and for every underlying distri-
bution, they achieve the accuracy that the empirical-frequency plug-in estimators
would attain using a logarithmic-factor more samples.
Specifically, for Shannon entropy and a broad class of Lipschitz properties including
the L1 distance to a fixed distribution, the new estimators use n samples to achieve
the accuracy attained by the empirical estimators with n logn samples. For support-
size and coverage, the new estimators use n samples to achieve the performance of
empirical frequency with sample size n times the logarithm of the property value.
Significantly strengthening the traditional min-max formulation, these results hold
not only for the worst distributions, but for each and every underlying distribution.
Furthermore, the logarithmic amplification factors are optimal. Experiments on a
wide variety of distributions show that the new estimators outperform the previous
state-of-the-art estimators designed for each specific property.

Contents

1 Prior and New Results 5

2 Implications and Outline 7

2.1 Theoretical Implications . 7

2.2 Supplementary Outline . 8

3 Concentration Inequalities 9

4 Approximating Bernstein Polynomials 9

4.1 Derivative of Bernstein Polynomials . 9

4.2 Approximating the Derivative Function . 10

Proceedings of the 37 th International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright
2020 by the author(s).

5 A Competitive Entropy Estimator 11

6 Bounding the Bias of Ĥ 13

6.1 Bias of the Small-Probability Estimator . 14

6.2 Bias of the Large-Probability Estimator . 15

7 Bounding the Mean Absolute Deviation of Ĥ 16

7.1 Variance of the Small-Probability Estimator . 16

7.2 Variance of the Large-Probability Estimator . 18

8 Experiments 19

9 Computational Complexity 21

9.1 Remez Algorithm . 21

9.2 Complexity of Evaluating f(x) . 21

9.3 Lagrange Interpolation with Chebyshev Nodes . 23

9.4 Remez Algorithm with High Precision . 25

A A Refined Estimator for Shannon Entropy 27

A.1 Relating f -functions to Bernstein Approximation Errors 27

A.2 Approximating f1(z) . 29

A.2.1 Properties of f1(z) . 29

A.2.2 Moduli of Smoothness . 30

A.2.3 Bounding Errors in Approximating f1(x) . 31

A.3 Proving Theorem 1: A Refined Entropy Estimator . 32

B Competitive Estimators for General Additive Properties 34

B.1 Proving Theorem 2: The L1 Distance . 37

B.2 Proving Theorem 3: General Additive Properties . 37

C Summary: Estimator Construction and Analysis 38

C.1 Bernstein Polynomial . 38

C.2 Estimator Construction and Computation . 38

C.3 Large-Probability Estimator . 40

C.4 Choice of Parameters and Sample Splitting . 40

C.5 Min-Max Polynomial . 41

C.6 Moduli of Smoothness . 42

C.7 Simplification via Poissonization . 43

D A Competitive Estimator for Support Size 43

D.1 Estimator Construction . 43

D.2 Bounding the Bias . 44

2

D.3 Bounding the Mean Absolute Deviation . 44

D.3.1 Bounds for Ŝ(XN
) . 44

D.3.2 Bounds for ŜE
(Xna

) . 45

D.4 Proving Theorem 4 . 46

E A Competitive Estimator for Support Coverage 47

E.1 Estimator Construction . 47

E.2 Bounding the Bias . 48

E.3 Bounding the Mean Absolute Deviation . 49

E.3.1 Bounds for Ĉ(XN
) . 49

E.3.2 Bounds for ĈE
(Xna

) . 49

E.4 Proving Theorem 5 . 50

Introduction

Recent years have seen significant interest in estimating properties of distributions over large do-
mains (Valiant & Valiant, 2013; Jiao et al., 2015, 2018; Wu & Yang, 2016; Orlitsky et al., 2016;
Acharya et al., 2017a; Hao et al., 2018; Wu & Yang, 2019; Hao & Orlitsky, 2019a,c; Charikar et al.,
2019; Hao & Li, 2020). Chief among these properties are support size and coverage, Shannon
entropy, and L1 distance to a known distribution. The main achievement of these papers is essentially
estimating properties of distributions with alphabet size k using just k/ log k samples.

In practice however, the underlying distributions are often simple, and their properties can be
accurately estimated with significantly fewer than k/ log k samples. For example, if the distribution is
concentrated on a small part of the domain, or is exponential, very few samples may suffice to estimate
the property. To address this discrepancy, Hao et al. (2018) took the following competitive approach.

The best-known distribution property estimator is the empirical estimator that replaces the unknown
underlying distribution by the observed empirical distribution. For example, with n samples, it
estimates entropy by the formula −∑i(Ni/n) log(Ni/n) where Ni is the number of times symbol i
appeared. Besides its simple and intuitive form, the empirical estimator is also consistent, stable, and
universal. It is therefore the most commonly used property estimator for data-science applications.

The estimator in Hao et al. (2018) uses n samples and for any underlying distribution achieves the
same performance that the empirical estimator would achieve with n

√
logn samples. It therefore

provides an effective way to amplify the amount of data available by a factor of
√

logn, regardless of
the domain or structure of the underlying distribution.

In this paper we present novel estimators that increase the amplification factor for all sufficiently
smooth properties including those mentioned above from

√
logn to the information-theoretic bound

of logn. Namely, for every distribution their expected estimation error with n samples is that of the
empirical estimator with n logn samples and no further uniform amplification is possible.

It can further be shown (Valiant & Valiant, 2013; Jiao et al., 2015; Acharya et al., 2017a; Wu & Yang,
2019) that the empirical estimator estimates all of the aforementioned four properties with linearly
many samples, hence the sample size required by the new estimators is always at most the k/ log k
guaranteed by the state-of-the-art estimators.

The current formulation has several additional advantages over previous approaches, which we
illustrate as follows.

3

Fewer assumptions It eliminates the need for some commonly used assumptions. For example,
support size cannot be estimated with any number of samples, as arbitrarily-many low-probabilities
may be missed. Hence previous research (Acharya et al., 2017a; Wu & Yang, 2019) unrealistically
assumed prior knowledge of the alphabet size k, and additionally that all positive probabilities
exceed 1/k. By contrast, our formulation does not need these assumptions. Intuitively, if a symbol’s
probability is so small that it won’t be detected even with n logn samples, we shouldn’t worry about it.

Refined bounds For some properties, our results are more refined than previously shown. For
example, existing results estimate the support size to within ±εk, rendering the estimates rather
inaccurate when the true support size S is much smaller than k. By contrast, the new estimation errors
are bounded by ±εS, and are therefore accurate regardless of the support size. A similar improvement
holds for the support coverage that we introduce below.

Graceful degradation For the previous results to work, one needs at least k/ log k samples. With
fewer samples, the estimators have no guarantees. By contrast, the guarantees of the new estimators
work for any sample size n. If n < k/ log k, the performance may degrade, but will still track that of
the empirical estimators with a factor logn more samples. See Theorem 1 for an example.

Instance optimality With the recent exception of Hao et al. (2018), all modern property-estimation
research took a min-max-related approach, evaluating the estimation improvement based on the worst
possible distribution for the property. In reality, practical distributions are rarely the worst possible
and often quite simple, rendering min-max approach overly pessimistic, and its estimators, typically
suboptimal in practice. In fact, for this very reason, practical distribution estimators do not use min-
max based approaches (Gale & Sampson, 1995). By contrast, our competitive, or instance-optimal,
approach provably ensures amplification for every underlying distribution, regardless of its structural
complexity or support size.

In addition, the proposed estimators run in time near-linear in the sample size, and the constants
involved are very small, attributes shared by some, though not all existing estimators.

Below, we formalize the foregoing discussion in definitions.

Let ∆k denote the collection of discrete distributions over [k] ∶= {1, . . . , k}. A distribution property
is a mapping F ∶ ∆k → R. It is additive if it can be written as

F (p) ∶= ∑
i∈[k]

fi(pi),

where fi ∶ [0,1]→ R are real functions. Many important distribution properties are additive:

Shannon entropy H(p) ∶= ∑i∈[k] −pi log pi, is the principal measure of information (Cover &
Thomas, 2012), and arises in a variety of machine-learning (Chow & Liu, 1968; Quinn et al., 2013;
Bresler, 2015), neuroscience (Mainen & Sejnowski, 1995; Steveninck et al., 1997; Gerstner & Kistler,
2002), and other applications.

L1 distance Dq(p) ∶= ∑i∈[k] ∣pi − qi∣, where q is a given distribution, is one of the most basic and
well-studied properties in the field of distribution property testing (Batu et al., 2000; Ron, 2010;
Valiant & Valiant, 2016; Canonne, 2017).
Support size S(p) ∶= ∑i∈[k] 1pi>0, is a fundamental quantity for discrete distributions, and plays
an important role in vocabulary size (McNeil, 1973; Efron & Thisted, 1976; Thisted & Efron, 1987)
and population estimation (Good, 1953; Mao & Lindsay, 2007).

Support coverage C(p) ∶= ∑i∈[k](1− (1− pi)m), for a given m, represents the number of distinct
elements we would expect to see in m independent samples, arises in many ecological (Chao, 1984;
Chao & Lee, 1992; Colwell et al., 2012; Chao & Chiu, 2014), biological (Chao, 1984; Kroes et al.,
1999), genomic (Ionita-Laza et al., 2009) as well as database (Haas et al., 1995) studies.

4

1 Prior and New Results

Given an additive property F and sample access to an unknown distribution p, we would like to
estimate the value of F (p) as accurately as possible. Let [k]n denote the collection of all length-n
sequences, an estimator is a function F̂ ∶ [k]n → R that maps samples Xn ∼ p to a property estimate
F̂ (Xn). We evaluate the performance of F̂ in estimating F by mean absolute error (MAE) 1,

LF̂ (p,n) ∶= E
Xn∼p

∣F̂ (Xn) − F (p)∣ .

Since we do not know p, the common approach is to consider the worst-case MAE of F̂ over ∆k,

LF̂ (n) ∶= max
p∈∆k

LF̂ (p,n).

The best-known and most commonly-used property estimator is the empirical plug-in estimator.
Upon observing Xn, let Ni denote the number of times symbol i ∈ [k] appears in Xn. The empirical
estimator estimates F (p) by

F̂E(Xn) ∶= ∑
i∈[k]

fi (
Ni
n

) .

Starting with Shannon entropy, it has been shown (Wu & Yang, 2016) that for n ≥ k, the worst-case
(max) MAE of the empirical estimator ĤE is

LĤE(n) = Θ(k
n
+ log k√

n
) . (1)

On the other hand, Jiao et al. (2015); Wu & Yang (2016); Acharya et al. (2017a); Hao & Orlitsky
(2019a,c) showed that for sample size n ≥ k/log k, more sophisticated estimators achieve the best
min-max performance of

L(n) ∶= min
F̂
LF̂ (n) = Θ(k

n logn
+ log k√

n
) . (2)

Hence up to constant factors, for the “worst” distributions, the MAE of these estimators with n
samples equals that of the empirical estimator with n logn samples. A similar relation holds for the
other three properties we consider.

However, the min-max formulation is pessimistic as it evaluates the estimator’s performance for the
worst distributions. In many practical applications, the underlying distribution is fairly simple and
does not attain this worst-case loss, rather, a much smaller MAE can be achieved. Several recent
works have therefore gone beyond worst-case analysis and designed algorithms that perform well
for all distributions, not just those with the worst performance (Orlitsky & Suresh, 2015; Valiant &
Valiant, 2016; Hao & Orlitsky, 2019b).

For property estimation, Hao et al. (2018) designed an estimator F̂A that for any underlying distribu-
tion uses n samples to achieve the performance of the n

√
logn-sample empirical estimator, hence

effectively multiplying the data size by a
√

logn amplification factor.
Lemma 1. For every F in a large property class including the aforementioned four properties, there
is an absolute constant cF such that for all distributions p, all ε ≤ 1, and all n ≥ 1,

LF̂A(p,n) −LF̂E(p, εn
√

logn) ≤ cF ⋅ ε.

In the subsequent sections, we fully strengthen the above result and establish the limits of data
amplification for all sufficiently smooth additive properties including four of the most important ones,
and all that are appropriately Lipschitz.

Using Shannon entropy as an example, we achieve a logn amplification factor. Equations (1) and (2)
imply that the improvement over the empirical estimator cannot always exceedO(logn), hence up to
an absolute constant, this amplification factor is information-theoretically optimal. Similar optimality
arguments hold for our results on the other three properties (see Table 1 in Acharya et al. (2017a)).

1As we aim to estimate only a single property value, the estimators in this paper all have negligible variances,
e.g., O(1/n0.9

). Hence the MAE is the same as MSE for our purpose, and we choose the former because it
induces cleaner expressions.

5

Specifically, we derive efficient estimators Ĥ , D̂, Ŝ, Ĉ, and F̂ for the Shannon entropy, L1 distance,
support size, support coverage, and a broad class of additive properties which we refer to as Lipschitz
properties. These estimators run in near-linear time, take a single parameter ε, and given samples
Xn ∼ p, amplify the data as described below.

For brevity, henceforth we shall write a∧ b and a ≲ b instead of min{a, b} and a = O(b), respectively,
and abbreviate support size S(p) by Sp and coverage C(p) by Cp.

The following five theorems hold for all ε ≤ 1, all distributions p, and all n ≥ 1.
Theorem 1 (Shannon entropy).

LĤ(p,n) −LĤE(p, εn logn) ≲ ε ∧ (
Sp

n
+ 1

n0.49
) .

Note that the estimator requires no knowledge of Sp or k. When ε = 1, the estimator amplifies the
data by a factor of logn. As ε decreases, the amplification factor decreases, and so does the extra
additive inaccuracy. One can also set ε to be a vanishing function of n, e.g., ε = 1/ log logn.

This result may be interpreted as follows. For distributions with large support sizes such that the
min-max estimators provide no or only very weak guarantees, our estimator with n samples always
tracks the performance of the n logn-sample empirical estimator. On the other hand, for distributions
with relatively small support sizes, our estimator achieves a near-optimal O(Sp/n)-error rate.

Similarly, for L1 distance to a fixed distribution q,

Theorem 2 (L1 distance). For any q, we can construct an estimator D̂q for Dq such that

LD̂q
(p,n) −LD̂E

q
(p, ε2n logn) ≲ ε ∧

⎛
⎝

√
Sp

n
+ 1

n0.49

⎞
⎠
.

Besides having an interpretation similar to that of Theorem 1, the above result shows that for each q
and each p, we can use just n samples to achieve the performance of the n logn-sample empirical
estimator. More generally, for any additive property F (p) ∶= ∑i∈[k] fi(pi) that satisfies the simple
condition: fi is O(1)-Lipschitz, for all i,

Theorem 3 (General additive properties). Given F , we can construct an estimator F̂ such that

LF̂ (p,n) −LF̂E(p, ε2n logn) ≲ ε ∧
⎛
⎝

√
Sp

n
+ 1

n0.49

⎞
⎠
.

The results in Kamath et al. (2015) show that no plug-in estimators provide those theoretical guar-
antees presented in Theorem 2 and 3. Henceforth, we refer to the above collection of distribution
properties as the class of Lipschitz properties. The L1 distance Dq , for any q, is in this class.

Lipschitz properties are essentially bounded by absolute constants and Shannon entropy grows at
most logarithmically in the support size, and we were able to approximate all with just an additive
error. Support size and support coverage can grow linearly in k and m, and can be approximated
only multiplicatively. We therefore evaluate the estimator’s normalized performance, regarding the
property value. Note that for both properties, the amplification factor is logarithmic in the property
value, which can be arbitrarily larger than the sample size n.

The following two theorems hold for ε ≤ e−2,
Theorem 4 (Support size).

1

Sp
(LŜ(p,n) −LŜE(p,n ⋅

logSp

log2 ε
)) ≲ ε + S

1
∣ logε∣−

1
2

p .

To make the slack term vanish, one can simply set ε to be a vanishing function of n (or Sp), e.g.,
ε = 1/ logn. Note that in this case, the slack term modifies the multiplicative error in estimating Sp
by only o(1), which is negligible in most applications. Similarly, for support coverage,
Theorem 5 (Support coverage).

1

Cp
(LĈ(p,n) −LĈE(p,n ⋅

logCp

log2 ε
)) ≲ ε +C

1
∣ logε∣−

1
2

p .

The next section presents implications of these results.

6

2 Implications and Outline

2.1 Theoretical Implications

Data amplification Numerous modern scientific applications, such as those emerging in social
networks and genomics, deal with properties of distributions whose support size Sp is equal to or
even larger than the sample size n.

In this data-sparse regime, the estimation error of the empirical estimator often decays at a slow
rate, e.g., 1/ logc n for some c ∈ (0,1), hence the proposed estimators yield a much more accurate
estimate, paralleling that of the empirical with n logn samples. For applications where n ≥ 25,000
and regardless of the distribution structure, our approach significantly amplifies the number of samples
by at least a factor of 10, known by practitioners as an “order of magnitude”.

As for the data-rich regime where n≫ Sp, our method essentially recovers the the standard
√
Sp/n

rate of maximum likelihood methods in general, without knowing Sp.

Instance optimality With just n samples, our method emulates the performance of the n logn-
sample empirical estimator for every distribution instance. The method hence possesses the vital
ability of strengthening all MAE guarantees of the empirical estimator by a logarithmic factor, which
is optimal in many settings.

The significance of such “instance optimality” arises from 1) empirical estimators are often simple
and easy to analyze; 2) there is a rich literature on their estimation attributes, for example, Bustamante
(2017) and the references therein; 3) empirical estimators are the best-known and most-used.

Consequently, we can work on a simple problem, analyzing the performance of the empirical
estimator, and immediately strengthen the result we obtain by a logarithmic-factor using the theorems
in this paper. In many cases, the strengthened results are challenging to establish via other statistical
methods. We present two examples below.

Entropy Consider entropy estimation over ∆k. As Equation 2 shows, the min-max MAE is known
for n ≥ k/ log k, and essentially becomes a constant when n gets close to the k/ log k lower bound.
Nevertheless, over an alphabet of size k, the value of entropy can go up to log k. Hence, it is still
possible to get meaningful estimation results in the n = o(k/ log k) large-alphabet regime.

We follow the above strategy to solidify the statement. First, for empirical estimator ĤE, Paninski
(2003) [see Proposition 1] provides a short argument showing that its worst-case MAE, for all n and
all k, satisfies the elegant bound

LĤE(n) ≤ log (1 + k − 1

n
) + logn√

n
.

Consolidating this inequality with Theorem 1 then implies
Corollary 1. In the n = o(k/ log k) large-alphabet regime, the min-max MAE of estimating Shannon
entropy, which can be as large as log k, satisfies

L(n) ≤ (1 + o(1)) log (1 + k − 1

n logn
) .

Lipschitz Property The same type of arguments apply to any Lipschitz property F . Again, we
begin with characterizing the performance of the empirical estimator F̂E. By Lemma 18 and the
Cauchy-Schwarz inequality, the bias of F̂E is at most O(

√
k/n). By the Efron-Stein inequality, the

standard deviation is no more than O(1/
√
n).

It then follows by Theorem 3 that: F̂ estimates F over ∆k to an MAE of ε with O(k/(ε3 log k))
samples. Note that 1) this yields the first estimator for Lipschitz properties with optimal sample
dependence on k; 2) after a draft of this paper became available online, Hao & Orlitsky (2019c)
improved the sample dependence on ε to the optimal ε2.

7

2.2 Supplementary Outline

For notational convenience, let h(p) ∶= −p log p for entropy, `q(p) ∶= ∣p − q∣ − q for L1 distance,
s(p) ∶= 1p>0 for support size, and c(p) ∶= 1 − (1 − p)m for support coverage. Below, we provide an
outline of the remaining contents and a high-level overview of our techniques.

In the main body, we focus on Shannon entropy and prove a weaker version of Theorem 1.

Theorem 6. For all ε ≤ 1 and all distributions p, the estimator Ĥ described in Section 5 satisfies

LĤ(p,n) −LĤE(p, εn logn) ≤ (1 + c ⋅ ε) ∧ (
Sp

εn
+ 1

n0.49
) .

The proof of Theorem 6 in the rest of the paper is organized as follows. In Section 3, we present a
few useful concentration inequalities for Poisson and binomial random variables. In Section 4, we
relate the n-sample empirical estimator’s bias to the degree-n Bernstein polynomial Bn(h,x) via
Bn(h, pi) = E[h(Ni/n)]. In Section 4.1, we show that the absolute difference between the derivative
of Bn(h,x) and a simple function hn(x) is at most 1, uniformly for all x ≤ 1 − (n − 1)−1.

Let a ∶= ε logn be an amplification parameter. In Section 4.2, we approximate hna(x) by a degree-
Θ(logn) polynomial h̃na(x) and bound the approximation error uniformly by c ⋅ ε. Let H̃na(x) ∶=
∫
x

0 h̃na(t)dt. By construction, ∣B′
na(h,x)− h̃na(x)∣ ≤ ∣B′

na(h,x)− hna(x)∣+ ∣hna(x)− h̃na(x)∣ ≤
1 + c ⋅ ε, implying ∣H̃na(x) −Bna(h,x)∣ ≤ x(1 + c ⋅ ε).

In Section 5, we construct our estimator Ĥ as follows.

First, we divide the symbols into small- and large- probability symbols according to their counts in
an independent n-element sample sequence. The concentration inequalities in Section 3 imply that
this step can be performed with relatively high confidence. Then, we estimate the partial entropy of
each small-probability symbol i with a near-unbiased estimator of H̃na(pi), and the combined partial
entropy of the large-probability symbols with a simple variant of the empirical estimator. The final
estimator is the sum of these small- and large- probability estimators.

In Section 6, we bound the bias of Ĥ . In Sections 6.1 and 6.2, we use properties of H̃na and the
Bernstein polynomials to bound the partial biases of the small- and large-probability estimators in
terms of n, respectively. The critical observation is ∣∑i(H̃na(pi) −Bna(h, pi))∣ ≤ ∑i pi(1 + c ⋅ ε) =
1 + c ⋅ ε, implying that the small-probability estimator has a low bias. To bound the bias of the
large-probability estimator, we principally rely on the elegant inequality ∣Bn(h,x) − h(x)∣ ≤ 1/n.

By the triangle inequality, it remains to bound the mean absolute deviation of Ĥ . We bound this
quantity by bounding the partial variances of the small- and large- probability estimators in Section 7.1
and Section 7.2, respectively. Intuitively speaking, the small-probability estimator has a small variance
because it is constructed based on a low-degree polynomial; the large-probability estimator has a
small variance because h(x) is smoother for larger values of x.

To demonstrate the efficacy of our methods, in Section 8, we compare the experimental performance
of our estimators with that of the state-of-the-art property estimators for Shannon entropy and support
size over nine distributions. Our competitive estimators outperformed these existing algorithms on
nearly all the experimented instances.

Replacing the simple function hn(x) by a much finer approximation ofBn(h,x) based on differential
smoothing, we establish the full version of Theorem 1 in Appendix A. Applying similar techniques, we
prove the other four results in Appendices B (Theorem 2 and 3), D (Theorem 4), and E (Theorem 5).

Computational complexity Section 9 presents the Remez algorithm (Remez, 1934; Pachón &
Trefethen, 2009; Trefethen, 2013) for computing the best polynomial approximation of a function,
and shows that it takes only Õ(n) time to compute our approximation-based estimators.

8

3 Concentration Inequalities

The following lemma gives tight tail probability bounds for Poisson and binomial random variables.
Lemma 2 (Chung & Lu (2006)). Let X be a Poisson or binomial random variable with mean µ,
then for any δ > 0,

P(X ≥ (1 + δ)µ) ≤ (eδ

(1 + δ)(1+δ)
)
µ

≤ e−(δ
2
∧δ)µ/3,

and for any δ ∈ (0,1),

P(X ≤ (1 − δ)µ) ≤ (e−δ

(1 − δ)(1−δ)
)
µ

≤ e−δ
2µ/2.

4 Approximating Bernstein Polynomials

With n samples, the bias of the empirical estimator in estimating H(p) is

Biasn(ĤE, p) ∶= E[ĤE(Xn)] −H(p).

By the linearity of expectation, the right-hand side equals

E[ĤE(Xn)] −H(p) = ∑
i∈[k]

(E [h(Ni
n

)] − h(pi)) .

Noting that the degree-n Bernstein polynomial of h is

Bn(h,x) ∶= E
Nx∼bin(n,x)

[h(Nx
n

)] =
n

∑
j=0

h(j
n
)(n
j
)xj(1 − x)n−j ,

we can express the bias of the empirical estimator as

Biasn(ĤE, p) = ∑
i∈[k]

(Bn(h, pi) − h(pi)) .

Given a sampling number n and a parameter ε ≤ 1, define the amplification factor a ∶= ε logn. Let
cl and cs be sufficiently large and small absolute constants, respectively. In the following sections,
we find a polynomial h̃na(x) of degree d − 1 ∶= dn − 1 ∶= cs logn − 1, whose error in approximating
B′
na(h,x) over In ∶= [0, τn] ∶= [0, cl(logn)/n] satisfies

∣B′
na(h,x) − h̃na(x)∣ ≤ 1 +O(ε).

By the triangle inequality of integrals, the degree-d polynomial

H̃na(x) ∶= ∫
x

0
h̃na(t)dt,

approximates Bna(h,x) with the following pointwise error guarantee.
Lemma 3. For any x ∈ In,

∣Bna(h,x) − H̃na(x)∣ ≤ x (1 +O (ε)) .

In Section 4.1, we relate B′
n(h,x) to a simple function hn(x) that can be expressed in terms of h(x).

In Section 4.2, we approximate hn(x) by a linear combination of degree-d min-max polynomials of
h(x) over different intervals. The resulting polynomial is h̃na(x).

4.1 Derivative of Bernstein Polynomials

According to Bustamante (2017), the first-order derivative of the Bernstein polynomial Bn(h,x) is

B′
n(h,x) ∶=

n−1

∑
j=0

n(h(j + 1

n
) − h(j

n
))(n − 1

j
)xj(1 − x)(n−1)−j .

9

Hence, letting

hn(x) ∶= n(h((n − 1

n
)x + 1

n
) − h((n − 1

n
)x)) ,

we can write derivative B′
n as

B′
n(h,x) =

n−1

∑
j=0

hn (j

n − 1
)(n − 1

j
)xj(1 − x)(n−1)−j = Bn−1(hn, x).

Recall that h(x) = −x logx. After some algebra, we get

hn(x) = − log (n − 1

n
) + (n − 1) (h(x + 1

n − 1
) − h(x)) .

Furthermore, utilizing analytical attributes of h(x) (Berens et al., 1972), we can bound the absolute
difference between h(x) and its Bernstein polynomial as follows.
Lemma 4. For any m > 0 and x ∈ [0,1],

−1 − x
m

≤ Bm(h,x) − h(x) ≤ 0.

As an immediate corollary,
Corollary 2. For any x ∈ [0,1 − (n − 1)−1],

∣B′
n(h,x) − hn(x)∣ = ∣Bn−1(hn, x) − hn(x)∣ ≤ 1.

Proof. Given the equality B′
n(h,x) = Bn−1(hn, x) for x ∈ [0,1 − (n − 1)−1],

∣Bn−1(hn, x) − hn(x)∣ ≤ (n − 1)∣(Bn−1(h,x + (n − 1)−1) − h(x + (n − 1)−1))
− (Bn−1(h,x) − h(x))∣

≤ (n − 1) ∣max{1 − x − (n − 1)−1

n − 1
,

1 − x
n − 1

}∣

≤ 1,

where the second inequality follows by Lemma 4.

4.2 Approximating the Derivative Function

Denote the degree-d min-max polynomial of h over [0,1] by

h̃(x) ∶=
d

∑
j=0

bjx
j .

As shown in Wu & Yang (2016), the coefficients of h̃(x) satisfy

∣bj ∣ ≲ 23d,

and the error of h̃(x) in approximating h(x) admits

max
x∈[0,1]

∣h(x) − h̃(x)∣ ≲ 1

log2 n
.

By a change of variables, the degree-d min-max polynomial of h over In = [0, cl logn/n] is

h̃1(x) ∶=
d

∑
j=0

bj (
n

cl logn
)
j−1

xj + (log
n

cl logn
)x.

Correspondingly, for any x ∈ In, we have

max
x∈In

∣h(x) − h̃1(x)∣ ≲
1

n logn
.

10

To approximate hna(x), we approximate h(x) by h̃1(x), and h(x+(na−1)−1) by h̃1(x+(na−1)−1).
Then, the resulting polynomial is

h̃na(x) ∶= − log
na − 1

na
+ (na − 1) (h̃1(x + (na − 1)−1) − h̃1(x))

= − log
na − 1

cla logn
+ (na − 1)

⎛
⎝

d

∑
j=0

bj (
n

cl logn
)
j−1

((x + 1

na − 1
)
j

− xj)
⎞
⎠
.

By the above reasoning, the error of h̃na in approximating hna over In satisfies

max
x∈In

∣hna(x) − h̃na(x)∣ ≲
na

n logn
≲ ε.

Moreover, by an application of Corollary 2,

max
x∈[0,1/2]

∣B′
na(h,x) − hna(x)∣ = max

x∈[0,1/2]
∣Bna−1(hna, x) − hna(x)∣ ≤ 1.

The triangle inequality combines the above two inequalities and yields

max
x∈In

∣B′
na(h,x) − h̃na(x)∣ ≤ 1 +O (ε) .

Therefore, denoting

H̃na(x) ∶= ∫
x

0
h̃na(t)dt,

and noting that Bna(h,0) = 0, we have
Lemma 5. For any x ∈ In,

∣Bna(h,x) − H̃na(x)∣ ≤ ∫
x

0
∣B′
na(h, t) − h̃na(t)∣dt ≤ x (1 +O (ε)) .

5 A Competitive Entropy Estimator

In this section, we design an explicit entropy estimator Ĥ based on H̃na and the empirical estimator.
Note that H̃na(x) is a polynomial with a zero constant term. For t ≥ 1, denote

gt ∶=
d

∑
j=t

bj

j + 1
(n

cl logn
)
j−1

(1

na − 1
)
j−t

(j + 1

j − t + 1
).

Setting b′t = gt for t ≥ 2 and b′1 = g1 − log na−1
cla logn

, we have the following lemma.

Lemma 6. The function H̃na(x) can be written as

H̃na(x) =
d

∑
t=1

b′tx
t.

In addition, its coefficients satisfy

∣b′t∣ ≲ 24d (n

cl logn
)
t−1

.

The proof of the above lemma is postponed to the end of this section.

To simplify our analysis and remove the dependency between symbol counts, we use the conventional
Poisson sampling technique (Wu & Yang, 2016; Acharya et al., 2017a). Specifically, instead of
drawing exactly n samples, we make the sample size an independent Poisson random variable N with
mean n. This does not change the statistical nature of the problem as N ∼ Poi(n) highly concentrates
around its mean (see Lemma 2). We still define Ni as the count of symbol i in XN . Due to Poisson
sampling, these counts are now mutually independent and satisfy Ni ∼ Poi(npi), ∀i ∈ [k].

For each i ∈ [k], let N t
i ∶= ∏

t−1
m=0(Ni −m) be the t-th order falling factorial of Ni. The following

identity is well-known:
E[N t

i] = (npi)t, ∀t ≤ n.

11

Note that for sufficiently small cs or sufficiently large n, the degree parameter d = cs logn ≤ n,∀n.
By the linearity of expectation, the unbiased estimator of H̃na(pi) is

Ĥna(Ni) ∶=
d

∑
t=1

b′t
N
t
i

nt
.

Let N ′ be an independent Poisson variable with mean n, and XN ′

be an independent length-N ′

sample sequence drawn from p. Analogously, we denote by N ′
i the number of times that symbol

i ∈ [k] appears. Depending on whether N ′
i > ε−1 or not, we classify pi, i ∈ [k], into two categories:

small- and large- probabilities. For small probabilities, we apply a simple variant of Ĥna(Ni); for
large probabilities, we estimate h(pi) by an empirical-estimator variant.

Specifically, for each i ∈ [k], we estimate h(pi) by

ĥ(Ni,N ′
i) ∶= Ĥna(Ni) ⋅ 1Ni≤cl logn ⋅ 1N ′

i≤ε
−1 + h(Ni

n
) ⋅ 1N ′

i>ε
−1 .

Consequently, we approximate H(p) by

Ĥ(XN ,XN ′

) ∶= ∑
i∈[k]

ĥ(Ni,N ′
i).

For the simplicity of illustration, we will refer to

ĤS(XN ,XN ′

) ∶= ∑
i∈[k]

Ĥna(Ni) ⋅ 1Ni≤cl logn ⋅ 1N ′

i≤ε
−1

as the small-probability estimator, and

ĤL(XN ,XN ′

) ∶= ∑
i∈[k]

h(Ni
n

) ⋅ 1N ′

i>ε
−1

as the large-probability estimator. Then, Ĥ is the sum of these two estimators.

In the next two sections, we analyze the bias and mean absolute deviation of Ĥ . In Section 6, we
show that for any p, the absolute bias of Ĥ satisfies

∣E[Ĥ(XN ,XN ′

)] −H(p)∣ ≤ ∣Bias(ĤE , na)∣ + (1 +O (ε)) (1 ∧ (ε−1 + 1)
Sp

n
) .

In Section 7, we further show that the mean absolute deviation of Ĥ satisfies

E ∣Ĥ(XN ,XN ′

) −E[Ĥ(XN ,XN ′

)]∣ ≲ 1

n1−Θ(cs)
.

For sufficiently small cs, the triangle inequality combines the above inequalities and yields

E ∣Ĥ(XN ,XN ′

) −H(p)∣ ≤ Bias(ĤE , na) + (1 + c ⋅ ε) ∧ (
Sp

εn
+ 1

n0.49
) .

This basically completes the proof of Theorem 6.

Proof of Lemma 6

We begin by proving the first claim:

H̃na(x) = −
d

∑
t=1

b′tx
t.

By definition, H̃na(x) satisfies

H̃na(x) + (log
na − 1

cla logn
)x

= (na − 1)
⎛
⎝

d

∑
j=1

bj

j + 1
(n

cl logn
)
j−1

((x + 1

na − 1
)
j+1

− (1

na − 1
)
j+1

− xj+1)
⎞
⎠

=
d

∑
j=1

bj

j + 1
(n

cl logn
)
j−1

(
j−1

∑
m=0

(1

na − 1
)
m

xj−m(j + 1

m + 1
))

=
d

∑
t=1

xt
⎛
⎝

d

∑
j=t

bj

j + 1
(n

cl logn
)
j−1

(1

na − 1
)
j−t

(j + 1

j − t + 1
)
⎞
⎠
,

12

where the last step follows by reorganizing the indices.

Next we establish the second claim. Recall that d = cs logn, thus,

log
na − 1

cla logn
≲ 24d.

Since b′t = gt for t ≥ 2 and b′1 = g1 − log na−1
cla logn

, it suffices to bound the magnitude of gt:

∣gt∣ ≤
d

∑
j=t

∣bj ∣
j + 1

(n

cl logn
)
j−1

(1

na − 1
)
j−t

(j + 1

j − t + 1
)

≤
d

∑
j=t

∣bj ∣ (
1

cl logn
)
j−1

nt−1(j
t
)

≤ (n

cl logn
)
t−1 d

∑
j=t

∣bj ∣ (
j

t
)

≤ (n

cl logn
)
t−1 d

∑
j=t

∣bj ∣ (
d

j − t
)

≲ 24d (n

cl logn
)
t−1

.

6 Bounding the Bias of Ĥ

By the triangle inequality, the absolute bias of Ĥ in estimating H(p) satisfies
RRRRRRRRRRRR
∑
i∈[k]

(E[ĥ(Ni,N ′
i)] − h(pi))

RRRRRRRRRRRR
≤
RRRRRRRRRRRR
∑
i∈[k]

(Bna(h, pi) − h(pi))
RRRRRRRRRRRR

+
RRRRRRRRRRRR
∑
i∈[k]

(E[ĥ(Ni,N ′
i)] −Bna(h, pi))

RRRRRRRRRRRR
.

Note that the first term on the right-hand side is the absolute bias of the empirical estimator with
sample size na = εn logn, that is,

Biasna(ĤE, p) =
RRRRRRRRRRRR
∑
i∈[k]

(Bna(h, pi) − h(pi))
RRRRRRRRRRRR
.

Hence, we need to consider only the second term on the right-hand side, which admits
RRRRRRRRRRRR
∑
i∈[k]

(E[ĥ(Ni,N ′
i)] −Bna(h, pi))

RRRRRRRRRRRR
≤ BiasS +BiasL,

where

BiasS ∶=
RRRRRRRRRRRR
∑
i∈[k]

E [(Ĥna(Ni) ⋅ 1Ni≤cl logn −Bna(h, pi)) ⋅ 1N ′

i≤ε
−1]

RRRRRRRRRRRR
is the absolute bias of the small-probability estimator, and

BiasL ∶=
RRRRRRRRRRRR
∑
i∈[k]

E [(h(Ni
n

) −Bna(h, pi)) ⋅ 1N ′

i>ε
−1]

RRRRRRRRRRRR
is the absolute bias of the large-probability estimator.

Assume that cl is sufficiently large. In Section 6.1, we bound the small-probability bias by

BiasS ≤ (1 +O (ε)) (1 ∧ (ε−1 + 1)
Sp

n
) .

In Section 6.2, we bound the large-probability bias by

BiasL ≤ 2(ε ∧
Sp

n
) .

13

6.1 Bias of the Small-Probability Estimator

We first consider and analyze BiasS . By the triangle inequality,

BiasS ≤ ∑
i∶pi/∈In

∣E[Ĥna(Ni) ⋅ 1Ni≤cl logn] −Bna(h, pi)∣ ⋅E[1N ′

i≤ε
−1]

+ ∑
i∶pi∈In

∣E [Ĥna(Ni)] −Bna(h, pi)∣ ⋅E[1N ′

i≤ε
−1]

+ ∑
i∶pi∈In

∣E [Ĥna(Ni) ⋅ 1Ni>cl logn] ⋅E [1N ′

i≤ε
−1]∣ .

Let us assume ε logn ≥ 1 and consider the first sum on the right-hand side. By the general reasoning
in the proof of Lemma 7, we can show that

Ĥna(Ni) ⋅ 1Ni≤cl logn ≲ 25d ⋅ log2 n

n
.

Further assume that cs and cl are sufficiently small and large, respectively. For large enough n, the
above inequality bounds the first sum by

∑
i∶pi/∈In

∣Ĥna(Ni) ⋅ 1Ni≤cl logn −Bna(h, pi)∣ ⋅E[1N ′

i≤ε
−1] ≤ ∑

i∶pi/∈In

E[1N ′

i≤ε
−1] ≤ 1

n5
⋅ n

cl logn
≤ 1

n4
.

For the second sum on the right-hand side, by Lemma 5,

∑
i∶pi∈In

∣E [Ĥna(Ni)] −Bna(h, pi)∣ ⋅E[1N ′

i≤ε
−1] ≤ ∑

i∶pi∈In

∣E [Ĥna(Ni)] −Bna(h, pi)∣ ⋅E[1N ′

i≤ε
−1]

= ∑
i∶pi∈In

∣H̃na(pi) −Bna(h, pi)∣ ⋅E[1N ′

i≤ε
−1]

≤ ∑
i∶pi∈In

(1 +O (ε))pi ⋅E[1N ′

i≤ε
−1]

≤ (1 +O (ε)) (1 ∧ (ε−1 + 1)
Sp

n
) .

The following lemma bounds the last sum and completes our argument.

Lemma 7. For sufficiently large cl,

∑
i∈[k]

∣E [Ĥna(Ni) ⋅ 1Ni>cl logn] ⋅E [1N ′

i≤ε
−1]∣ ≤ 1

n5
.

Proof. For simplicity, we assume that cl ≥ 4 and ε logn ≥ 1. By the triangle inequality,

∣E [Ĥna(Ni) ⋅ 1Ni>cl logn] ⋅E [1N ′

i≤ε
−1]∣

≤
∞

∑
j=1

∣E [Ĥna(Ni) ⋅ 1cl(j+1) logn≥Ni>clj logn] ⋅E [1N ′

i≤ε
−1]∣ .

To bound the last term, we rely on the following result: For any j ≥ 1,

∣E [1cl(j+1) logn≥Ni>clj logn] ⋅E [1N ′

i≤ε
−1]∣ ≤ (1 + ε−1)npi ⋅ e−Θ(clj logn).

To prove this inequality, we apply Lemma 2 and consider two cases:
Case 1: If npi < (3cl/8)j logn, then

E [1cl(j+1) logn≥Ni>clj logn] ≤ npi ⋅ e−Θ(clj logn).

Case 2: If npi ≥ (3cl/8)j logn, then

E [1N ′

i≤ε
−1] ≤ npiε−1 ⋅ e−Θ(clj logn).

14

This essentially completes the proof. Next, we bound Ĥna(Ni) for Ni ∈ [clj logn, cl(j + 1) logn]:

∣Ĥna(Ni)∣ =
RRRRRRRRRRR
(log

na − 1

cla logn
) Ni
n
+

d

∑
t=1

b′t
N
t
i

nt

RRRRRRRRRRR

≲ 24d ⋅
cs logn

∑
t=1

(n

cl logn
)
t−1 (cl(j + 1) logn)t

nt

≲ 25d ⋅ clj logn

n

cs logn

∑
t=1

jt−1

≲ 25d ⋅ clj logn

n
(jcs logn + cs logn).

Hence, for sufficiently large cl,

∣E [Ĥna(Ni) ⋅ 1Ni>cl logn] ⋅E [1N ′

i≤ε
−1]∣

≤
∞

∑
j=1

∣E [Ĥna(Ni) ⋅ 1cl(j+1) logn≥Ni>clj logn] ⋅E [1N ′

i≤ε
−1]∣

≤
∞

∑
j=1

O(25d) ⋅ clj logn(jcs logn + cs logn) ⋅E [1cl(j+1) logn≥Ni>clj logn] ⋅E [1N ′

i≤ε
−1]

≲ 25d ⋅
∞

∑
j=1

(1 + ε−1)pi ⋅ e−Θ(clj logn) ⋅ clj logn(jcs logn + cs logn)

≤ pi
∞

∑
j=1

1

2n5j

≤ pi
n5
.

Summing the right-hand side over i ∈ [k] yields the desired result.

6.2 Bias of the Large-Probability Estimator

This section proves the bias bound BiasL ≤ 2 (ε ∧ (Sp/n)). By the triangle inequality,

BiasL ≤ ∑
i∈[k]

∣E [h(Ni
n

) −Bna(h, pi)]∣ ⋅E [1N ′

i>ε
−1]

≤ ∑
i∈[k]

∣h(pi) −Bna(h, pi)∣ ⋅E [1N ′

i>ε
−1] + ∑

i∈[k]

∣E [h(Ni
n

) − h(pi)]∣ ⋅E [1N ′

i>ε
−1] .

We need the following inequality to bound the right-hand side.

0 ≤ x logx − (x − 1) ≤ (x − 1)2, ∀x ∈ [0,1].
For simplicity, denote p̂i ∶= Ni/n. Then,

∣E [h(Ni
n

) − h(pi)]∣ = ∣E[pi log pi − p̂i log p̂i]∣

≤ ∣E[pi log pi − p̂i log pi]∣ + ∣E[p̂i log pi − p̂i log p̂i]∣

= pi ⋅ ∣E [p̂i
pi

log
p̂i
pi

]∣

≤ pi ⋅ ∣E [(p̂i
pi
− 1) + (p̂i

pi
− 1)

2

]∣

= 1

n
.

Replacing n by na in the above argument yields

∣h(pi) −Bna(h, pi)∣ ≤
1

na
.

15

Consider the first term on the right-hand side. By the last bound and Markov’s inequality,

∑
i∈[k]

∣h(pi) −Bna(h, pi)∣ ⋅E [1N ′

i>ε
−1] ≤ 1

na
∑
i∈[k]

E [1N ′

i>ε
−1]

≤ 1

na
∑
i∈[k]

(1pi>0 ∧ εnpi)

≤ ε ∧
Sp

n
.

For the second term, an analogous argument yields

∑
i∈[k]

∣E [h(Ni
n

) − h(pi)]∣ ⋅E [1N ′

i>ε
] ≤ ε ∧

Sp

n
.

7 Bounding the Mean Absolute Deviation of Ĥ

By Jensen’s inequality,

E∣Ĥ(XN ,XN ′

) −E[Ĥ(XN ,XN ′

)]∣ ≤
√

Var(Ĥ(XN ,XN ′)).

Hence, to bound the mean absolute deviation of Ĥ , it suffices to bound its variance. Note that the
symbol counts are mutually independent. The inequality Var(X+Y) ≤ 2(Var(X)+Var(Y)) implies

Var(Ĥ(XN ,XN ′

)) = ∑
i∈[k]

Var(ĥ(Ni,N ′
i)) ≤ 2VarS + 2VarL,

where
VarS ∶= ∑

i∈[k]

Var (Ĥna(Ni) ⋅ 1Ni≤cl logn ⋅ 1N ′

i≤ε
−1)

is the variance of the small-probability estimator, and

VarL ∶= ∑
i∈[k]

Var(h(Ni
n

) ⋅ 1N ′

i>ε
−1)

is the variance of the large-probability estimator. Assume that cl and cs are sufficiently large and
small absolute constants. In Section 7.1 and 7.2, we will respectively establish

VarS ≲
1

n1−Θ(cs)
and VarL ≲

(logn)3

n
.

7.1 Variance of the Small-Probability Estimator

First we bound the small-probability variance VarS and prove VarS ≤ O (1/n1−Θ(cs)). Following
the sequence of derivations in Section 6.1,

VarS ≤ 2 ∑
i∈[k]

Var (Ĥna(Ni) ⋅ 1Ni>cl logn ⋅ 1N ′

i≤ε
−1)

+ 2 ∑
i∈[k]

Var (Ĥna(Ni) ⋅ 1N ′

i≤ε
−1)

≤ 2 ∑
i∈[k]

E[(Ĥna(Ni))2 ⋅ 1Ni>cl logn] ⋅E[1N ′

i≤ε
−1]

+ 2 ∑
i∈[k]

Var (Ĥna(Ni)) ⋅E[1N ′

i≤ε
−1] + 2 ∑

i∈[k]

(E[Ĥna(Ni)])2 ⋅Var(1N ′

i≤ε
−1)

≤ 2 ∑
i∈[k]

E[(Ĥna(Ni))2 ⋅ 1Ni>cl logn] ⋅E[1N ′

i≤ε
−1]

+ 2 ∑
i∈[k]

Var (Ĥna(Ni)) ⋅E[1N ′

i≤ε
−1] + 2 ∑

i∈[k]

(H̃na(pi))2 ⋅Var(1N ′

i≤ε
−1),

16

where the first step follows by Var(X − Y) ≤ 2(Var(X) +Var(Y)), the second step follows from
Var(A ⋅B) = E[A2]Var(B)+Var(A)(E[B])2 for any independent random variables A and B, and
the last step follows from our construction, which satisfies E[Ĥna(Ni)] = H̃na(pi).

Similar to the proof of Lemma 7, for the first term on the right-hand side and sufficiently large cl,

∑
i∈[k]

∣E [(Ĥna(Ni))2 ⋅ 1Ni>cl logn] ⋅E [1N ′

i≤ε
−1]∣ ≤ ∑

i∈[k]

pi
n3

= 1

n3
.

As for the second term on the right-hand side,

∑
i∈[k]

Var (Ĥna) ⋅E[1N ′

i≤ε
−1] ≲ 28d ⋅ ∑

i∈[k]

d
d

∑
t=1

(n

cl logn
)

2(t−1) Var(N t
i)

n2t
⋅E[1N ′

i≤ε
−1]

≤ 28d ⋅ d
n2 ∑

i∈[k]

d

∑
t=1

(1

cl logn
)

2(t−1)

Var(N t
i) ⋅E[1N ′

i≤ε
−1]

≤ 28d ⋅ d
n2 ∑

i∈[k]

d

∑
t=1

(1

cl logn
)

2(t−1)

(npi)t
t−1

∑
j=0

(t
j
)(npi)j

t!

j!
⋅E[1N ′

i≤ε
−1]

≤ 28d ⋅ d
n2 ∑

i∈[k]

d

∑
t=1

(1

cl logn
)

2(t−1)

(npi)t(t + npi)t ⋅E[1N ′

i≤ε
−1]

≤ 28d ⋅ d
n2 ∑

i∈[k]

d

∑
t=1

(1

cl logn
)

2(t−1)

2t((npi)2t + (npi)ttt) ⋅Pr(N ′
i ≤ ε−1)

≤ 28d ⋅ d
n
∑
i∈[k]

pi
d

∑
t=1

(1

cl logn
)

2(t−1)

2t ((ε−1 + 2t)2t−1 ⋅Pr(N ′
i ≤ ε−1 + 2t)

+ (ε−1 + t)t−1tt ⋅Pr(N ′
i ≤ ε−1 + t))

≲ 29d ⋅ d
n
.

It remains to bound the third term. Leveraging ∣H̃na(pi)∣ ≲ pi25d shows that

∑
i∈[k]

(H̃na(pi))2 ⋅Var(1N ′

i≤ε
−1)

≲ 28d ⋅ ∑
i∈[k]

d

∑
t=1

(n

cl logn
)

2(t−1)

p2t
i ⋅Var(1N ′

i≤ε
−1)

≤ 28d ⋅ ∑
i∈[k]

d

∑
t=1

(n

cl logn
)

2(t−1)

p2t
i ⋅Pr(N ′

i ≤ ε−1)

= 28d ⋅ ∑
i∈[k]

pi
d

∑
t=1

(n

cl logn
)

2(t−1)

p2t−1
i ⋅

ε−1

∑
m=0

e−npi
(npi)m

m!

≤ 28d ⋅ ∑
i∈[k]

pi
d

∑
t=1

(n

cl logn
)

2(t−1)

(2t − 1 + ε−1

n
)

2t−1

Pr(Ni ≤ 2t − 1 + ε−1)

≤ 28d ⋅ ∑
i∈[k]

pi ⋅ cs logn ⋅ cl logn

n

≲ 29d

n
.

Consolidating all the three bounds above yields

VarS ≤ 2

n3
+O(29d) ⋅ d

n
+O (29d

n
) ≤ 1

n1−Θ(cs)
,

where the last step follows by d = cs logn.

17

7.2 Variance of the Large-Probability Estimator

In this section we bound the quantity VarL and establish VarL ≲ (logn)3/n. Due to independence,

VarL = ∑
i∈[k]

Var(h(Ni
n

) ⋅ 1N ′

i>ε
−1) .

The following lemma bounds the right-hand-side summation.
Lemma 8. For any integer s ≥ 1,

∑
i∈[k]

Var(h(Ni
n

) ⋅ 1N ′

i>s
) ≤ (logn)2 4s

n
.

Proof. First, we effectively decompose the variances:

∑
i∈[k]

Var(h(Ni
n

)1N ′

i>s
) = Var(1N ′

i>s
)E [h2 (Ni

n
)] + ∑

i∈[k]

(E[1N ′

i>s
])2

Var(h(Ni
n

))

≤ Var(1N ′

i>s
)E [h2 (Ni

n
)] + ∑

i∈[k]

Var(h(Ni
n

)).

To bound the first term on the right-hand side, note that

Var(1N ′

i>s
)E [h2 (Ni

n
)] ≤ Var(1N ′

i>s
)E [(logn)2 (Ni

n
)

2

]

≤ (logn)2 pi
n

(1 + npiVar(1N ′

i>s
)) ,

where the term in the parentheses further admits

piVar(1N ′

i>s
) ≤ pi ⋅ P[N ′

i ≤ s]

= e−npi
s

∑
j=0

(npi)j+1

(j + 1)!
j + 1

n

≤ s + 1

n
e−npi

s

∑
j=0

(npi)j+1

(j + 1)!

= s + 1

n
P(1 ≤ N ′

x ≤ s + 1)

≤ s + 1

n
.

To bound the second term, let N̂i be an i.i.d. copy of Ni for each i,

2Var(h(Ni
n

)) = Var(h(Ni
n

) − h(N̂i
n

))

= E(h(Ni
n

) − h(N̂i
n

))
2

≤ (logn)2E(Ni
n
− N̂i
n

)
2

= 2(logn)2 ⋅ pi
n
.

A simple combination of these bounds yields the lemma.

Setting s = ε−1 in Lemma 8 and assuming ε logn ≥ 1, we obtain

VarL = ∑
i∈[k]

Var(h(Ni
n

) ⋅ 1N ′

i>ε
−1) ≤ 4(logn)3

n
.

18

8 Experiments

We demonstrate the efficacy of the proposed estimators by comparing their performance to two
state-of-the-art estimators (Wu & Yang, 2016, 2019), and empirical estimators with logarithmic
larger sample sizes. Due to method similarity, we present only the results for entropy and support
size. Additional estimators for both properties were compared in Orlitsky et al. (2016); Wu & Yang
(2016, 2019); Hao et al. (2018); Hao & Orlitsky (2019a) and found to perform similarly to or worse
than the estimators we tested, hence we exclude them here. For each property, we considered nine
natural-synthetic distributions, shown in Figure 1 and 2.

Experiment settings We experimented with nine distributions:

• uniform distribution;
• a two-steps distribution with probability values 0.5k−1 and 1.5k−1;
• Zipf distribution with power 1/2;
• Zipf distribution with power 1;
• binomial distribution with success probability 0.3;
• geometric distribution with success probability 0.9;
• Poisson distribution with mean 0.3k;
• a distribution drawn from Dirichlet prior with parameter 1;
• a distribution drawn from Dirichlet prior with parameter 1/2.

All distributions have support size k = 10,000. The geometric, Poisson, and Zipf distributions were
truncated at k and re-normalized. The horizontal axis shows the number of samples, n, ranging from
k0.2 to k. Each experiment was repeated 100 times and the reported results, shown on the vertical
axis, reflect their mean values and standard deviations. Specifically, the real property value is drawn
as a dashed black line, and the other estimators are color/shape coded, with the solid line displaying
their mean estimate, and the shaded area corresponding to one standard deviation.

We compared the estimators’ performance with n samples to that of two other recent estimators as
well as the empirical estimator with n, n

√
logA, and n logA samples, where for Shannon entropy,

A = n and for support size, A = Sp, the actual distribution support size (which is k). We chose the
parameter ε = 1. The graphs denote our proposed estimator by Proposed, F̂E with n samples by
Empirical, F̂E with n

√
logA samples by Empirical+, F̂E with n logA samples by Empirical++, the

entropy and support-size estimators in Wu & Yang (2016) and Wu & Yang (2019) by WY.

Experimental results As Theorem 1 and 4 would imply and the experiments confirmed, for both
properties, the proposed estimators with n samples achieved the accuracy as the empirical estimators
with at least n logn samples for entropy and n logSp samples for support size. In particular, for
entropy, the proposed estimator with n samples performed significantly better than the n logn-sample
empirical estimator, for all tested distributions and all values of sample size n. For both properties,
the proposed estimators clearly outperformed the state-of-the-art estimators in terms of accuracy and
stability regarding distribution structures.

19

0

5

10

E
st

im
at

es
Uniform

0

5

10

Two steps

0

1

2

3

4
Binomial 0.3

0

1

2

3

4

E
st

im
at

es

Geometric 0.9

0

2

4

Poisson 0.3

0

5

10

Zipf 1/2

101 102 103 104

n

0.0

2.5

5.0

7.5

E
st

im
at

es

Zipf 1

101 102 103 104

n

0

5

10

Dirichlet-1 prior

101 102 103 104

n

0

5

10

Dirichlet-1/2 prior

Truth

Empirical

Empirical+

Empirical++

WY

Proposed

Figure 1: Shannon entropy estimation. For clarity, the horizontal axis is in logarithmic scale. The
WY curve is flipped vertically around Truth for all the curves to have similar trends. Besides the
samples, the WY estimator takes as input an upper bound of the support size, which is set to be the
actual support size in the experiments. The vertical axis shows only nonnegative values.

0

5000

10000

E
st

im
at

es

Uniform

0

5000

10000

Two steps

0

200

400

Binomial 0.3

0

50

100

E
st

im
at

es

Geometric 0.9

0

200

400

600
Poisson 0.3

0

5000

10000

Zipf 1/2

101 102 103 104

n

0

5000

10000

E
st

im
at

es

Zipf 1

101 102 103 104

n

0

5000

10000

Dirichlet-1 prior

101 102 103 104

n

0

5000

10000

Dirichlet-1/2 prior

Truth

Empirical

Empirical+

Empirical++

WY

Proposed

Figure 2: Support size estimation. For clarity, the horizontal axis is in logarithmic scale. Besides the
samples, the WY estimator takes as input a lower bound of the smallest positive probability p+min,
which is set to be max{1/(10k),4p+min} in the experiments. Here, 1/(10k) is used to avoid division
by zero in numerical computation, and factor 4 represents a reasonable uncertainty about p+min. For
several distributions, such as uniform and geometric, knowing p+min yields the full knowledge of the
entire probability multiset. Finally, while estimator WY’s bias is slightly lower on a few distributions,
the corresponding standard deviation is too high to be acceptable.

20

9 Computational Complexity

The dominant computation step is finding the min-max polynomial of B′
m(h,x), in which we use the

well-known Remez algorithm (Pachón & Trefethen, 2009; Trefethen, 2013). Below, we shall argue
that the algorithm takes only Õ(n) time (number of bit operations) to well approximate B′

m(h,x).

9.1 Remez Algorithm

The algorithm named after Remez (1934) is an efficient iterative algorithm that numerically computes
the minimax polynomial. For a valid domain [a, b], set our objective to well approximating the
function f(x) ∶ [a, b] → R by a degree-d real polynomial P (x), in the min-max sense. We briefly
illustrate a simple version of the algorithm below.

1. There are several different ways to initialize the algorithm. A popular initialization is to use
the Chebyshev nodes. Specifically, we compute d + 2 points x0, x1, . . . xd+1 as

xi ∶=
1

2
(a + b) + 1

2
(b − a) cos(2i + 1

2(d + 2)
π) , i = 0,1, . . . , d + 1.

2. For x0, x1, ...xd+1, solve the linear system of d + 2 equations

b0 + b1 ⋅ xi + ... + bd ⋅ xdi +E ⋅ (−1)i = f(xi) (where i = 0,1, . . . d + 1),

for the unknowns b0, b1, ...bd, and E.
3. (Re)form the polynomial P (x) as

P (x) ∶= b0 + b1 ⋅ x + ... + bd ⋅ xd.

4. Compute the d + 2 local extrema of the error function

E(x) ∶= P (x) − f(x)

over the sign-invariant regions, and denote them by x∗0, . . . x
∗
d+1, sorted in descending order.

5. Replace xi by x∗i for i = 0,1, . . . d + 1 and go back to Step 2 until quantity E converges.

Next, we analyze the time complexity of the Remez algorithm when applied to our setting.

9.2 Complexity of Evaluating f(x)

To compute our estimator, the function to approximate is the degree-Θ̃(n) polynomial f(x) ∶=
Bm(hm, τn ⋅x) withm = na−1 (different from the prior version to simply the notation), a ∈ [1, logn],
and τn = cl(logn)/n for a properly chosen absolute constant cl ≥ 1. The degree and interval for the
approximation are d = dn = Θ(logn) and [0,1], respectively.

For our purpose, it suffices to approximate f(x) to an order-1/n error.

First-level truncation of f(x) First, we show that only the lower-order part of f(x) matters in
the computation. By the definition of Bernstein polynomials and ∣hm+1(y)∣ ≲ 1,∀y ∈ [0,1],

Bm(hm+1, τn ⋅ x) = E
Y ∼bin(m,τn⋅x)

[hm+1 (Y
m

)]

=
m

∑
t=0

hm+1 (t
m

) ⋅Pr (bin(m,τn ⋅ x) = t)

=
⎡⎢⎢⎢⎢⎣

4cl log2 n

∑
t=0

hm+1 (t
m

) ⋅Pr (bin(m,τnx)=t)
⎤⎥⎥⎥⎥⎦
+O(Pr(bin(m,τnx)>4cl log2n)).

Note that mτn ⋅ x ≤ cl log2 n for x ∈ [0,1]. Then, by standard binomial tail bounds, e.g, Lemma 2,

Pr(bin(m,τn ⋅ x)>4cl log2 n) ≤ e−cl(log2 n) ≤ 1

nlogn
≤ 1

n
.

21

Hence, we can redefine the function to approximate as

f(x) =
4cl log2 n

∑
t=0

hm+1 (t
m

) ⋅Pr (bin(m,τnx)=t) =
4cl log2 n

∑
t=0

hm+1 (t
m

) ⋅ (m
t
)(τnx)t(1 − τnx)m−t.

A natural step to take is expending the polynomial function into its standard form.

f(x) =
4cl log2 n

∑
t=0

hm+1 (t
m

) ⋅ (m
t
)(τnx)t(1 − τnx)m−t

=
4cl log2 n

∑
t=0

hm+1 (t
m

) ⋅ (m
t
)(τnx)t

m−t

∑
j=0

(m − t
j

)(−τnx)m−t−j

=
m

∑
s=0

xs ⋅
⎛
⎝
τsn

min{s,4cl log2n}

∑
t=0

hm+1 (t
m

) ⋅ (m
t
)(m − t
s − t

)(−1)s−t
⎞
⎠
.

For simplicity, let us denote the coefficient of xs in f(x) by Cs. Below, we bound the magnitude of
Cs for s = 0,1, . . . ,m. Recall that a ≲ b represents a = O(b) which hides only absolute constants,
∣hm+1(y)∣ ≲ 1 for all y ∈ [0,1], and τn = cl(logn)/n for an absolute constant cl. Then,

∣Cs∣ =
RRRRRRRRRRRR
τsn

min{s,4cl log2n}

∑
t=0

hm+1 (t
m

) ⋅ (m
t
)(m − t
s − t

)(−1)s−t
RRRRRRRRRRRR

≲ (cl logn

n
)
s s

∑
t=0

(m
t
)(m − t
s − t

)

≤ (cl logn

n
)
s

(2m)s

≤ (cl logn

n
)
s

(2n logn)s

= exp(Θ(s log logn)).

Second-level truncation of f(x) Following the above derivations, we can derive an alternative
upper bound on Cs. This bound basically shows that for large s, the term corresponding to Cs is
negligible. Specifically, consider any s ≥ 2(cle)2 log4 n ≥ (cle)2 log4 n + 8cl log2 n where cl > 1,

∣Cs∣ =
RRRRRRRRRRRR
τsn

min{s,4cl log2n}

∑
t=0

hm+1 (t
m

) ⋅ (m
t
)(m − t
s − t

)(−1)s−t
RRRRRRRRRRRR

≲ (cl logn

n
)
s 4cl log2n

∑
t=0

(m
t
)(m − t
s − t

)

≤ (cl logn

n
)
s 4cl log2n

∑
t=0

mt ⋅ ms−t

(s − t)!

≤ (cl logn

n
)
s

(n logn)s
4cl log2n

∑
t=0

1

(s − t)!

≲ (cl log2 n)s

(s − 4cl log2n)!
≲ (cle log2 n)s

(s − 4cl log2n)s−4cl log2n

≤ ((cle)2 log4 n)s/2

(s − 4cl log2n)s−4cl log2n

≤ 1

((cle)2 log4 n)3 log4 n

≤ 1

n2 logn
≤ 1

mn
.

22

Since x ∈ [0,1], we can truncate f(x) at degree d⋆n ∶= 2(cle)2 log4 n and redefine it as

f(x) =
d⋆n

∑
s=0

xs ⋅Cs,

where Cs, as specified above, satisfies ∣Cs∣ ≲ exp(Θ̃(log4 n)) and

Cs = τsn
min{s,4cl log2n}

∑
t=0

hm+1 (t
m

) ⋅ (m
t
)(m − t
s − t

)(−1)s−t.

This modification changes the value of f(x) by at most 1/n, for all x ∈ [0,1].

Third-level truncation of f(x) Now we evaluate each coefficient Cs to an error of 1/(nd⋆n),
so that we can compute f(x) to an error of 1/n, for all x ∈ [0,1]. This can be accomplished by
computing every

Cs,t ∶= hm+1 (t
m

) ⋅ τsn(
m

t
)(m − t
s − t

)(−1)s−t

to an O(1/(nsd⋆n)) absolute error. Note that Cs,t is a product of five terms, with each of them
bounded by ms ≤ exp(Θ(log5 n)) in magnitude. Simple algebra further reduces our objective to
approximating every term in the product to an exp(−Θ(log5 n)) error.

We analyze each term as follows: 1) computing (−1)s−t takes O(max{log s, log t}) = O(log logn)
time; 2) computing the product of A integers of magnitude ≤ B takesO((A logB)2) time, which can
be achieved by recursively calculating the pairwise products 2; 3) point 2) shows that we can compute
(m
t
), (m−t

s−t
), and ns exactly in ploylog(n) time; 4) now consider evaluating (nτn)s = (cl logn)s:

since ∣as − bs∣ ≤ ∣a − b∣ ⋅ smax{∣a∣, ∣b∣}s−1 ≤ ∣a − b∣ ⋅O(log5 n) if ∣a∣, ∣b∣ ≤ O(logn), it suffices to
compute cl logn to an exp(−Θ(log5 n)) error, which can be performed in ploylog(n) time; 5) it
remains to compute

hm+1 (t
m

) = log(m + 1) − (t + 1) log(t + 1) + t log t,

to an exp(−Θ(log5 n)) error, which again takes ploylog(n) time.

Therefore, we can evaluate each Cs,t, and their sum Cs, to an error of 1/(nd⋆n) in time ploylog(n).
We can further define C⋆

s as the closest integer multiple of 1/(nd⋆n) 3 to Cs, and redefine

f(x) =
d⋆n

∑
s=0

xs ⋅C⋆
s .

9.3 Lagrange Interpolation with Chebyshev Nodes

Recall that the degree of the min-max approximation polynomial is d = dn = Θ(logn). We initialize
the Remez Algorithm by the Chebyshev nodes:

xi ∶=
1

2
+ 1

2
cos(2i + 1

2(d + 2)
π) , i = 0,1, . . . , dn + 1.

Then, for any integers i /= j ∈ [0, d + 1],

∣xi − xj ∣ =
1

2
∣cos(2i + 1

2(d + 2)
π) − cos(2j + 1

2(d + 2)
π)∣

= ∣sin(i + j + 1

2(d + 2)
π) ⋅ sin(i − j

2(d + 2)
π)∣

≥ sin2 (π

2(d + 2)
) ≥ 1

(d + 2)2
.

2 We assume that computing the product two integers ≤ B takes O(log2B) time, achievable through the
standard schoolbook “long multiplication”. A more efficient integer-multiplication algorithm is the Harvey-
Hoeven that takes only Õ(logB) time, yielding an Õ(A logB) complexity for the problem considered here.

3Assume that d⋆n is an integer. Otherwise, replace it by ⌈d⋆n⌉.

23

Now, consider the following function relating to the i-th Lagrange basis polynomial:

`i(x) ∶=∏
j/=i

(x − xj).

For any τ > 0 and approximation sequence {x′j}d+1
j=0 in [0,1] satisfying ∣xj −x′j ∣ ≤ τ , denote by ˜̀

i(x)
the corresponding product∏j/=i(x − x′j). Then, for any x ∈ [0,1],

∣`i(x) − ˜̀
i(x)∣ ≤ ∣∏

j/=i

(x − xj) −∏
j/=i

(x − x′j)∣

≤∑
j/=i

∣(x − xj) − (x − x′j)∣ ∏
j′<j,j′ /=i

∣x − xj′ ∣ ∏
j′>j,j′ /=i

∣x − x′j′ ∣

≤ (d + 1)τ.

Under the same setting with τ < 1/(4(d + 2)2), the i-th Lagrange basis polynomial Li(x) ∶=
`i(x)/`i(xi) and its approximation L̃i(x) ∶= ˜̀

i(x)/˜̀
i(xi) differ by

∣Li(x) − L̃i(x)∣ ≤ ∣ `i(x)
`i(xi)

−
˜̀
i(x)

˜̀
i(xi)

∣

= ∣`i(x)
˜̀
i(xi) − ˜̀

i(x)`i(xi)
`i(xi)˜̀

i(xi)
∣

≤ ∣(˜̀
i(xi) − `i(xi))

`i(x)
`i(xi)˜̀

i(xi)
∣ + ∣(`i(x) − ˜̀

i(x))
`i(xi)

`i(xi)˜̀
i(xi)

∣

≤ τ ⋅ exp(Θ̃(logn)).

Denote by L and L̃ the Lagrange interpolation operator associated with {xj}d+1
j=0 and {x′j}d+1

j=0 ,
respectively. Then for any x ∈ [0,1], the interpolation polynomials of f differ by

∣L[f](x) − L̃[f](x)∣ ≤∑
i

∣f(xi)Li(x) − f(x′i)L̃i(x)∣

≤∑
i

∣(f(xi) − f(x′i))Li(x) + f(x′i)(Li(x) − L̃i(x))∣

≤∑
i

∣Li(x) ⋅
d⋆n

∑
s=0

(xsi − x′si) ⋅C⋆
s ∣ +∑

i

∣f(x′i)(Li(x) − L̃i(x))∣

≤ τ ⋅ exp(Θ̃(log4 n)).
Set τ = exp(−Θ̃(log4 n))/n and recall that Ed[g] denotes the best approximation error of the degree-
d min-max polynomial over [0,1]. By the previous derivations and result of Ehlich & Zeller (1966),
for Td ∶= 2 + 2

π
log(d + 1) and any x ∈ [0,1],

∣L̃[f](x) −B′
m(h,x)∣ ≤ 1

n
+ ∣L[f](x) −B′

m(h,x)∣

≤ 1

n
+ ∣L[f](x) −L[B′

m(h, ⋅)](x) +L[B′
m(h, ⋅)](x) −B′

m(h,x)∣

≤ 1

n
+ Td ⋅ (Ed[B′

m(h, ⋅)] +Ed[f] +Ed[B′
m(h, ⋅)]) + ∣f(x) −B′

m(h,x)∣

≤ 1

n
+ 3Td ⋅Ed[B′

m(h, ⋅)] + (Td + 1) max
x∈[0,1]

∣f(x) −B′
m(h,x)∣

≲ Td (
1

n
+Ed[B′

m(h, ⋅)])

≲ ε ⋅ log logn.

Therefore, if we compute each xj to an exp(−Θ̃(log4 n)) error, the resulting polynomial L̃[f](x)
approximates B′

m(h,x) to an error of O (ε ⋅ log logn), for any x ∈ [0,1]. This yields a result only
slightly weaker than that in Theorem 1, with the inequality being

LĤ(p,n) −LĤE(p, εn logn) ≲ ε ⋅ log logn ∧ (
Sp

n
+ 1

n0.49
) .

24

Choose the approximation nodes x′j ∈ [0,1] to be integer multiples of exp(−Θ̃(log4 n)). Finally,
we consider the time complexity of expanding L̃[f](x) into its standard form, which basically
characterizes the time required for constructing the estimator. Note that

L̃[f](x) =∑
i

f(x′i) ⋅
∏j/=i(x − x′j)
∏j/=i(x′i − x′j)

.

Since x′j exp(Θ̃(log4 n)) ∈ N for any j and f(x) = ∑d
⋆

n

s=0 x
s ⋅C⋆

s with C⋆
s being multiples of 1/(nd⋆n),

it takes polylog(n) time to evaluate f(x′i) and ∏j/=i(x′i − x′j) exactly, with results expressed as
rational numbers. In addition, computing each coefficient in the standard form of∏j/=i(x − x′j) takes
O(2d ⋅ s2) = Õ(

√
n) 4 time. Hence, finding the explicit expression of the standard form of L̃[f](x)

takes Õ(
√
n log2 n) = Õ(

√
n) time. Let us denote this standard form by

L̃[f](x) ∶=
d+1

∑
t=0

bt ⋅ xt.

The small probability estimator is thus

V̂S ∶= ∑
i∈[k]

⎛
⎝

d+2

∑
t=1

bt−1

t
⋅
N
t
i

nt
⎞
⎠
⋅ 1N ′

i≤
1
ε
⋅ 1Ni≲logn,

where Ni and N ′
i are sample symbol counts in [0, n]. Note that computing each N t

i or nt takes
O(log2 n) time, and there are at most O(

√
n) distinct (Ni,N ′

i ≲ 1/ε) pairs. Hence, we can evaluate
the small-probability estimator in Õ(n) time. In addition, the evaluation of the large-probability
estimator is essentially the same as that of the empirical plug-in estimator. Consolidating these facts
yields the desired near-linear-time computability.

9.4 Remez Algorithm with High Precision

Note that the first step of the Remez algorithm is initialization and will be executed only once. The
last step of the algorithm serves as the initialization step for the next round of iteration. Exact
evaluation of the initial nodes is not required in each round for convergence.

As shown by our previous discussion, it suffices to approximate the initial nodes to an accuracy of
exp(−polylog(n)), which takes polylog(n) time for the first step. Denote by x′0, . . . x

′
d+1 ∈ [0,1]

the initial nodes for a particular iteration and assume that x′i/δn ∈ N, i = 0, . . . , d + 1.

We proceed to analyzing the second step of the Remez algorithm. According to Section 9.2, we will
approximate the polynomial

f(x) =
d⋆n

∑
s=0

xs ⋅C⋆
s ,

where d⋆n = Θ(log4 n) and C⋆
s ’s are integer multiples of 1/(nd⋆n) satisfying ∣C⋆

s ∣ ≤ exp(Θ̃(log4 n)).
Computing the sequence of f(x) values exactly for x′i’s takes polylog(n) time. We can express each
f(x′i) as a rational number with both its nominator and denominator being at most exp(polylog(n)).
These claims clearly also hold for the evaluation of xt at each x′i with t, j < d+2 = Θ(logn). Denote
by Vb,E ∶= (b0, . . . , bd,E)T the vector of unknown variables. Multiplying both sides of each equation

b0 + b1 ⋅ x′i + ... + bd ⋅ x′di +E ⋅ (−1)i = f(x′i)

by the least common multiple of the denominators of x′di and f(x′i), we transform the second step to
solving a system of linear equations in the form AVb,E = y, where A ∈ Z(d+2)×(d+2)

+ and y ∈ Z(d+2)×1
+

are matrices with entries bounded by exp(polylog(n)). If the initial nodes x′j’s are distinct and
sorted accordingly, the system AVb,E = y has a unique solution. Utilizing the algorithm proposed
by Dixon (1982), we can solve this system in time Õ((d + 2)3 log(∥A∥ + ∥y∥)) = polylog(n) where
∥⋅∥ represents the maximum entry in absolute value.

4Recall that d = cs logn. Here we choose cs ≤ 1/2.

25

Once we obtain the coefficient vector Vb,E , Step 3 of the algorithm takes polylog(n) time to form
the approximation polynomial

P (x) ∶= b0 + b1 ⋅ x + ... + bd ⋅ xd.

The fourth step of the Remez algorithm calls for computing the local extrema of the error function

E(x) ∶= P (x) − f(x)

over the d + 2 sign-invariant regions. Noting that E(x) is a degree d⋆n polynomial, it suffices to
approximate all the real roots of its derivative E ′(x) to an exp(−polylog(n)) accuracy.

To do this, we first transform E ′(x) to a polynomial with integer coefficients of size exp(polylog(n)).
Then, we apply the quadratic interval refinement algorithm (Abbott, 2014) to approximate the real
roots of the transformed polynomial. Shown in the paper of Kerber (2009), for a degree-d square-free
polynomial with integer coefficients bounded by 2σ in absolute value, an ε-accuracy approximation
of the real roots using this algorithm requires a time complexity of Õ(d4σ2 + d3 log(1/ε)). For the
task considered here, this again converts to a time complexity of polylog(n).

Finally, we can view Step 5 as the initialization step in the next iteration, implying a per-iteration
complexity of polylog(n) for the Remez algorithm. Note that quantity E corresponds to a lower
bound on the max approximation error of each iteration. As for the number of iterations, Veidinger
(1960) essentially shows that under differentiability, this process has a quadratic convergence. More
specifically, let Eν denote the error bound E of the the ν-th iteration, then {Eν}ν≥1 converges to the
optimal degree-d approximation error Ed[f] with

∣Ed[f] −Eν ∣ ≲ (Ed[f] −Eν−1)2.

It takes only polylog(n) iterations for E to converge to the exp(−polylog(n))-neighborhood of its
limit Ed[f]. Therefore, the total time required for computing the approximation polynomial with
Remez algorithm is O(polylog(n)). Consolidating this with the reasoning in the last section shows
that our estimator can be evaluated in time near-linear in n. On the practical side, see Pachón &
Trefethen (2009); Trefethen (2013) for an optimized Matlab implementation of the Remez algorithm.

26

A A Refined Estimator for Shannon Entropy

In this section, we replacing the function hn(x) employed in Section 4 by a much finer approximation
of Bn(h,x). Through this refinement, we establish the full version of Theorem 1. To begin with, we
define the following two f -functions for z ∈ [0,∞]:

f1(z) ∶= E
X∼Poi(z)

[h(X)] = −e−z
∞

∑
j=1

zj

j!
j log j

and

f2(z) ∶= E
X∼Poi(z)

[h(X + 1)] = −e−z
∞

∑
j=1

zj

j!
(j + 1) log(j + 1).

A.1 Relating f -functions to Bernstein Approximation Errors

For x ∈ [0,1], set z = z(x) ∶= nx. The following lemma relates f1(z) and f2(z) to the Bernstein
approximation error of hn+1, that is, hn+1(x) −Bn(hn+1, x).

Lemma 9. For any x ∈ [0, log4 n/n],

hn+1(x) −Bn(hn+1, x) = (h(z + 1) − f2(z)) − (h(z) − f1(z)) + Õ (1

n
) .

As a corollary, for any sufficiently large n and x ∈ In = [0, τn ∶= cl(logn)/n],

hna(x) −Bna−1(hna, x) = (h(z + 1) − f2(z)) − (h(z) − f1(z)) + Õ (1

na − 1
) .

Since 1/(na − 1) ≤ min{1/ logn,Sp/n}, the last term on the right-hand side is negligible. These
results, together with the function-wise triangle inequality onw2

ϕ, further reduce the desired inequality

w2
ϕ(Bna−1(hna, τn ⋅ x), d−1

n) ≲ ε
to bounds in the form of

w2
ϕ(g(x), d−1

n) ≲ ε,
for function g(x) being hna(τn ⋅ x), h(z(x)), h(z(x) + 1), f1(z(x)), and f2(z(x)), respectively.

Proof. Let h−1(x) ∶= h(x + n−1). By the linearity of expectation,

hn+1(x) −Bn(hn+1, x) = n (h−1(x) − h(x) −Bn(h−1, x) +Bn(h,x))
= n (h−1(x) −Bn(h−1, x)) − n (h(x) −Bn(h,x)) .

Note that z = nx implies z ∈ [0, log4 n]. Hence, we have

n (h−1(x) −Bn(h1, x)) = −(nx + 1) log (nx + 1

n
) +

n

∑
j=0

(j + 1) log (j + 1

n
)(n
j
)xj(1 − x)n−j

= −(z + 1) log (z + 1

n
) +

n

∑
j=0

(j + 1) log (j + 1

n
)(n
j
)zj (n − z)

n−j

nn

= −(z + 1) log (z + 1) + (1 − z
n
)
n n

∑
j=0

(j + 1) log (j + 1) (n
j
)zj(n − z)−j

= −(z + 1) log (z + 1) + (1 − z
n
)
n n

∑
j=0

(j + 1) log (j + 1) n
j

nj
zj

j!
(1 − z

n
)
−j

= −(z + 1) log (z + 1) + e−z
∞

∑
j=0

zj

j!
(j + 1) log(j + 1) + Õ (1

n
)

= h(z + 1) − f2(z) + Õ (1

n
) .

The second last equality is the most non-trivial step. In order to establish this equality, we will need
the following three inequalities (assume z ∈ [0, log4 n] and n≫ 1).

27

Inequality 1:

0 ≤ (1 − z
n
)
n n

∑
j=log5 n+1

(j + 1) log (j + 1) n
j

nj
zj

j!
(1 − z

n
)
−j

= (1 − z
n
)
n n

∑
j=log5 n+1

(j + 1) log (j + 1) nj

2j(n − z)j
(2z)j

j!

≤ e−z
n

∑
j=log5 n+1

(j + 1) log (j + 1) (2z)j

j!

≤ e−z
n

∑
j=log5 n+1

2j(j − 1)(2z)
j

j!

≤ 8z2e−z
n

∑
j=log5 n−1

(2z)j

j!

≤ 8(log8 n)Pr(Poi(2z) ≥ log5 n − 1)

≤ 1

n
.

Inequality 2:

0 ≤e−z
∞

∑
j=log5 n+1

zj

j!
(j + 1) log(j + 1) = 2(log8 n)Pr(Poi(2z) ≥ log5 n − 1) ≤ 1

n
.

Inequality 3: For any j ≤ log5 n,

∣e−z − (1 − z
n
)
n nj

nj
(1 − z

n
)
−j

∣ = ∣e−z − (1 − z
n
)
n nj

(n − z)j
∣

≤ ∣e−z − (1 − z
n
)
n

∣ + (1 − z
n
)
n

∣1 − nj

(n − z)j
∣

≤ e−z z
2

n
+ e−z ∣1 − nj

(n − z)j
∣

≤ e−z z
2

n
+ e−z (∣1 − nj

(n − z)j
∣ ∨ ∣1 − (n − log5 n)j

(n − z)j
∣)

≤ e−z z
2

n
+ e−z (∣exp(zj

n − z
) − 1∣ ∨ ∣ (log5 n − z)j

n − z
∣)

≤ e−z z
2

n
+ e−z (∣ zj

n − z(j + 1)
∣ ∨ ∣ (log5 n)j

n − z
∣)

≤ e−z 2 log10 n

n
.

Note that Inequality 3 further implies
RRRRRRRRRRRR
e−z

log5 n

∑
j=0

zj

j!
(j + 1) log(j + 1) − (1 − z

n
)
n log5 n

∑
j=0

(j + 1) log (j + 1) n
j

nj
zj

j!
(1 − z

n
)
−jRRRRRRRRRRRR

≤ 2 log10 n

n
⋅ e−z

log5 n

∑
j=0

zj

j!
(2j(j − 1))

≤ 2 log10 n

n
⋅ 2z2

≤ 4 log18 n

n
.

28

This, together with Inequality 1 and 2, proves the desired equality. The same reasoning also gives

n (h(x) −Bn(h,x)) = −z log z + e−z
∞

∑
j=1

zj

j!
j log j + Õ (1

n
) ,

which completes the proof.

For any x ∈ In, let z1 = (na − 1)x, then z1 ∈ I ′n ∶= [0, acl logn]. Therefore, by Lemma 9,

hna(x) −Bna−1(hna, x) = (h(z1 + 1) − f2(z1)) − (h(z1) − f1(z1)) + Õ (1

n
) .

In the next section, we approximate function f1(z) over I ′n with a degree-d polynomial.

A.2 Approximating f1(z)

Consider the first function

f1(z) = −e−z
∞

∑
j=1

zj

j!
j log j.

We want to approximate f1 with a low-degree polynomial and bound the corresponding error. For
this purpose, we establish some basic properties of f1(z) as follows.

A.2.1 Properties of f1(z)

Property 1: The function f1(z) is a continuous function over [0,∞), and f1(0) = 0.

Property 2: For all z ≥ 0, the value of f1(z) is non-negative.

Property 3: Denote u(y) ∶= (y + 2) log(y + 2)+ y log y − 2(y + 1) log(y + 1). Then, for any z ≥ 0,

f1
′′(z) = −e−z

∞

∑
t=0

zt

t!
⋅ u(t) and − log 4 ≤ f1

′′(z) < 0.

Proof. We begin by establishing the equality.

−f1
′′(z) = e−z

∞

∑
t=1

(t − 1)t2zt−2 log(t)
t!

− 2e−z
∞

∑
t=1

t2zt−1 log(t)
t!

+ e−z
∞

∑
t=1

tzt log(t)
t!

= e−z
∞

∑
t=0

zt(t + 2) log(t + 2)
t!

− 2e−z
∞

∑
t=0

zt(t + 1) log(t + 1)
t!

+ e−z
∞

∑
t=0

tzt log(t)
t!

= e−z
∞

∑
t=0

zt

t!
⋅ u(t).

To prove the inequality, we utilize the following lemma.

Lemma 10. For any t ≥ 0,
log 4

t + 1
≥ u(t) ≥ 1

t + 1
.

By Lemma 10, we obtain

0 < e−z
∞

∑
t=0

zt

t!
⋅ 1

t + 1
≤ e−z

∞

∑
t=0

zt

t!
⋅ u(t) = −f1

′′(z) ≤ e−z
∞

∑
t=0

zt

t!
⋅ log 4

t + 1
= (log 4)1−e−z

z
≤ log 4.

The proof of the lemma follows by standard algebraic calculations and is omitted.

29

Property 4: For z > 0,

0 ≤ f1
′′(z)

h′′(z)
≤ log 4.

Proof. Recall that h(z) = −z log z. Therefore, h′′(z) = −1/z and

0 ≤ f1
′′(z)

h′′(z)

= e−z
∞

∑
t=0

zt+1

t!
⋅ u(t)

≤ e−z
∞

∑
t=0

zt+1

t!
⋅ log 4

t + 1

≤ (log 4)(1 − e−z)
≤ log 4,

where the third step follows by Lemma 10.

A.2.2 Moduli of Smoothness

In this section, we introduce some notable results in approximation theory (Ditzian & Totik, 2012)
that are crucial for our simplification of the problem. Let ϕ(x) ∶=

√
x(1 − x). For any function

f ∶ [0,1]→ R, the first- and second- order Ditzian-Totik moduli of smoothness quantities of f are

w1
ϕ(f, t) ∶= sup{∣f(u) − f(v)∣ ∶ 0 ≤ u, v ≤ 1, ∣u − v∣ ≤ t ⋅ ϕ(u + v

2
)} ,

and

w2
ϕ(f, t) ∶= sup{∣f(u) + f(v) − 2f (u + v

2
)∣ ∶ 0 ≤ u, v ≤ 1, ∣u − v∣ ≤ 2t ⋅ ϕ(u + v

2
)} ,

respectively. Let Pd denote the collection of polynomials with real coefficients and degree at most d.
For any d ∈ Z+, interval I ⊂ R, and function f ∶ I → R, denote by

Ed[f, I] ∶= min
f̃∈Pd

max
x∈I

∣f(x) − f̃(x)∣

the best approximation error of the degree-d min-max polynomial of f over I . For a bounded domain
I , we can always shift and rescale f to make it a real function over [0,1]. Hence, without loss of
generality, it suffices to consider and analyze Ed[f] ∶= Ed[f, [0,1]].
The connection between the best polynomial-approximation error Ed[f] of a continuous function f
and the second order Ditzian-Totik moduli of smoothness w2

ϕ(f, t) is established in the following
lemma (Ditzian & Totik, 2012).
Lemma 11. There are absolute constants C1 and C2 such that for any continuous function f over
[0,1] and d > 2,

Ed[f] ≤ C1w
2
ϕ(f, d−1),

and
1

d2

d

∑
t=0

(t + 1)Et[f] ≥ C2w
2
ϕ(f, d−1).

The above lemma shows that the second order smoothness quantity w2
ϕ(f, ⋅) essentially characterizes

E⋅[f], and thus transforms the problem of showing

∣h̃m(x) −Bm−1(hm, x)∣ ≲ ε, ∀x ∈ In,

to that of establishing
w2
ϕ(Bm−1(hm, τn ⋅ x), d−1

n) ≲ ε,
where τn = Θ(logn/n) and dn = Θ(logn) by definition.

30

A.2.3 Bounding Errors in Approximating f1(x)

For simplicity, define x′ ∶= (acl logn) ⋅ x and consider the function

f1′(x) ∶= f1((acl logn) ⋅ x).
Under proper scaling, approximating f1(x′) over I ′n = [0, acl logn] is equivalent to approximating
f1′(x) over [0,1]. By Lemma 11, it suffices to bound w2

ϕ(f1′ , ⋅) for our purpose.

In particular, we know that

min
g∈Pd

max
x∈I′n

∣f1(x) − g(x)∣ = Ed[f1′] ≤ C1w
2
ϕ(f1′ , d

−1).

By definition, w2
ϕ(f1′ , d

−1) is the solution to the following optimization problem.

sup
u,v

∣f1′(u) + f1′(v) − 2f1′ (
u + v

2
)∣

subject to

0 ≤ u, v ≤ 1, ∣u − v∣ ≤ 2

d
⋅ ϕ(u + v

2
) .

First, consider the optimization constraints. Analogous to the arguments in Jiao et al. (2015), we
define M ∶= (u + v)/2 and δ ∶= d−1

√
1/M − 1. The feasible region can be expressed as

[M − d−1
√
M(1 −M),M + d−1

√
M(1 −M)] ∩ [0,1] = [M − δM,M + δM] ∩ [0,1].

By Property 3 in Section A.2.1, f1(x′), or equivalently f1′(x), is a strictly concave function. There-
fore, the maximum of ∣f(u) + f(v) − 2f(u + v/2)∣ is attained at the boundary of the feasible region.

Note that
M − d−1

√
M(1 −M) ≥ 0 ⇐⇒ M ≥ 1

d2 + 1
and

M + d−1
√
M(1 −M) ≤ 1 ⇐⇒ M ≤ d2

d2 + 1
.

We need to consider only three cases:

Case 1:
u = 0, v = 2M,M ∈ [0,1/(d2 + 1)].

Case 2:
u = 2M − 1, v = 1,M ∈ [d2/(d2 + 1),1].

Case 3:
u =M − δM, v =M + δM,M ∈ [1/(d2 + 1), d2/(d2 + 1)].

To facilitate the discussions, we utilize the following lemma.
Lemma 12. Let f ∈ C1([a, b]) have second order derivative in (a, b). There exists c ∈ (a, b) such
that

f(a) + f(b) − 2f (a + b
2

) = 1

4
(b − a)2 ⋅ f ′′(c).

We begin with Case 1. By the Lemma 12, there exists c ∈ (0,2/(d2 + 1)) satisfying

∣f1′(0) + f1′ (
2

d2 + 1
) − 2f1′ (

1

d2 + 1
)∣ ≤ 1

4
⋅ (2

d2 + 1
)

2

∣f1′
′′(c)∣ = (1

d2 + 1
)

2

∣f1′
′′(c)∣ .

By the definition of function f1′ ,

∣f1′
′′(x)∣ = ∣(acl logn)2g′′1 ((acl logn) ⋅ x)∣ ≤ (log 4)(acl logn)2.

Therefore, we obtain

(1

d2 + 1
)

2

∣f1′
′′(c)∣ ≲ ε2.

This, together with an analogous argument on Case 2, implies that the objective value is bounded by
O(ε2) in both cases. It remains to analyze Case 3. We proceed by considering two regimes:

31

Regime 1: If M ≤ 4/(d2 + 1), then ∣u− v∣ = 2d−1
√
M(1 −M) ≤ 4/d2. The above reasoning again

shows that
∣f1′(u) + f1′(v) − 2f1′ (

u + v
2

)∣ ≲ ε2.

Regime 2: If 4/(d2 + 1) ≤M ≤ d2/(d2 + 1),

M − δM =M (1 −
√
M−1 − 1

d
) ≥M

⎛
⎝

1 −
√

(d2 + 1) − 4

2d

⎞
⎠
≥ M

2
.

By Lemma 12, there exists c ∈ (M − δM,M + δM) ⊆ (M/2,3M/2) satisfying

∣f1′(u) + f1′(v) − 2f1′ (
u + v

2
)∣ ≤ 1

4
⋅ (2

1

d

√
M(1 −M))

2

∣f1′
′′(c)∣ .

Then, by Property 4 in Section A.2.1,

∣f1′
′′(c)∣ = ∣(acl logn)2f ′′1 ((acl logn) ⋅c)∣ ≤ (acl logn)2(log 4) ⋅ 1

(acl logn) ⋅ c
≤ (log 8) ⋅ acl logn

M
.

This bound immediately implies

1

4
⋅ (2

d

√
M(1 −M))

2

⋅ ∣f1′
′′(c)∣ ≤ 1

d2
M(1 −M) ⋅ (log 8) ⋅ acl logn

M
≤ (log 8) ⋅ clε

c2s
.

Consolidating the previous results yields
min
g∈Pd

max
x∈I′n

∣f1(x) − g(x)∣ ≲ ε.

For function f2, an analogous argument shows that
min
g∈Pd

max
x∈I′n

∣f2(x) − g(x)∣ ≲ ε.

In the next section, we apply these inequalities to analyze our refined entropy estimator.

A.3 Proving Theorem 1: A Refined Entropy Estimator

We aim to approximate Bna−1(hna, x) − hna(x) over In = [0, cl logn/n] by a degree-d polynomial.
By Lemma 9, for any x ∈ In and z1 ∶= (na − 1)x ∈ I ′n = [0, acl logn],

hna(x) −Bna−1(hna, x) = (h(z1 + 1) − f2(z1)) − (h(z1) − f1(z1)) + Õ (1

n
) .

By the results in Kornĕichuk (1991),

min
g∈Pd

max
x∈I′n

∣h(x) − g(x)∣ = (acl logn) min
g∈Pd

max
x∈[0,1]

∣h(x) − g(x)∣ ≲ acl logn

(cs logn)2
≲ ε

and
min
g∈Pd

max
x∈I′n

∣h(x + 1) − g(x)∣ ≲ ε.

Combining these bounds with the last two inequalities in the previous section, we obtain
min
g∈Pd−1

max
x∈In

∣(hna(x) −Bna−1(hna, x)) − g(x)∣ ≲ ε.

Denote by g̃(x) the min-max polynomial that achieves this minimal error. By the derivations in
Section 4.2, the degree-(d − 1) polynomial h̃na(x) satisfies

max
x∈In

∣hna(x) − h̃na(x)∣ ≲ ε.

Denote h̃∗(x) ∶= −g̃(x) + h̃na(x), and note that by definition, B′
na(h,x) = Bna−1(hna, x). Then,

the triangle inequality implies

max
x∈In

∣B′
na(h,x) − h̃∗(x)∣ = max

x∈In
∣Bna−1(hna, x) − h̃∗(x)∣ ≲ ε.

By the triangle inequality of integrals, the degree-d polynomial

H̃∗(x) ∶= ∫
x

0
h̃∗(t)dt

approximating Bna(h,x) possesses the following pointwise error guarantee.

32

Lemma 13. For any x ∈ In,
∣Bna(h,x) − H̃∗(x)∣ ≲ xε.

Hence, H̃∗(x) is a degree-d polynomial that well approximates Bna(h,x) pointwisely.

Next, we argue that the coefficients of H̃∗(x) can not be too large. For notational convenience, write
h̃∗(x) ∶= ∑d−1

v=0 avx
v . By Corollary 2, for any x ∈ In,

∣hna(x) −Bna−1(hna, x)∣ ≤ 1.

Furthermore, hna(x) is an increasing function over In, and thus

∣hna(x)∣ = max{∣hna(0)∣, hna (
cl(logn)

n
)} ≲ logn.

Therefore, for any x ∈ In,
∣h̃∗(x)∣ ≲ logn.

The boundedness of h̃∗(x) implies that its coefficients cannot be too large:

∣av ∣ ≲ (24.5d logn)(n

cl logn
)
v

.

Write H̃∗(x) as H̃∗(x) = ∑dt=1 a
′
tx
t. Then, by H̃∗(x) = ∫

x
0 h̃∗(t)dt and the bound on ∣av ∣,

∣a′t∣ ≲ 24.5d (n

cl logn
)
t−1

.

The construction of the new entropy estimator follows by replacing H̃na(x) by H̃∗(x) in Section 5.
The rest of the proof is also similar to that in the main paper and thus omitted.

33

B Competitive Estimators for General Additive Properties

Consider an arbitrary real function f ∶ [0,1] → R. Without loss of generality, we will assume that
f(0) = 0. According to the derivations in Section 4, we can write B′

n(f, x) as

B′
n(f, x) ∶=

n−1

∑
j=0

n(f (j + 1

n
) − f (j

n
))(n − 1

j
)xj(1 − x)(n−1)−j .

Our aim to approximate B′
na(f, x) with a low degree polynomial. For simplicity, we assume that f

is a 1-Lipschitz function. For x ∈ [0,1], set z = nx, and define gn+1(j) ∶= (n + 1)f (j
n+1

),

f1,n+1(z) ∶= e−z
∞

∑
j=0

gn+1(j + 1)z
j

j!
,

and

f2,n+1(z) ∶= e−z
∞

∑
j=0

gn+1(j)
zj

j!
.

The following lemma relates f1,n+1(z) and f2,n+1(z) to B′
n+1(f, x).

Lemma 14. For any x ∈ [0, log4 n/n] and z = nx,

B′
n+1(f, x) = f1,n+1(z) − f2,n+1(z) + Õ (1

n
) .

Proof. Note that z = nx implies z ∈ [0, log4 n]. Hence, we have
n

∑
j=0

(n + 1)f (j + 1

n + 1
)(n
j
)xj(1 − x)n−j =

n

∑
j=0

gn+1(j + 1)(n
j
)zj (n − z)

n−j

nn

= (1 − z
n
)
n n

∑
j=0

gn+1(j + 1)(n
j
)zj(n − z)−j

= (1 − z
n
)
n n

∑
j=0

gn+1(j + 1)n
j

nj
zj

j!
(1 − z

n
)
−j

= e−z
∞

∑
j=0

gn+1(j + 1)z
j

j!
+ Õ (1

n
)

= f1,n+1(z) + Õ (1

n
) .

The second last equality is the most non-trivial step. In order to establish this equality, we will need
the following three inequalities (assume z ∈ [0, log4 n] and n≫ 1).

Inequality 1:

0 ≤ (1 − z
n
)
n n

∑
j=log5 n+1

∣gn+1(j + 1)∣n
j

nj
zj

j!
(1 − z

n
)
−j

= (1 − z
n
)
n n

∑
j=log5 n+1

(j + 1) nj

2j(n − z)j
(2z)j

j!

≤ e−z
n

∑
j=log5 n+1

(j + 1)(2z)
j

j!

≤ e−z
n

∑
j=log5 n+1

2j(j − 1)(2z)
j

j!

≤ 8z2e−z
n

∑
j=log5 n−1

(2z)j

j!

≤ 8(log8 n)Pr(Poi(2z) ≥ log5 n − 1)

≤ 1

n
.

34

Inequality 2:

0 ≤e−z
∞

∑
j=log5 n+1

∣gn+1(j + 1)∣z
j

j!
≤ e−z

∞

∑
j=log5 n+1

(j + 1)z
j

j!
≤ 1

n
.

Inequality 3: For any j ≤ log5 n,

∣e−z − (1 − z
n
)
n nj

nj
(1 − z

n
)
−j

∣ = ∣e−z − (1 − z
n
)
n nj

(n − z)j
∣

≤ ∣e−z − (1 − z
n
)
n

∣ + (1 − z
n
)
n

∣1 − nj

(n − z)j
∣

≤ e−z z
2

n
+ e−z ∣1 − nj

(n − z)j
∣

≤ e−z z
2

n
+ e−z (∣1 − nj

(n − z)j
∣ ∨ ∣1 − (n − log5 n)j

(n − z)j
∣)

≤ e−z z
2

n
+ e−z (∣exp(zj

n − z
) − 1∣ ∨ ∣ (log5 n − z)j

n − z
∣)

≤ e−z z
2

n
+ e−z (∣ zj

n − z(j + 1)
∣ ∨ ∣ (log5 n)j

n − z
∣)

≤ e−z 2 log10 n

n
.

Note that Inequality 3 further implies
RRRRRRRRRRRR
e−z

log5 n

∑
j=0

zj

j!
gn+1(j + 1) − (1 − z

n
)
n log5 n

∑
j=0

gn+1(j + 1)n
j

nj
zj

j!
(1 − z

n
)
−jRRRRRRRRRRRR

≤ 2 log10 n

n
⋅ e−z

log5 n

∑
j=0

zj

j!
(j + 1)

≤ 2 log10 n

n
⋅ (1 + 2z)

≤ 5 log14 n

n
.

This, together with Inequality 1 and 2, proves the desired equality. The same reasoning also gives
n

∑
j=0

(n + 1)f (j

n + 1
)(n
j
)xj(1 − x)n−j = f2,n+1(z) + Õ (1

n
) ,

which completes the proof.

By slightly abusing the notation, we redefine z ∶= (na − 1)x. Lemma 14 immediately implies that for
any x ∈ In = [0, cl(logn)/n] ⊆ [0, (log4(na − 1))/(na − 1)],

B′
na(f, x) = f1,na(z) − f2,na(z) + Õ (1

na
) .

Note that z ∈ I ′n = [0, acl logn] in this case. Define tna(z) ∶= f1,na(z) − f2,na(z) and rna(j) ∶=
gna(j + 2) + gna(j) − 2gna(j + 1). Then, direct calculation yields

t′′na(z) = e−z
∞

∑
j=0

rna(j + 1)z
j

j!
− e−z

∞

∑
j=0

rna(j)
zj

j!

= e−z
∞

∑
j=0

rna(j + 1)z
j

j!
− e−zrna(0) −

∞

∑
j=0

rna(j + 1) zj+1

(j + 1)!

= e−z
∞

∑
j=0

rna(j + 1)(z
j

j!
− zj+1

(j + 1)!
) − e−zrna(0).

35

Since f is 1-Lipschitz, we obtain ∣rna(j)∣ ≤ 2. Therefore, for any z ∈ I ′n,

∣t′′na(z)∣ ≤ e−z
∞

∑
j=0

∣rna(j + 1)∣ (z
j

j!
+ zj+1

(j + 1)!
) + e−z ∣rna(0)∣ ≤ 6.

We can bound each summand in the expression of t′′na by the following lemma.
Lemma 15. For any j ≥ 1 and z ≥ 0, we have

∣e−z (z
j

j!
− zj+1

(j + 1)!
)∣ ≤ 1√

2π((j + 1) −
√
j + 1)

and

∣e−z (z
j

j!
− zj+1

(j + 1)!
)∣ ≤ 5

z
.

Proof. For the ease of exposition, denote

q1(z) ∶= e−z (
zj

j!
− zj+1

(j + 1)!
) .

Then, the derivative of q1(z) is

q′1(z) = −e−z
zj

j!
+ e−z zj−1

(j − 1)!
+ e−z zj+1

(j + 1)!
− e−z z

j

j!

= e−z zj−1

(j + 1)!
(−2(j + 1)z + j(j + 1) + z2) .

Set q′1(z) = 0 and note that q1(0) = limz→∞ q1(z) = 0. Hence, the maximum of ∣q1(z)∣ is attained at
either z1 ∶= (j + 1) −

√
j + 1 or z2 ∶= (j + 1) +

√
j + 1. We first consider the function value at z1:

∣q1(z1)∣ = e−z1
zj+1

1

(j + 1)!
∣j + 1

z1
− 1∣

≤ e−(j+1)+
√
j+1((j + 1) −

√
j + 1)j+1 ej+1

√
2π(j + 1)j+1+1/2

1√
j + 1 − 1

≤ e
√
j+1 (1 − 1√

j + 1
)
j+1

1√
2π

√
j + 1

1√
j + 1 − 1

≤ 1√
2π((j + 1) −

√
j + 1)

.

By the same reasoning, we also have ∣q1(z2)∣ ≤ 1/(
√

2π((j + 1) +
√
j + 1)) for z2. Analogously, to

establish the second inequality, we first denote

q2(z) ∶= e−z (
zj+1

j!
− zj+2

(j + 1)!
) .

Then, the derivative of q2(z) is

q′2(z) = e−z
zj

(j + 1)!
(−(2j + 3)z + (j + 1)2 + z2) .

Set q′2(z) = 0 and note that q2(0) = limz→∞ q2(z) = 0. Hence, the maximum of ∣q2(z)∣ is attained
at either z3 ∶= ((2j + 3) −

√
4j + 5)/2 or z4 ∶= ((2j + 3) +

√
4j + 5)/2. Furthermore, note that both

∣z3∣, ∣z4∣ ≤ 2(j + 2). Therefore, we obtain

∣q2(z3)∣ = ∣z3∣∣q1(z3)∣ ≤ 2(j + 2)max
z

∣q1(z)∣ ≤
2(j + 2)√

2π((j + 1) −
√
j + 1)

≤ 5,∀j ≥ 1.

Finally, the same proof also shows that ∣q2(z4)∣ ≤ 5.

36

B.1 Proving Theorem 2: The L1 Distance

Now, let us focus on the problem of estimating the L1 distance between the unknown distribution
p ∈ ∆k and a given distribution q ∈ ∆k. Since our estimator is constructed symbol by symbol, it
suffices to consider the problem of approximating `q(x) ∶= ∣x − q∣ − q.

Let gn+1(j) ∶= (n + 1)`q (j
n+1

). We note that rna(j) equals 0 for all but at most two different values
of j. Therefore, by Lemma 15, for all z ∈ I ′n, we have ∣t′′na(z)∣ ≲ 1, and ∣t′′na(z)∣ ≲ z−1, where the first
and second inequalities resemble Property 3 and 4 in Section A.2.1, respectively. Using arguments
similar to those in Section A.2.3 and A.3, we can construct an estimator for Dq(p) that provides the
guarantees stated in Theorem 2. Note that concavity/convexity is actually not crucial for establishing
the final result in Section A.2.3. Also note that we need to replace our analysis in Section 6.2 and 7.2
for the corresponding large-probability estimator by that in Hao et al. (2018).

B.2 Proving Theorem 3: General Additive Properties

More generally, our result on L1 distance extends to any additive property F (p) = ∑i∈[k] fi(pi) that
satisfies the simple condition: fi is O(1)-Lipschitz, for all i. Without loss of generality, assume that
all functions fi’s are 1-Lipschitz and satisfy fi(0) = 0. By the previous derivations, we immediately
have ∣t′′na(z)∣ ≤ 6, which recovers Property 3 in Section A.2.3. Again, concavity/convexity is actually
unnecessary for establishing the final result in Section A.2.3. The proof will be complete if we also
recover Property 4 in that section. In other words, we only need to show ∣t′′na(z)z∣ ≲ 1, where

t′′na(z)z = e−z
∞

∑
j=0

rna(j + 1)(z
j+1

j!
− zj+2

(j + 1)!
) − e−zz ⋅ rna(0).

Fix z ∈ I ′n and treat it as a constant. Let bj ∶= rna(j+1) and aj ∶= e−z (z
j+1

j!
− zj+2

(j+1)!
). By Lemma 15,

we have ∣aj ∣ ≤ 5,∀j ≥ 1. Note that there is need to worry about the slack term e−zzrna(0) and the first
term in the sum which corresponds to j = 0, because both terms contribute at most O(1) in absolute
value to the above expression for any z ≥ 0. The key observation is that any consecutive partial
sum of sequence {bj}j≥1 is also bounded by O(1) in magnitude. Specifically, for any n1, n2 ∈ Z+
satisfying the inequality n1 + 2 ≤ n2,

RRRRRRRRRRR

n2

∑
j=n1

bj

RRRRRRRRRRR
=
RRRRRRRRRRR

n2

∑
j=n1

rna(j + 1)
RRRRRRRRRRR

=
RRRRRRRRRRR

n2

∑
j=n1

(gna(j + 3) + gna(j + 1) − 2gna(j + 2))
RRRRRRRRRRR

=
RRRRRRRRRRR

n2+3

∑
j=n1+3

gna(j) +
n2+1

∑
j=n1+1

gna(j) − 2
n2+2

∑
j=n1+2

gna(j)
RRRRRRRRRRR

= ∣(gna(n2 + 3) − gna(n2 + 2)) + (gna(n1 + 1) − gna(n1 + 2))∣
≤ 2.

Furthermore, the sequence {aj}j≥1 can change its monotonicity at most two times, which can be
proved by considering the sign of aj − aj−1. More concretely,

sign (aj − aj−1) = sign(e−z (z
j+1

j!
− zj+2

(j + 1)!
) − e−z (zj

(j − 1)!
− z

j+1

j!
))

= sign (2(j + 1)z − z2 − (j + 1)j)
= sign (−j2 + j(2z − 1) + (2z − z2)) .

Since z is fixed, the last expression can change its value at most two times as j increases from 0 to
infinity. The last piece of the proof is the following corollary of the well-known Abel’s inequality.
Lemma 16. Let {a′j}mj=1 be a sequence of real numbers that is either increasing or decreasing, and
let {b′j}mj=1 be a sequence of real or complex numbers. Then, for B′

t ∶= ∑
t
j=1 b

′
t,

∣
m

∑
j=1

a′jb
′
j ∣ ≤ max

t=1,...,m
∣B′
t∣(2∣a′n∣ + ∣a′1∣).

37

By the previous discussions, we can find two indices j1 and j2, such that {aj}j1j=1, {aj}j2j=j1+1, and
{aj}j≥j2+1 are all monotone subsequences.

Then, we apply Lemma 16 to each subsequence and further bound the resulting quantity by the
inequalities established above: ∣∑n2

j=n1
bj ∣ ≲ 1 and ∣aj ∣ ≤ 6,∀j ≥ 1. This concludes the proof.

Finally, we point out that the above argument applies to a much broader class of additive properties
beyond the Lipschitz ones, which is not addressed here for the sake of clarity and simplicity.

C Summary: Estimator Construction and Analysis

This section is essentially the same as Section 4 of the main paper (but with hyperlinks added) and
serves as a summary of the previous derivations and our techniques.

For clarity, we focus on the proof of Theorem 1 about entropy estimation, and explain only necessary
modifications for similar arguments to go through for other properties. We begin by relating the
empirical entropy estimator to the “Bernstein polynomial” of function −x logx.

Notation For a sampling parameter n and accuracy ε ≤ 1, define the amplification factor as
a ∶= ε logn. Without loss of generality, assume that ε ≥ 1/ logn and hence a ≥ 1. For simplicity,
write h(x) ∶= −x logx, m ∶= na, τn ∶= Θ(logn/n) and dn ∶= Θ(logn), where the asymptotic
notations hide only properly chosen absolute constants.

C.1 Bernstein Polynomial

Drawing i.i.d. samples Y m from any distribution p, the expected value of the empirical estimator is

E[ĤE(Y m)] = ∑
i∈[k]

E
Mi∼bin(m,pi)

[h(Mi

m
)] .

Note that for any function f , m∈N, and x ∈ [0,1], the degree-m Bernstein polynomial of f is

Bm(f, x) ∶=
m

∑
j=0

f (j
m

)(m
j
)xj(1 − x)m−j .

Therefore, we can express the expectation of the empirical entropy estimator as

E
Ym∼p

[ĤE(Y m)] = ∑
i∈[k]

Bm(h, pi).

As modifying a sample changes the value of ĤE(Y m) by at most 2 logm/m, the Efron-Stein
inequality bounds its variance by 2 log2m/m, which is negligible in magnitude. Hence, for our
purpose, we focus on finding a good approximation of each Bm(h, pi).

C.2 Estimator Construction and Computation

In the subsequent sections, given i.i.d. samples Xn ∼ p, we construct our estimator as follows.

Substitute n by 2n for simplicity. According to Section C.4, we first split the samples into two halves,
Xn

1 and X2n
n+1, and respectively denote by Ni and N ′

i the empirical counts of each symbol i in them.

Then, we follow Dobrushin (1958) to classify the symbols into two categories and decompose

E
Ym∼p

[ĤE(Y m)] = ∑
i∈[k]

Bm(h, pi)

into two parts by thresholding the empirical countsN ′
i at level 1/ε. The first part this operation induces

is VL ∶= ∑i∈[k]Bm(h, pi)1N ′

i>1/ε, corresponding to the contribution of symbols with potentially large
probabilities. By Appendix C.3, this quantity is well approximated by the large-probability estimator

V̂L ∶= ∑
i∈[k]

h(Ni
n

) ⋅ 1N ′

i>
1
ε
,

38

to an MAE of 2(ε∧Sp/n). As for the small-probability part,

VS ∶= ∑
i∈[k]

Bm(h, pi) ⋅ 1N ′

i≤
1
ε
,

we follow the arguments in Appendix C.4 and C.5 to learn each summand adaptively (to the magnitude
of the probability) and compute the summation.

Concretely, recall that τn = Θ(logn/n) and dn = Θ(logn). For a given function and domain, the
polynomial achieving the minimal maximum deviation from the function over the domain is the
min-max polynomial. Then, we denote by

h̃m(x) ∶=
dn

∑
t=0

btx
t

the degree-dn min-max polynomial of B′
m(h, pi) over interval In ∶= [0, τn]. The small-probability

estimator for VS is

V̂S ∶= ∑
i∈[k]

⎛
⎝

d+1

∑
t=1

bt−1

t
⋅
N
t
i

nt
⎞
⎠
⋅ 1Ni≲logn ⋅ 1N ′

i≤
1
ε
,

where for each i, the term in the parentheses is an unbiased estimator for H̃m(pi) ∶= ∫
pi

0 h̃m(s)ds.
Next, we illustrate the technique and intuition behind the construction.

Differential smoothing The construction of V̂S presents a generic method for designing a polyno-
mial G̃ that closely approximates a given differentiable function G with pointwise error bounds.

More precisely, for a fixed interval I ∶= [0, τ] and degree bound d ∈ N, we want to find a polynomial
G̃ of degree at most d, satisfying

max
x∈I

∣G̃(x) −G(x)∣ ≤ c ⋅ x,

for a number c ≥ 0 that is as small as possible.

We propose a novel method, differential smoothing, that addresses this fundamental approximation
problem and operates as follows.

1. Compute G′(x) and write g ∶= G′.
2. Approximate g by its min-max polynomial g̃ over I .
3. Let c be the min-max approximation error in Step 2.

4. Compute G̃(x) ∶= ∫
x

0 g̃(t)dt.

By the triangle inequality, the resulting c and G̃ satisfy the desired inequality. Besides, Step 2 and 3
can be jointly performed using the well-known Remez algorithm (Trefethen, 2013).

Turning back to our estimator V̂S , by the reasoning in Appendix C.6 and C.7, the min-max polynomial
h̃m(x) approximates B′

m(h,x) to within O(ε) over In. Hence, applying the method of differential
smoothing yields the pointwise bound

∣Bm(h,x) − H̃m(x)∣ ≲ ε ⋅ x.
Further relating this inequality to the expectation of the empirical entropy estimator implies

∣ E
Ym∼p

[ĤE(Y m)] − ∑
i∈[k]

H̃m(pi)∣ ≲ ∑
i∈[k]

ε ⋅ pi = ε.

In Section 6.1, we proved that the absolute bias is also at most O(Sp/n). Finally, Section 7.1 bounds
the mean absolute deviation of the estimator by O(1/n0.49).

Consequently, we approximate H(p) by

Ĥ ∶= V̂L + V̂S .

Computational complexity The dominant computation step is finding the min-max polynomial of
B′
m(h,x), for which we utilize the well-known Remez algorithm (Trefethen, 2013). As shown in

Section 9, the algorithm takes just Õ(n) time to well approximate B′
m(h,x).

39

C.3 Large-Probability Estimator

Following the previous arguments, we say that i ∈ [k] is a large-probability symbol if N ′
i > 1/ε. To

the expectation of the m-sample empirical estimator, these symbols contribute

VL = ∑
i∈[k]

Bm(h, pi) ⋅ 1N ′

i>
1
ε
.

We estimate VL by respectively reweighing the first-half samples’ empirical estimator:

V̂L = ∑
i∈[k]

h(Ni
n

) ⋅ 1N ′

i>
1
ε
.

To bound the estimation bias, we leverage the next lemma, stating that the Bernstein polynomial of h
closely approximates the function over [0,1].
Lemma 17. For any t ∈ Z+ and x ∈ [0,1],

−1 − x
t

≤ Bt(h,x) − h(x) ≤ 0.

The number of symbols satisfying N ′
i > 1/ε is at most nε. Together with the lemma and triangle

inequality, this yields

∣E[VL] −E[V̂L]∣ ≤ ∑
i∈[k]

(1 + a
m

)(1 − pi)E [1N ′

i>
1
ε
] ≤ 2ε.

Furthermore, the number of such symbols is also at most Sp, implying an upper bound of 2Sp/n.

We note that for Shannon entropy, adding 1/(2n) to the empirical estimate h(Ni/n) may reduce
its bias. This particular method, known as the “Miller-Mallow estimator”, appears in Miller (1955)
and eliminates the first-order term of Bn(h,x) − h(x). Applying the method will introduce extra
complications in the analysis, and hence for entropy and general non-differentiable properties, we
employ the original empirical estimator. On the other hand, substituting the Miller-Mallow estimate
into our algorithm in Theorem 1 retains its theoretical guarantee.

For Lipschitz properties, the rich literature on Bernstein polynomials (operators) presents us the
following pointwise bound.

Lemma 18 (Bustamante (2017) Proposition 4.9). For any t ≥ 1, x ∈ [0,1], and c-Lipschitz function f ,

∣Bt(f, x) − f(x)∣ ≤ c ⋅
√

x(1 − x)
t

.

Combined with the Cauchy-Schwarz inequality, the lemma shows that the estimation bias of the
respective V̂L admits

∣E[VL] −E[V̂L]∣ ≤ 2
⎛
⎝
ε ∧

√
Sp

n

⎞
⎠
.

This inequality completes the bias analysis of the large-probability estimator, while Section 6.2
provides additional technical details. For the variance analysis, see Section 7.2.

The following three sections proceed to construct the small-probability estimator and introduce
fundamental results from polynomial approximation theory.

C.4 Choice of Parameters and Sample Splitting

Section 4 calls for estimating Bm(h,x). Applying the method of differential smoothing in Ap-
pendix C.2, we first choose some domain I = [0, τ] and degree d, and estimate B′

m(h,x) by its
min-max polynomial h̃m(x) = ∑dt=0 btx

t over I . Then, we approximate Bm(h,x) by

H̃m(x) = ∫
x

0
h̃m(t)dt =

d

∑
t=0

bt
t + 1

xt+1.

40

To estimate H̃m(x), note that given a binomial variable X ∼ bin(n,x), an unbiased estimator for xt

is Xt/nt, where t ∈ N and AB represents the B-th order falling factorial of A. Hence, we employ

Ĥm(X) ∶=
d+1

∑
t=1

bt−1

t
⋅ X

t

nt
,

an unbiased estimator for H̃m(x) that corresponds to the parenthetical component in the expression
of V̂S . Next, we briefly illustrate the intuitions behind our choices of parameter τ and d.

For X ∼ bin(n,x), the variance of Ĥm(X) generally gets larger as the degree parameter d increases.
On the other hand, a higher-degree polynomial can achieve a lower approximation error. To balance
this bias-variance trade-off, we want to reduce both the interval length, τ , and the polynomial degree,
d, while maintaining the approximation power.

As in Section C.2, we set τ = τn = Θ(logn/n) since below this threshold, sample statistics are not
sufficient for inferring the relative magnitudes of the underlying probabilities with high confidence.
Regarding the degree parameter τ = τn = Θ(logn), below the logn threshold, the approximation
H̃m loses the ε ⋅ x guarantee; in contrast, above the threshold, the final estimator may no longer
possess a vanishing variance. For more details, see derivations in Section 7.1 and Appendix A.

One thing that follows the construction of H̃m and Ĥm is how to apply these approximations to only
probabilities of order τn. This issue arises from the fact that we observe symbol counts, not ranges
of the actual probability values. It is straightforward to deal with such uncertainty by inferring the
magnitudes of unknowns leveraging the counting statistics concentration.

For concentration, binomial random variables are sums of independent indicator variables and possess
Gaussian-type tail bounds. To avoid introducing additional statistical dependency, we

1. split the sample sequence into two halves of equal length;

2. denote respectively the empirical counts of each symbol i in the first and second halves by
Ni and N ′

i (where we slightly abused the notation);

3. classify each i ∈ [k] as a large- or small- probability symbol by thresholding N ′
i at 1/ε.

Section 5 and 6.2 present relevant technical details.

In the literature, the above procedure is often referred to as sample splitting. This idea of classifying
the symbols in the alphabet into two categories dates back to Dobrushin (1958), and has been applied
to estimate a variety of specific distribution properties in the past decade (Acharya et al., 2014; Jiao
et al., 2015; Wu & Yang, 2016; Hao et al., 2018). Recently, Hao & Orlitsky (2019c) generalize
this idea to estimate general properties by partitioning the unit interval into Θ̃(

√
n) pieces; Hao &

Orlitsky (2019b) apply the method to derive state-of-the-art distribution estimators.

Sample splitting and additiveness of the property enable us to estimate the contributions from the
large and small probabilities separately. The rest sections assume this separation and address the
small-probability approximation error.

C.5 Min-Max Polynomial

Polynomials have extensive applications to statistical inference, ranging from approximating the
norms of Gaussian parameters (Cai & Low, 2011) to learning structured distributions (Chan et al.,
2014; Acharya et al., 2017b; Hao & Orlitsky, 2019b) to estimating properties of distributions (Jiao
et al., 2015; Orlitsky et al., 2016; Wu & Yang, 2016; Hao et al., 2018; Hao & Orlitsky, 2019c).

As illustrated in Appendix C.2 and C.4, we aim to find a polynomial h̃m(x) of degree dn = Θ(logn)
that satisfies the pointwise bound ∣B′

m(h,x) − h̃m(x)∣ ≲ ε over In = [0, τn].
The task naturally calls for a polynomial achieving the minimal maximum deviation from B′

m(h,x),
commonly known as the respective min-max polynomial approximation. Moreover, direct computa-
tion shows that B′

m(h,x) is the order-(m−1) Bernstein polynomial of another function:

B′
m(h,x) = Bm−1(hm, x),

41

where function hm is defined as

hm(y) ∶=− log
m − 1

m
+ (m − 1)(h(y+ 1

m − 1
)−h(y)) .

Hence, our objective reduces to bounding the error of min-max polynomial approximations of
Bm−1(hm, x) over In. As one could expect, the analysis gets more involved since 1) Bm−1(hm, x) is
a high-degree polynomial with transcendental coefficients; 2) in general, there are no closed-form
formulas for the min-max polynomials of a real function.

Though sophisticated in its form, function Bm−1(hm, x) is continuous and relatively smooth, as
hinted by Lemma 4. This simple observation serves as the starting point for our subsequent analysis.
In the next section, we dive into approximation theory and present fundamental connections between
the smoothness of a function (characterized by specific quantities) and its min-max polynomial ap-
proximation error over a closed interval. The desired result then follows by a sequence of inequalities
and simplifications that enable us to gauge the smoothness of Bm−1(hm, x). For the proof of the
identity on hm and a more straightforward argument leading to a weaker result, see Section 4 and 5.

C.6 Moduli of Smoothness

In this section, we introduce some notable results in approximation theory (Ditzian & Totik, 2012)
that are crucial for simplifying the problem. Let ϕ(x) ∶=

√
x(1 − x). For any function f ∶ [0,1]→ R,

the first- and second- order Ditzian-Totik moduli of smoothness quantities of f are

w1
ϕ(f, t) ∶= sup{∣f(u) − f(v)∣ ∶ 0 ≤ u, v ≤ 1, ∣u − v∣ ≤ t ⋅ ϕ(u + v

2
)} ,

and

w2
ϕ(f, t) ∶= sup{∣f(u) + f(v) − 2f (u + v

2
)∣ ∶ 0 ≤ u, v ≤ 1, ∣u − v∣ ≤ 2t ⋅ ϕ(u + v

2
)} ,

respectively. Let Pd denote the collection of polynomials with real coefficients and degree at most d.
For any d ∈ Z+, interval I ⊂ R, and function f ∶ I → R, denote by

Ed[f, I] ∶= min
f̃∈Pd

max
x∈I

∣f(x) − f̃(x)∣

the best approximation error of the degree-d min-max polynomial of f over I . For a bounded domain
I , we can always shift and rescale f to make it a real function over [0,1]. Hence, without loss of
generality, it suffices to consider and analyze Ed[f] ∶= Ed[f, [0,1]].
The connection between the best polynomial-approximation error Ed[f] of a continuous function f
and the second-order Ditzian-Totik moduli of smoothness w2

ϕ(f, t) is established in the following
lemma (Ditzian & Totik, 2012).
Lemma 19. There are absolute constants C1 and C2 such that for any continuous function f over
[0,1] and d > 2,

Ed[f] ≤ C1w
2
ϕ(f, d−1),

and
1

d2

d

∑
t=0

(t + 1)Et[f] ≥ C2w
2
ϕ(f, d−1).

The above lemma shows that the second-order smoothness quantity w2
ϕ(f, ⋅) essentially characterizes

E⋅[f], and thus transforms the problem of showing

∣h̃m(x) −Bm−1(hm, x)∣ ≲ ε, ∀x ∈ In,

to that of establishing
w2
ϕ(Bm−1(hm, τn ⋅ x), d−1

n) ≲ ε,
where τn = Θ(logn/n) and dn = Θ(logn) by definition.

42

C.7 Simplification via Poissonization

The last block in our analysis is Poissonization, which helps decompose and simplify the function to
approximate. For any y ∈ [0,∞], define two functions:

f1(y) ∶= E
X∼Poi(y)

[h(X)] = −e−y
∞

∑
j=1

yj

j!
(j log j)

and
f2(y) ∶= E

X∼Poi(y)
[h(X + 1)].

Let z(x) ∶= (m − 1)x for simplicity. The following lemma, appearing in Appendix A.1 of the
supplementary relates Bm−1(hm, x) to these functions and base function h(x).

Lemma 20. For any m ∈ Z+ and x ∈ [0, (log4m)/m],

hm(x)−Bm−1(hm, x) = [h(z(x) + 1) − f2(z(x))] − [h(z(x)) − f1(z(x))] + Õ(1

m
).

In particular, the above equation holds for any sufficiently large n and x ∈ In = [0, τn]. Since
1/m = 1/(na − 1) ≤ min{1/ logn,Sp/n}, the last term on the right-hand side is negligible. These
results, together with the function-wise triangle inequality on w2

ϕ, further reduce the last inequality in
Appendix C.6 to bounds in the form of

w2
ϕ(g(x), d−1

n) ≲ ε,

for function g(x) being hm(τn ⋅ x), h(z(x)), h(z(x) + 1), f1(z(x)), and f2(z(x)), respectively.

We proved these bounds in Appendix A.2 and A.3. In Appendix B, a similar yet more involved
argument extended the result to all Lipschitz properties. One reason for the extra complication is the
absence of concrete expression, as we impose only the Lipschitz condition.

A critical insight is that the optimization problems induced by computing w2
ϕ for the above choices

of g are all convex. Consequently, it suffices to consider only the boundary cases of parameters.

D A Competitive Estimator for Support Size

D.1 Estimator Construction

Denote by p and Sp an unknown distribution and its support size, respectively. For ε ≤ e−2, redefine
the amplification parameter as a ∶= ∣ log−2ε∣ ⋅ logSp. Let Xna be an i.i.d. sample sequence drawn
from p, and N ′′

i be the number of times symbol i appears empirically.

The na-sample empirical estimator approximates the support size Sp = ∑i∈[k] 1pi>0 by

ŜE(Xna) ∶= ∑
i∈[k]

1N ′′

i >0.

Taking expectation, we have

E[ŜE(Xna)] ∶= ∑
i∈[k]

E[1N ′′

i >0] = ∑
i∈[k]

(1 − (1 − pi)na).

For a length-Poi(n) sample sequence XN , denote by φj the number of symbols that appear j times.
Following Acharya et al. (2017a); Orlitsky et al. (2016), we can estimate E[ŜE(Xna)] by

Ŝ(XN) ∶=
∞

∑
j=1

φj(1 − (−(a − 1))j Pr(Z ≥ j)),

where Z ∼ Poi(r) for some smoothing parameter r. Similar to the previous notation, we define Ni
as the number of times symbol i appears in XN . Then, all the Ni’s are mutually independent.

43

D.2 Bounding the Bias

The following lemma bounds the bias of Ŝ(XN) in estimating E[ŜE(Xna)].
Lemma 21. For any a ≥ 1,

∣E[Ŝ(XN)] −E[ŜE(Xna)]∣ ≤ min{na,Sp} e−r + 2.

Proof. Note that for any m ≥ 0 and p ∈ [0,1],
0 ≤ e−mp − (1 − p)m ≤ 2p.

Hence, we obtain
∣E[Ŝ(XN)] −E[ŜE(Xna)]∣

=
RRRRRRRRRRRR
E
⎡⎢⎢⎢⎣

∞

∑
j

φj
⎤⎥⎥⎥⎦
−E

⎡⎢⎢⎢⎣

∞

∑
j

φj(−(a − 1))j Pr(Z ≥ j)
⎤⎥⎥⎥⎦
− ∑
i∈[k]

(1 − (1 − pi)na)
RRRRRRRRRRRR

=
RRRRRRRRRRRR
∑
i∈[k]

(1 − e−npi) −E
⎡⎢⎢⎢⎣

∞

∑
j

φj(−(a − 1))j Pr(Z ≥ j)
⎤⎥⎥⎥⎦
− ∑
i∈[k]

(1 − (1 − pi)na)
RRRRRRRRRRRR

≤
RRRRRRRRRRRR
∑
i∈[k]

(−e−npi) −E
⎡⎢⎢⎢⎣

∞

∑
j

φj(−(a − 1))j Pr(Z ≥ j)
⎤⎥⎥⎥⎦
− ∑
i∈[k]

(−e−napi)
RRRRRRRRRRRR
+ 2 ∑

i∈[k]

pi

=
RRRRRRRRRRRR
∑
i∈[k]

e−npi(e−n(a−1)pi − 1) −E
⎡⎢⎢⎢⎣

∞

∑
j

φj(−(a − 1))j Pr(Z ≥ j)
⎤⎥⎥⎥⎦

RRRRRRRRRRRR
+ 2

≤ min{na,Sp} e−r + 2,

where the last step follows by Lemma 7 and Corollary 2 in Orlitsky et al. (2016).

D.3 Bounding the Mean Absolute Deviation

D.3.1 Bounds for Ŝ(XN
)

In this section, we analyze the mean absolute deviation of Ŝ(XN). To do this, we need the following
two lemmas. The first lemma bounds the coefficients of this estimator.
Lemma 22 (Acharya et al. (2017a)). For any j ≥ 1 and a ≥ 1,

∣1 − (−(a − 1))j Pr(Z ≥ j)∣ ≤ 1 + er(a−1).

The second lemma is the well-known McDiarmid’s inequality.
Lemma 23. Let Y1, . . . , Ym be independent random variables taking values in ranges R1, . . . ,Rm,
and let F ∶ R1 × . . . ×Rm → C with the property that if one freezes all but the wth coordinate of
F (y1, . . . , ym) for some 1 ≤ w ≤m, then F fluctuates by only most cw > 0, thus ∣F (y1, . . . , yw−1, yw,
yw+1, . . . , ym)−F (y1, . . . , yw−1, y

′
w, yw+1, . . . , ym)∣ ≤ cw for all yj ∈ Rj and y′w ∈ Rw for 1 ≤ j ≤m.

Then for any λ > 0, one has Pr(∣F (Y) − E[F (Y)]∣ ≥ λσ) ≤ C exp(−cλ2) for some absolute
constants C, c > 0, where σ2 ∶= ∑mj=1 c

2
j .

Note that Ŝ(XN), viewed as a function of Ni’s with indexes i satisfying pi /= 0, fulfills the conditions
described in Lemma 23, with parameter m = Sp and cw = 2 + 2er(a−1) for all 1 ≤ w ≤m. Therefore,
for σ2 ∶= 4Sp(1 + er(a−1))2,

Pr(∣Ŝ(XN) −E[Ŝ(XN)]∣ ≥ λσ) ≤ C exp(−cλ2).
This inequality further implies

E ∣Ŝ(XN) −E[Ŝ(XN)]∣ = ∫
∞

0
Pr(∣Ŝ(XN) −E[Ŝ(XN)]∣ ≥ t) dt

= σ∫
∞

0
Pr(∣Ŝ(XN) −E[Ŝ(XN)]∣ ≥ λσ) dλ

≤ Cσ∫
∞

0
exp(−cλ2)dλ

≲
√
Sp(1 + er(a−1)).

44

Analogously, treating Ŝ(XN) as a function of Xi’s yields

E ∣Ŝ(XN) −E[Ŝ(XN)]∣ ≲
√
n(1 + er(a−1)).

Consolidating the previous results, we obtain

E ∣Ŝ(XN) −E[Ŝ(XN)]∣ ≲
√

min{Sp, n}(1 + er(a−1)).

D.3.2 Bounds for ŜE
(Xna

)

The following lemma bounds the variance of ŜE(Xna) in terms of Sp.
Lemma 24. For m ≥ 1 and Xm ∼ p,

Var(ŜE(Xm)) ≲ Sp.

Proof. In this proof, we slightly abuse the notation and denote by Ni the number of times symbol i
appears in Xm. Incorporating the definition,

Var(ŜE(Xm)) = Var
⎛
⎝ ∑i∶pi>0

1Ni>0

⎞
⎠
= E

⎛
⎝ ∑i∶pi>0

1Ni>0

⎞
⎠

2

−
⎛
⎝
E
⎡⎢⎢⎢⎣
∑
i∶pi>0

1Ni>0

⎤⎥⎥⎥⎦

⎞
⎠

2

.

Let YM be an independent length-Poi(m) sample sequence from p, and N ′
i be the number of times

symbol i appearing in XM . Then,

E
⎛
⎝ ∑i∶pi>0

1Ni>0

⎞
⎠

2

= E
⎡⎢⎢⎢⎢⎣
∑
i∶pi>0

1Ni>0 + ∑
i/=j∶pi>0,pj>0

1Ni>01Nj>0

⎤⎥⎥⎥⎥⎦
= ∑
i∶pi>0

(1 −E[1Ni=0]) + ∑
i/=j∶pi>0,pj>0

E[(1 − 1Ni=0)(1 − 1Nj=0)]

= ∑
i∶pi>0

(1 − (1 − pi)m) + ∑
i/=j∶pi>0,pj>0

(1−(1 − pi)m−(1 − pj)m+(1 − pi − pj)m) .

Note that for any m ≥ 0 and p ∈ [0,1],
0 ≤ e−mp − (1 − p)m ≤ 2p.

Then, we must have both
∣(1 − (1 − pi)m) − (1 − e−mpi)∣ ≤ 2pi

and
∣(1−(1 − pi)m−(1 − pj)m+(1 − pi − pj)m) − (1−e−mpi−e−mpj+e−m(pi+pj))∣ ≤ 4(pi + pj).

Therefore,
RRRRRRRRRRRRR
E
⎛
⎝ ∑i∶pi>0

1Ni>0

⎞
⎠

2

−E
⎛
⎝ ∑i∶pi>0

1N ′

i>0

⎞
⎠

2RRRRRRRRRRRRR
≤ ∑
i∶pi>0

2pi + ∑
i/=j∶pi>0,pj>0

4(pi + pj)

≤ 4 ∑
i∶pi>0

∑
j∶pj>0

(pi + pj)

≤ 8Sp.

Similarly,
RRRRRRRRRRRRR

⎛
⎝
E
⎡⎢⎢⎢⎣
∑
i∶pi>0

1Ni>0

⎤⎥⎥⎥⎦

⎞
⎠

2

−
⎛
⎝
E
⎡⎢⎢⎢⎣
∑
i∶pi>0

1N ′

i>0

⎤⎥⎥⎥⎦

⎞
⎠

2RRRRRRRRRRRRR

=
RRRRRRRRRRR
E
⎡⎢⎢⎢⎣
∑
i∶pi>0

1Ni>0

⎤⎥⎥⎥⎦
−E

⎡⎢⎢⎢⎣
∑
i∶pi>0

1N ′

i>0

⎤⎥⎥⎥⎦

RRRRRRRRRRR

RRRRRRRRRRR
E
⎡⎢⎢⎢⎣
∑
i∶pi>0

1Ni>0

⎤⎥⎥⎥⎦
+E

⎡⎢⎢⎢⎣
∑
i∶pi>0

1N ′

i>0

⎤⎥⎥⎥⎦

RRRRRRRRRRR

≤
RRRRRRRRRRR
∑
i∶pi>0

E [1Ni>0] − ∑
i∶pi>0

E [1N ′

i>0]
RRRRRRRRRRR
⋅ 2Sp

≤ (∑
i∶pi>0

2pi) ⋅ 2Sp

≤ 4Sp.

45

Finally, note that changing the value of a single observation changes the value of ∑i∶pi>0 1N ′

i>0 by at
most one. Hence, by McDiarmid’s inequality,

Var
⎛
⎝ ∑i∶pi>0

1N ′

i>0

⎞
⎠
≲ Sp.

The triangle inequality combines the previous inequalities and yields

Var
⎛
⎝ ∑i∶pi>0

1Ni>0

⎞
⎠
≲ Sp.

By Jensen’s inequality, the above lemma implies that

E ∣ŜE(Xna) −E[ŜE(Xna)]∣ ≤
√

Var(ŜE(Xna)) ≲
√
Sp.

D.4 Proving Theorem 4

Setting r = ∣ log ε∣, we obtain
er(a−1) ≤ S ∣ log−1ε∣

p

and
e−r = e−∣ log ε∣ = ε.

Therefore, by the previous results,

E ∣Ŝ(XN) − ŜE(Xna)∣ ≤ E ∣Ŝ(XN) −E[ŜE(Xna)]∣ +E ∣E[ŜE(Xna)] − ŜE(Xna)∣

≲ S ∣ log−1ε∣+ 1
2

p + Sp ⋅ ε.

Normalize both sides by Sp. Then,

E ∣ Ŝ(X
N)

Sp
− Ŝ

E(Xna)
Sp

∣ ≲ S ∣ log−1ε∣− 1
2

p + ε.

46

E A Competitive Estimator for Support Coverage

E.1 Estimator Construction

Recall that c(p) = 1−(1−pi)m, wherem is a given parameter. For ε ≤ e−2, redefine the amplification
parameter as a ∶= ∣ log−2ε∣ ⋅ logCp. Similar to the last section, let Xna be an independent length-na
sample sequence drawn from p, and N ′′

i be the number of times symbol i appears empirically.

The na-sample empirical estimator estimates the m-sample support coverage Cp = ∑i∈[k] c(pi) by

ĈE(Xna) ∶= ∑
i∈[k]

c(N
′′
i

na
) = ∑

i∈[k]

(1 − (1 − N
′′
i

na
)
m

) .

Taking expectation, we obtain

E[ĈE(Xna)] = ∑
i∈[k]

E [1 − (1 − N
′′
i

na
)
m

] .

For the ease of exposition, let us denote

T (p) ∶= ∑
i∈[k]

E [1 − e−m
N′′

i
na] .

Noting that for any t ≥ 1 and p ∈ [0,1],
∣e−tp − (1 − p)t∣ ≤ 2p,

hence, we have

∣E[ĈE(Xna)] − T (p)∣ ≤ ∑
i∈[k]

E [2 ⋅ N
′′
i

na
] = 2.

Then, it suffices to estimate T (p), which satisfies

T (p) = ∑
i∈[k]

(1 −E [e−m
N′′

i
na])

= ∑
i∈[k]

⎛
⎝

1 −
na

∑
j=0

(na
j
)pji (1 − pi)

na−je−m
j

na
⎞
⎠

= ∑
i∈[k]

⎛
⎝

1 −
na

∑
j=0

(na
j
)(pi ⋅ e−

m
na)j (1 − pi)na−j

⎞
⎠

= ∑
i∈[k]

(1 − (1 − pi(1 − e−
m
na))na) .

Analogous to the definition of T (p), let us denote

T1(p) ∶= ∑
i∈[k]

(1 − exp (−na(1 − e−
m
na)pi)) .

Since (1 − e− m
na) ⋅ pi ∈ [0,1], we must have

∣T (p) − T1(p)∣ ≤ ∑
i∈[k]

2(1 − e−
m
na)pi ≤ 2.

Define a new amplification parameter a′ ∶= a(1 − e− m
na). Then, we can express T1(p) as

T1(p) ∶= ∑
i∈[k]

(1 − exp (−na′pi)) .

For simplicity, we will assume that m ≥ 1.5n and a > 1.8, ensuring

a′ = a(1 − e−
m
na) ≥ a(1 − e−

1.5
a) > 1.

Analogous to case of support size estimation, we draw a length-Poi(n) sample sequence XN and
estimate E[ĈE(Xna)] by the estimator

Ĉ(XN) ∶=
∞

∑
j=1

φj(1 − (−(a′ − 1))j Pr(Poi(r) ≥ j)),

where φj denotes the number of symbols appearing j times.

47

E.2 Bounding the Bias

We bound the bias of Ĉ(XN) in estimating E[ĈE(Xna)] as follows.

∣E[Ĉ(XN)] −E[ĈE(Xna)]∣ ≤ ∣E[Ĉ(XN)] − T1(p)∣ + ∣T1(p) −E[ĈE(Xna)]∣
≤ ∣E[Ĉ(XN)] − T1(p)∣ + 4

=
RRRRRRRRRRRR
∑
i∈[k]

e−npi(e−n(a
′
−1)pi − 1)

− ∑
i∈[k]

e−npi
∞

∑
j=1

(−(a′ − 1)npi)j

j!
Pr(Poi(r) ≥ j)

RRRRRRRRRRRR
+ 4

≤
RRRRRRRRRRRR
∑
i∈[k]

e−npi
⎛
⎝

∞

∑
j=1

(−(a′ − 1)npi)j

j!
Pr(Poi(r) < j)

⎞
⎠

RRRRRRRRRRRR
+ 4.

To bound the last sum, we need the following lemma.
Lemma 25. For any y, r ≥ 0,

RRRRRRRRRRR

∞

∑
j=1

(−y)j

j!
Pr(Poi(r) < j)

RRRRRRRRRRR
≤ e−r(1 − e−y).

Proof. By Lemma 6 of Orlitsky et al. (2016),
RRRRRRRRRRR

∞

∑
j=1

(−y)j

j!
Pr(Poi(r) < j)

RRRRRRRRRRR
≤ max

s≤y
∣EL∼Poi(r) [

(−s)L

L!
]∣ (1 − e−y)

= max
s≤y

∣J0(2
√
sr)∣ e−r(1 − e−y)

≤ e−r(1 − e−y),

where J0 is the first-order Bessel function of the first kind, and satisfies the elegant inequality
∣J0(x)∣ ≤ 1,∀x ≥ 0 (Abramowitz & Stegun, 1965).

Leveraging the above lemma, we obtain

∣E[Ĉ(XN)] −E[ĈE(Xna)]∣ ≤
RRRRRRRRRRRR
∑
i∈[k]

e−npi
⎛
⎝

∞

∑
j=1

(−(a′ − 1)npi)j

j!
Pr(Poi(r) < j)

⎞
⎠

RRRRRRRRRRRR
+ 4

≤ e−r ∑
i∈[k]

e−npi(1 − e−(a
′
−1)npi) + 4

≤ e−r ∑
i∈[k]

(1 − e−na
′pi) + 4.

Note that na′ = na(1 − e− m
na) ≤m. Therefore,

∣E[Ĉ(XN)] −E[ĈE(Xna)]∣ ≤ e−r ∑
i∈[k]

(1 − e−mpi) + 4 = e−rCp + 4.

48

E.3 Bounding the Mean Absolute Deviation

E.3.1 Bounds for Ĉ(XN
)

First, we bound the mean absolute deviation of Ĉ(XN) in terms of Cp. By Jensen’s inequality,

E ∣Ĉ(XN) −E[Ĉ(XN)]∣ ≤
√

Var (Ĉ(XN))

=

¿
ÁÁÁÀ∑

i∈k

Var
⎛
⎝

∞

∑
j=1

1Ni=j(1 − (−(a′ − 1))j Pr(Poi(r) ≥ j))
⎞
⎠

≤

¿
ÁÁÁÀ∑

i∈k

E
⎡⎢⎢⎢⎢⎣

⎛
⎝

∞

∑
j=1

1Ni=j(1 − (−(a′ − 1))j Pr(Poi(r) ≥ j))
⎞
⎠

2⎤⎥⎥⎥⎥⎦

=
¿
ÁÁÀ∑

i∈k

∞

∑
j=1

E [1Ni=j] (1 − (−(a′ − 1))j Pr(Poi(r) ≥ j))2

≤ (1 + er(a
′
−1))

√
∑
i∈k

(1 − e−npi).

By our assumption that m ≥ 1.5n,

E[∣Ĉ(XN) −E[Ĉ(XN)]∣] ≤ (1 + er(a
′
−1))

√
∑
i∈k

(1 − e−npi)

≤ (1 + er(a
′
−1))

√
∑
i∈k

(1 − e−mpi)

≤ (1 + er(a
′
−1))

√
∑
i∈k

(1 − (1 − pi)m)

= (1 + er(a
′
−1))

√
Cp.

E.3.2 Bounds for ĈE
(Xna

)

Next, we bound the mean absolute deviation of the na-sample empirical estimator. To deal with the
dependence among the counts N ′′

i ’s, we need the following lemma (Joag-Dev & Proschan, 1983).

Definition 1. Random variables X1, . . . ,XS are said to be negatively associated if for any pair of
disjoint subsets A1,A2 of 1,2, . . . , S, and any component-wise increasing functions f1, f2,

Cov(f1(Xi, i ∈ A1), f2(Xj , j ∈ A2)) ≤ 0.

The following result can be used to check whether random variables are negatively associated or not.

Lemma 26. Let X1, . . . ,XS be S independent random variables with log-concave densities. Then
the joint conditional distribution of X1, . . . ,XS given ∑Si=1Xi is negatively associated.

Lemma 26 shows that N ′′
i ’s are negatively correlated. Furthermore, note that

c∗(x) ∶= 1 − (1 − x

na
)
m

is an increasing function, and we can write the quantity of interest as

ĈE(Xna) ∶= ∑
i∈[k]

c∗(N ′′
i).

Hence, for any i, j ∈ [k] such that i /= j,

Cov(c∗(N ′′
i), c∗(N ′′

j)) ≤ 0.

49

Consequently,

Var (ĈE(Xna)) = ∑
i∈[k]

Var(c∗(N ′′
i)) + 2 ∑

i,j∈[k],i/=j

Cov(c∗(N ′′
i), c∗(N ′′

j))

≤ ∑
i∈[k]

Var(c∗(N ′′
i))

≤ ∑
i∈[k]

E(c∗(N ′′
i))2

= ∑
i∈[k]

E
⎡⎢⎢⎢⎣

na

∑
j=0

1Ni=j(C∗(j))2
⎤⎥⎥⎥⎦

≤ ∑
i∈[k]

na

∑
j=1

E [1Ni=j]

= ∑
i∈[k]

(1 − (1 − pi)na).

Without loss of generality, we will assume that a is a positive integer. Then,

∑
i∈[k]

(1 − (1 − pi)na) = ∑
i∈[k]

(1 − (1 − pi)n)(
a−1

∑
j=0

(1 − pi)nj)

≤ a ∑
i∈[k]

(1 − (1 − pi)n)

≤ a ∑
i∈[k]

(1 − (1 − pi)m)

= aCp.

Finally, Jensen’s inequality implies

E ∣ĈE(Xna) −E[ĈE(Xna)]∣ ≤
√

Var(ĈE(Xna)) ≤
√
aCp.

E.4 Proving Theorem 5

The triangle inequality consolidates the major inequalities in the previous sections and yields

E ∣Ĉ(XN) − ĈE(Xna)∣ ≲ e−rCp + 4 +
√
aCp + (1 + er(a

′
−1))

√
Cp.

By the fact that a′ < a = ∣ log−2ε∣ ⋅ logCp, we set r = ∣ log ε∣ and obtain

E ∣Ĉ(XN) − ĈE(Xna)∣ ≲ εCp + 4 + (1 +C ∣ log−1ε∣
p +

√
logCp)

√
Cp.

Then, normalizing both sides by Cp gives

E ∣ Ĉ(XN)
Cp

− Ĉ
E(Xna)
Cp

∣ ≲ C ∣ log−1ε∣− 1
2

p + ε.

50

References
Abbott, J. Quadratic interval refinement for real roots. ACM Communications in Computer Algebra,

48(1/2):3–12, 2014.

Abramowitz, M. and Stegun, I. A. Handbook of mathematical functions with formulas, graphs, and
mathematical table. National Bureau of Standards Applied Mathematics Series 55, 1965.

Acharya, J., Orlitsky, A., Suresh, A. T., and Tyagi, H. The complexity of estimating Rényi entropy.
In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1855–1869.
SIAM, 2014.

Acharya, J., Das, H., Orlitsky, A., and Suresh, A. T. A unified maximum likelihood approach for
estimating symmetric properties of discrete distributions. In International Conference on Machine
Learning, pp. 11–21, 2017a.

Acharya, J., Diakonikolas, I., Li, J., and Schmidt, L. Sample-optimal density estimation in nearly-
linear time. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1278–1289. SIAM, 2017b.

Batu, T., Fortnow, L., Rubinfeld, R., Smith, W. D., and White, P. Testing that distributions are close.
In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 259–269.
IEEE, 2000.

Berens, H., Lorentz, G. G., and MacKenzie, R. E. Inverse theorems for Bernstein polynomials.
Indiana University Mathematics Journal, 21(8):693–708, 1972.

Bresler, G. Efficiently learning Ising models on arbitrary graphs. In Proceedings of the 47th Annual
ACM Symposium on Theory of Computing, pp. 771–782, 2015.

Bustamante, J. Bernstein operators and their properties. Springer, 2017.

Cai, T. T. and Low, M. G. Testing composite hypotheses, Hermite polynomials and optimal estimation
of a nonsmooth functional. The Annals of Statistics, 39(2):1012–1041, 2011.

Canonne, C. L. A survey on distribution testing. Your Data is Big. But is it Blue., 2017.

Chan, S.-O., Diakonikolas, I., Servedio, R. A., and Sun, X. Efficient density estimation via piecewise
polynomial approximation. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, pp. 604–613, 2014.

Chao, A. Nonparametric estimation of the number of classes in a population. Scandinavian Journal
of Statistics, pp. 265–270, 1984.

Chao, A. and Chiu, C.-H. Species richness: Estimation and comparison. Wiley StatsRef: Statistics
Reference Online, pp. 1–26, 2014.

Chao, A. and Lee, S.-M. Estimating the number of classes via sample coverage. Journal of the
American Statistical Association, 87(417):210–217, 1992.

Charikar, M., Shiragur, K., and Sidford, A. Efficient profile maximum likelihood for universal
symmetric property estimation. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pp. 780–791, 2019.

Chow, C. and Liu, C. Approximating discrete probability distributions with dependence trees. IEEE
Transactions on Information Theory, 14(3):462–467, 1968.

Chung, F. R. and Lu, L. Complex graphs and networks (No. 107). American Mathematical Soc.,
2006.

Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S.-Y., Mao, C. X., Chazdon, R. L., and Longino, J. T.
Models and estimators linking individual-based and sample-based rarefaction, extrapolation and
comparison of assemblages. Journal of Plant Ecology, 5(1):3–21, 2012.

Cover, T. M. and Thomas, J. A. Elements of information theory. John Wiley & Sons, 2012.

51

Ditzian, Z. and Totik, V. Moduli of smoothness, volume 9. Springer Science & Business Media, 2012.

Dixon, J. D. Exact solution of linear equations using P-adic expansions. Numerische Mathematik, 40
(1):137–141, 1982.

Dobrushin, R. L. A simplified method of experimentally evaluating the entropy of a stationary
sequence. Theory of Probability & Its Applications, 3(4):428–430, 1958.

Efron, B. and Thisted, R. Estimating the number of unseen species: How many words did Shakespeare
know? Biometrika, 63(3):435–447, 1976.

Ehlich, H. and Zeller, K. Auswertung der normen von interpolationsoperatoren. Mathematische
Annalen, 164(2):105–112, 1966.

Gale, W. A. and Sampson, G. Good-Turing frequency estimation without tears. Journal of Quantita-
tive Linguistics, 2(3):217–237, 1995.

Gerstner, W. and Kistler, W. M. Spiking neuron models: Single neurons, populations, plasticity.
Cambridge University Press, 2002.

Good, I. J. The population frequencies of species and the estimation of population parameters.
Biometrika, 40(3-4):237–264, 1953.

Haas, P. J., Naughton, J. F., Seshadri, S., and Stokes, L. Sampling-based estimation of the number of
distinct values of an attribute. In Proceedings of the 21st International Conference on Very Large
Data Bases, pp. 311–322. Morgan Kaufmann Publishers Inc., 1995.

Hao, Y. and Li, P. Bessel smoothing and multi-distribution property estimation. In Conference on
Learning Theory, pp. 1817–1876, 2020.

Hao, Y. and Orlitsky, A. The broad optimality of profile maximum likelihood. In Advances in Neural
Information Processing Systems, pp. 10991–11003, 2019a.

Hao, Y. and Orlitsky, A. Doubly-competitive distribution estimation. In International Conference on
Machine Learning, pp. 2614–2623, 2019b.

Hao, Y. and Orlitsky, A. Unified sample-optimal property estimation in near-linear time. In Advances
in Neural Information Processing Systems, pp. 11104–11114, 2019c.

Hao, Y., Orlitsky, A., Suresh, A. T., and Wu, Y. Data amplification: A unified and competitive
approach to property estimation. In Advances in Neural Information Processing Systems, pp.
8834–8843, 2018.

Ionita-Laza, I., Lange, C., and Laird, N. M. Estimating the number of unseen variants in the human
genome. Proceedings of the National Academy of Sciences, 106(13):5008–5013, 2009.

Jiao, J., Venkat, K., Han, Y., and Weissman, T. Minimax estimation of functionals of discrete
distributions. IEEE Transactions on Information Theory, 61(5):2835–2885, 2015.

Jiao, J., Han, Y., and Weissman, T. Minimax estimation of the L1 distance. IEEE Transactions on
Information Theory, 64(10):6672–6706, 2018.

Joag-Dev, K. and Proschan, F. Negative association of random variables with applications. The
Annals of Statistics, pp. 286–295, 1983.

Kamath, S., Orlitsky, A., Pichapati, D., and Suresh, A. T. On learning distributions from their samples.
In Conference on Learning Theory, pp. 1066–1100, 2015.

Kerber, M. On the complexity of reliable root approximation. In Proceedings of the International
Workshop on Computer Algebra in Scientific Computing, pp. 155–167. Springer, 2009.

Kornĕichuk, N. P. Exact constants in approximation theory, volume 38. Cambridge University Press,
1991.

Kroes, I., Lepp, P. W., and Relman, D. A. Bacterial diversity within the human subgingival crevice.
Proceedings of the National Academy of Sciences, 96(25):14547–14552, 1999.

52

Mainen, Z. F. and Sejnowski, T. J. Reliability of spike timing in neocortical neurons. Science, 268
(5216):1503–1506, 1995.

Mao, C. X. and Lindsay, B. G. Estimating the number of classes. The Annals of Statistics, pp.
917–930, 2007.

McNeil, D. R. Estimating an author’s vocabulary. Journal of the American Statistical Association, 68
(341):92–96, 1973.

Miller, G. Note on the bias of information estimates. Information Theory in Psychology: Problems
and Methods, 1955.

Orlitsky, A. and Suresh, A. T. Competitive distribution estimation: Why is Good-Turing good. In
Advances in Neural Information Processing Systems, pp. 2143–2151, 2015.

Orlitsky, A., Suresh, A. T., and Wu, Y. Optimal prediction of the number of unseen species.
Proceedings of the National Academy of Sciences, 113(47):13283–13288, 2016.

Pachón, R. and Trefethen, L. N. Barycentric-Remez algorithms for best polynomial approximation in
the Chebfun system. BIT Numerical Mathematics, 49(4):721, 2009.

Paninski, L. Estimation of entropy and mutual information. Neural Computation, 15(6):1191–1253,
2003.

Quinn, C. J., Kiyavash, N., and Coleman, T. P. Efficient methods to compute optimal tree approxima-
tions of directed information graphs. IEEE Transactions on Signal Processing, 61(12):3173–3182,
2013.

Remez, E. Y. Sur la détermination des polynômes d’approximation de degré donnée. Comm. Soc.
Math. Kharkov, 10(196):41–63, 1934.

Ron, D. Algorithmic and analysis techniques in property testing. Foundations and Trends® in
Theoretical Computer Science, 5(2):73–205, 2010.

Steveninck, R., Lewen, G. D., Strong, S. P., Koberle, R., and Bialek, W. Reproducibility and
variability in neural spike trains. Science, 275(5307):1805–1808, 1997.

Thisted, R. and Efron, B. Did Shakespeare write a newly-discovered poem? Biometrika, 74(3):
445–455, 1987.

Trefethen, L. N. Approximation theory and approximation practice, volume 128. SIAM, 2013.

Valiant, G. and Valiant, P. Estimating the unseen: Improved estimators for entropy and other
properties. In Advances in Neural Information Processing Systems, pp. 2157–2165, 2013.

Valiant, G. and Valiant, P. Instance optimal learning of discrete distributions. In Proceedings of the
48th Annual ACM Symposium on Theory of Computing, pp. 142–155, 2016.

Veidinger, L. On the numerical determination of the best approximations in the Chebyshev sense.
Numerische Mathematik, 2(1):99–105, 1960.

Wu, Y. and Yang, P. Minimax rates of entropy estimation on large alphabets via best polynomial
approximation. IEEE Transactions on Information Theory, 62(6):3702–3720, 2016.

Wu, Y. and Yang, P. Chebyshev polynomials, moment matching, and optimal estimation of the
unseen. The Annals of Statistics, 47(2):857–883, 2019.

53

	Prior and New Results
	Implications and Outline
	Theoretical Implications
	Supplementary Outline

	Concentration Inequalities
	Approximating Bernstein Polynomials
	Derivative of Bernstein Polynomials
	Approximating the Derivative Function

	A Competitive Entropy Estimator
	Bounding the Bias of H
	Bias of the Small-Probability Estimator
	Bias of the Large-Probability Estimator

	Bounding the Mean Absolute Deviation of H
	Variance of the Small-Probability Estimator
	Variance of the Large-Probability Estimator

	Experiments
	Computational Complexity
	Remez Algorithm
	Complexity of Evaluating f(x)
	Lagrange Interpolation with Chebyshev Nodes
	Remez Algorithm with High Precision

	A Refined Estimator for Shannon Entropy
	Relating f-functions to Bernstein Approximation Errors
	Approximating f1(z)
	Properties of f1(z)
	Moduli of Smoothness
	Bounding Errors in Approximating f1(x)

	Proving Theorem 1: A Refined Entropy Estimator

	Competitive Estimators for General Additive Properties
	Proving Theorem 2: The L1 Distance
	Proving Theorem 3: General Additive Properties

	Summary: Estimator Construction and Analysis
	Bernstein Polynomial
	Estimator Construction and Computation
	Large-Probability Estimator
	Choice of Parameters and Sample Splitting
	Min-Max Polynomial
	Moduli of Smoothness
	Simplification via Poissonization

	A Competitive Estimator for Support Size
	Estimator Construction
	Bounding the Bias
	Bounding the Mean Absolute Deviation
	Bounds for S(X*)
	Bounds for S*(X*)

	Proving Theorem 4

	A Competitive Estimator for Support Coverage
	Estimator Construction
	Bounding the Bias
	Bounding the Mean Absolute Deviation
	Bounds for C(X*)
	Bounds for C(X*)

	Proving Theorem 5

