
Supplementary Material

1 Videos of the performance of the learned ordinary neural circuits

Table S1: Videos
Description URL

TW circuit controls an inverted pendulum
at different stages of the training process https://youtu.be/cobEtJVw3A4

TW circuit controls a half-cheetah https://youtu.be/zG_L4JGOMbU
TW circuit controls a mountain car

at different stages of the training process https://youtu.be/J7vXFsZz7EM
TW circuit performs the parking task https://youtu.be/p0GqKf0V0Ew

2 Sensory Neuron and Motor neuron equations

A sensory component consists of two neurons Sp, Sn and a measurable dynamic system variable, x.
Sp gets activated when x has a positive value, whereas Sn fires when x is negative. Mathematically,
the potential of the neurons Sp, and Sn, as a function of x, can be expressed as

Sp(x) :=


−70mV if x ≤ 0

−70mV + 50mV
xmax

x if 0 < x ≤ xmax

−20mV if x > xmax

(1)

Sn(x) :=


−70mV if x ≥ 0

−70mV + 50mV
xmin

x if 0 > x ≥ xmin

−20mV if x < xmin.

(2)

This maps the region [xmin, xmax] of system variable x, to a membrane potential range of
[−70mV,−20mV ]. Note that the potential range is selected to be close to the biophysics of the nerve
cells, where the resting potential is usually set around -70 mV and a neuron can be considered to be
active when it has a potential around -20 mV [2].

Similar to sensory neurons, a motor component is composed of two neurons Mn, Mp and a control-
lable motor variable y. Values of y is computed by y := yp + yn and

yp(Mp) :=


ymax, if Mp > −20mV
ymax(Mp+70mV )

50mV , if Mp ∈ [−70,−20]mV

0, if Mp < −70mV

(3)

yn(Mn) :=


ymin, if Mn > −20mV
ymin(Mn+70mV )

50mV , if Mn ∈ [−70,−20]mV

0, if Mn < −70mV

(4)

This maps the neuron potentialsMn andMp, to the range [ymin, ymax]. FWD and REV motor classes
of Fig. 1B (main text), are modeled in this fashion.

https://youtu.be/cobEtJVw3A4
https://youtu.be/zG_L4JGOMbU
https://youtu.be/J7vXFsZz7EM
https://youtu.be/p0GqKf0V0Ew


3 Neural Circuit Implementation and Setup

In this section we describe how to integrate the neuron and synapse equations into a computational
framework to build up the TW circuit. Due to non-linearity of the sigmoid function in Eq. (7)Main-
text, the neuron’s differential equation, Eq. (1)Main-text, becomes non-linear. Unfortunately, there
are no complete theory of solving problems of this class, explicitly [1]. Thus, for simulating neural
networks composed of such dynamic neuron models, we adopted a numerical implicit solver.

When a network structure is dense and full of synaptic pathways, the set of ODEs (neuron potentials),
defined in Eq. (1)Main-text, becomes stiff [3]. Therefore, in order to overcome stability issues we
used an implicit derivation approximation method as follows [3]:

dv

dt
≈ v(t)− v(t−∆t)

∆t
for some small ∆t. (5)

In this way, we discretize the time variable and transform the set of ODEs into a set of iterative
equations.

For each neuron, Eq. (1)Main-text, exposed to chemical synaptic currents in the form of Eq. (7)Main-
text, and gap junction currents in the form of Eq. (8)Main-text, if we apply approximation of the Eq.
(5)supplementary and assume vpre(t) ≈ vpre(t−∆t), we can show that the membrane potential of
that neuron at time t, is computable by:

v(t) =

[
Cm

∆t
v(t−∆t) +GLeakVLeak+∑

i∈Ex

ωex,iERev,ex +
∑

i∈Inh

ωinh,iERev,inh+∑
i∈GJ

ωgj,ivpre(t−∆t)]/

[
Cm

∆t
+GLeak +

∑
i∈Ex

ωex,i+∑
i∈Inh

ωinh,i +
∑
i∈GJ

ωgj,i]

(6)

In Eq. (6)Supplementary, ωex,i, ωinh,i, ωgj,i, respectively stand for the overall conductance of the
excitatory synapse, inhibitory synapse and the gap junction, where ωex,i = gex,i(vpre), ωinh,i =
ginh,i(vpre), and ωgj,i = ω̂. Variables together with their boundaries, and constants in Eq. (6)Supple-
mentary, are summarized in the Table S2.

Table S2: Parameters and their bounds of a neural circuit
Parameter Value Lower bound Upper bound

Cm Variable 1mF 1F
GLeak Variable 50mS 5S

Erev excitatory 0mV
Erev inhibitory -90mV

VLeak Variable -90mV 0mV
µ -40mV
σ Variable 0.05 0.5
ω Variable 0S 3S
ω̂ Variable 0S 3S

Formally, Eq. (6)Supplementary, was realized in a hybrid fashion which combine both implicit
and explicit Euler’s method; The overall neuron equation, Eq. (1)Main-text is approximated by the
implicit Euler’s method while the parts substituted from Eq. (7)Main-text and Eq. (8)Main-text, were
estimated by an explicit Euler’s method.

The motivation for implementing such hybrid solver, was to make the resulting algorithm of simulating
the neuronal network be separable into the following steps:
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Table S3: Mapping the environmental variables to the sensory and motor neurons of the TW circuit,
in different experiments

Experiment Environment variable Type Positive neuron Negative neuron
ϕ Sensor (pendulum angle) PLM AVM

Inverted Pendulum x Sensor (cart position) ALM PVD
a (Control) Motor (move right/left) FWD REV

x Sensor (car position) PLM AVM
Mountain Car ẋ Sensor (car’s linear velocity) ALM PVD

(OpenAI Gym) a (Control) Motor (move right/left) FWD REV
x Sensor (car position) PLM AVM

Mountain Car ẋ Sensor (car’s linear velocity) ALM PVD
(rllab) a (Control) Motor (move right/left) FWD REV

ϕ Sensor (pole angle) PLM AVM
Cart-Pole ϕ̇ Sensor (pole angular velocity) ALM PVD

a (Control) Motor (move right/left) FWD REV
x Sensor (estimated x position) PVD
y Sensor (estimated y position) PLM

Parking of a Rover s Sensor(start signal) AVM
θ Sensor (estimated angular pose) ALM

a1 (Control) Motor (angular velocity) FWD REV
a2 (Control) Motor (linear velocity) FWD/REV

1. Compute all the incoming currents, I(i)in , form all synapses to the cell using the most recent
values of v(t)

2. Update all v(t) by Eq. (6)Supplementary

This is significantly effective when implementing a neural network on a real-time controller.

4 Experimental Setup Parameters

4.1 Mapping of the Environment to the TW Circuit (Table S3)

4.2 Experimental setup (Table S4)

Table S4: Experiment Parameters

Inverted Pendulum Mountaincar (OpenAI Gym) Mountaincar (rllab) Cart-pole Parking
Iterations 25,000 50,000 50,000 50,000 20,000
Horizon 1000 1000 500 500 320

Sample size 20 20 20 20 1
Filter size 10 20 20 10 1

With the aim of gaining a better performance, and utilizing parallel hardware resources and to increase
the statistical confidence, all experiments are performed by an ensemble of 12 agents. Due to the
stochasticity of the training algorithm, not all agents were able to solve the tasks in the given time
frame. The observed success-rates are: Mountaincar (OpenAI gym) 25%, Mountaincar (rllab) 42%,
Cart-pole 42%, Inverted Pendulum 100% and Parking 100%.

4.3 Neuron’s and synapse’s parameter-boundaries in the optimization setting (Table S5 and
S6)

Table S5: Types of parameters that are optimized and range of valid values
Type Lower bound Upper bound
ω 0 3
σ 0.05 0.5
Cm 0.001 1
GLeak 0.05 5
VLeak -90 0

4.4 Sensory neuron mappings

As introduced in the main text, input and output values are mapped to the potential of sensory
respectively motor neurons by an affine mapping. This affine mapping is defined by the minimum
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and maximum value of the particular input or output value. For each of the five RL environments we
set these boundary values separately, according to the table S6:

Table S6: Input and output boundary values used to define the affine sensory and motor mappings
Environment Variable Minimum Maximum

x -1 +1
Inverted pendulum ϕ -0.12 +0.12

a -0.3 +0.3
x -0.02 +0.02

Mountaincar (OpenAI Gym) ẋ -0.12 +0.12
a -1 +1
x -0.8 +0.8

Mountaincar (rllab) ẋ -1.5 +1.5
a -1 +1
ϕ -0.15 +0.15

Cart-pole ϕ̇ -1 +1
a -1 +1
x +1
y +1

Parking θ +1
Start signal +1

Linear velocity +1
Angular velocity -1 +1

5 TW circuit can realize more degrees of freedom

In our first parking experiment, the TW circuit is able to make a turn left and move the rover forward
with only one command neuron being active. This means that the circuit is able to solve the task
with having binary activation states (active, not active) of the command neuron. To test the flexibility
of the TW circuit and underlying neuron model, we set up a second parking experiment. In this
experimental setup, we connected the command neuron AVA to two motor neurons responsible for
turning right and moving backwards, and AVB to two motor neurons responsible for turning left
and moving forward. In this setup, the controller is principally able to move the robot to 4 different
directions: Forward, Backward, turn left and turn right. Furthermore, the TW circuit is not able to
move the rover forward and turn right with only command neuron being active. If the TW circuit
tends to make a right turn and move the rover forward at the same time, (which is necessary to solve
this task), the circuit must be able to do this via a synchronized cooperation of the two command
neurons. With this configuration, our goal was to test whether the TW circuit can express multiple
output primitives with only two command neurons, by operating them in more than two potential
states. We conclude that the training algorithm was able to parametrize the TW circuit, such that
the agent can keep the trajectory checkpoints, correctly. A video on this scenario can be viewed at
https://youtu.be/p0GqKf0V0Ew.

6 Flattened time-series plots and correlation detection histograms for all the
experiments

Based on Definition 1, in the cross correlation domain, neurons are positively depend on each other
if their manifold realizes a positive slope. Similarly, a negative slop in a flattened plot, represent a
negative correlation respectively. if there are vertical and horizontal lines in the plot, then the two
neuronal dynamics are independent from each other.

In Figures S1, S3 and S5, we plotted the time series of individual neuronal dynamics in respect to each
other, for the inverted pendulum, the mountain car and the parking task, respectively. Accordingly,
interpretable manifolds of activity are realized, such that we can reason about the dynamics of the
ordinary neural circuits learned on each particular task. The colorbar, blue to yellow, represents time
in each subplot. It is interesting to note how the dynamics of the TW circuit with the exact same
architecture can get adapted to various tasks, by adapting its interneuron dynamics to that exposed
from the sensory neurons.

To quantitatively reason about neuronal dynamics, we computed the histogram of all the slops in
the flattened data plots, between all points. Based on the Definition 1, we can observe how neuronal
dynamics are dependent on each other for a given task. The histograms are shown in Figures S2, S4
and S6.
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It is worth noting that there are upper-interneurons (particularly PVC and AVD) which switch their
dynamical state for the realization of different sensory to motor neuron pathways.

Figure S1: Flattened time-series data of neuron pairs in Inverted pendulum. The colors from dark
blue to yellow, represents the evolution of simulation time in each subplot. Neuronal dynamical state
is declared by the membrane potential of a neuron throughout the simulation time. Positive slops
represent positive correlation, negative slops shows negatively correlated dynamics and a circle would
realizes no correlation.
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Figure S2: Neural correlation histograms in inverted pendulum. We computed the slops between
all pair data-points in the corss-correlation plots and computed their distribution for each neuron
pair in order to reason about the correlation of the activity of neurons with each other. Histograms
are computed with bin size of 10. Y axis stands for the slops’ counts in each bin. X axis shows the
arctan of the slop values in radian in a range [−π/2, π/2]. To count neurons as positive contributors
to a motor neuron decision, the sum of the counts of the positive radian bins must be greater than half
of the counts on the negative side.
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Figure S3: Flattened time-series data of neuron pairs in Mountain car. The colors from dark blue
to yellow, represents the evolution of simulation time in each subplot. Neuronal dynamical state
is declared by the membrane potential of a neuron throughout the simulation time. Positive slops
represent positive correlation, negative slops shows negatively correlated dynamics and a circle would
realizes no correlation.
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Figure S4: Neural correlation histograms in Mountain car. We computed the slops between all pair
data-points in the corss-correlation plots and computed their distribution for each neuron pair in order
to reason about the correlation of the activity of neurons with each other. Histograms are computed
with bin size of 10. Y axis stands for the slops’ counts in each bin. X axis shows the arctan of the
slop values in radian in a range [−π/2, π/2]. To count neurons as positive contributors to a motor
neuron decision, the sum of the counts of the positive radian bins must be greater than half of the
counts on the negative side.
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Figure S5: Flattened time-series data of neuron pairs in the parking task. The colors from dark blue
to yellow, represents the evolution of simulation time in each subplot. Neuronal dynamical state
is declared by the membrane potential of a neuron throughout the simulation time. Positive slops
represent positive correlation, negative slops shows negatively correlated dynamics and a circle would
realizes no correlation.

Figure S6: Neural correlation histograms in the parking task. We computed the slops between all pair
data-points in the corss-correlation plots and computed their distribution for each neuron pair in order
to reason about the correlation of the activity of neurons with each other. Histograms are computed
with bin size of 10. Y axis stands for the slops’ counts in each bin. X axis shows the arctan of the
slop values in radian in a range [−π/2, π/2]. To count neurons as positive contributors to a motor
neuron decision, the sum of the counts of the positive radian bins must be greater than half of the
counts on the negative side.
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Table S7: τmin and τmax for the experiments based on findings of Lemma 1.
τmin (s) τmax (s)

Inverted Pendulum
DVA 9.7e-4 2.5e-3
PVC 0.043 0.71
AVD 0.037 0.11
AVB 4.6e-3 4.6e-3
AVA 2.4e-4 3.9e-4
FWD 3.7e-4 2.4e-3
REV 8.7e-3 8.7e-3

Mountain Car
DVA 0.5 6.49
PVC 0.11 0.3
AVD 1.32e-4 4.75e-4
AVB 0.05 4.62
AVA 0.014 0.087
FWD 0.069 2.95
REV 0.47 0.47

Parking test
DVA 0.066 0.17
PVC 0.013 0.37
AVD 1.98e-4 9.65e-4
AVB 2.95 2.95
AVA 0.12 0.56
LFT 2.9e-4 2e-3
RGT 0.61 0.72
FWD 4.045 4.05
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