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Abstract

We propose a neural information processing sys-
tem obtained by re-purposing the function of a
biological neural circuit model to govern simu-
lated and real-world control tasks. Inspired by
the structure of the nervous system of the soil-
worm, C. elegans, we introduce ordinary neural
circuits (ONCs), defined as the model of biologi-
cal neural circuits reparameterized for the control
of alternative tasks. We first demonstrate that
ONCs realize networks with higher maximum
flow compared to arbitrary wired networks. We
then learn instances of ONCs to control a series of
robotic tasks, including the autonomous parking
of a real-world rover robot. For reconfiguration
of the purpose of the neural circuit, we adopt a
search-based optimization algorithm. Ordinary
neural circuits perform on par and, in some cases,
significantly surpass the performance of contem-
porary deep learning models. ONC networks are
compact, 77% sparser than their counterpart neu-
ral controllers, and their neural dynamics are fully
interpretable at the cell-level.

1. Introduction
We wish to explore a new class of machine learning al-
gorithms for robot control inspired by nature. Through
natural evolution, the subnetworks within the nervous
system of the nematode, C. elegans, structured a near-
optimal wiring diagram from the wiring economy prin-
ciple1perspective (White et al., 1986; Pérez-Escudero &
de Polavieja, 2007). Its stereotypic brain composed of 302
neurons connected through approximately 8000 chemical
and electrical synapses (Chen et al., 2006). The wiring dia-
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gram therefore, establishes a 91% sparsity and gives rise to
high-degrees of controllability, to process complex chemical
stimulations (Bargmann, 2006), express adaptive behavior
(Ardiel & Rankin, 2010), and to control muscles (Wen et al.,
2012).

This property is particularly attractive to the machine learn-
ing community that aims at reducing the size of fully-
connected neural networks to sparser representations while
maintaining the great output performance (LeCun et al.,
1990; Hassibi & Stork, 1993; Han et al., 2015; Hinton et al.,
2015; Frankle & Carbin, 2018). In this regard, the lottery
ticket hypothesis (Frankle & Carbin, 2018), suggested an al-
gorithm to find sparse subnetworks (winning tickets) within
a dense, randomly initialized feedforward neural network,
which can achieve comparable (and sometimes greater) per-
formance to the original network, when trained separately
(Frankle & Carbin, 2018; Zhou et al., 2019; Morcos et al.,
2019). The lottery ticket hypothesis motivated us to in-
vestigate whether subnetworks (neural circuits) within the
natural nervous systems are already formulation of winning
tickets originated from the natural evolution?

To study this question fundamentally, we take a computa-
tional approach to analyze neural circuit models from the
worm’s nervous system. The reason is that the function of
many circuits within its nervous system have been identi-
fied (Wicks & Rankin, 1995; Chalfie et al., 1985; Li et al.,
2012; Nichols et al., 2017; Kaplan et al., 2019), and simu-
lated (Islam et al., 2016; Hasani et al., 2017; Sarma et al.,
2018; Gleeson et al., 2018), which makes it a suitable model
organism for further computational investigations.

The general network architecture in C. elegans establishes a
hierarchical topology from sensory neurons (source nodes)
through upper interneuron and command interneurons down
to motor neurons, sink nodes, (See Fig. 1A). Typically,
in these neuronal circuits, interneurons establish highly re-
current wiring diagrams with each other while sensors and
command neurons mostly realize feedforward connections
to their downstream neurons.

1Under proper functionality of a network, the wiring economy
principle proposes that its morphology is organized such that the
cost of wiring its elements is minimal.
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An example of such a structure is a neural circuit shown in
Fig. 1B, the Tap-withdrawal (TW) (Rankin et al., 1990),
which is responsible for inducing a forward/backward lo-
comotion reflex when the worm is mechanically exposed
to touch stimulus on its body. The circuit has been char-
acterized in terms of its neuronal dynamics (Chalfie et al.,
1985). It comprises eleven neuron classes which are wired
by thirty chemical and electrical synapses. Is TW a Winning
Ticket compared to networks of the same size, from any
perspective?

1.1. TW graph realizes the highest maximum flow rate

Let us first define the maximum flow problem (Shiloach &
Vishkin, 1982):

Definition 1. For a given graph G(V,E), with s, t ∈ V
source and sink nodes, respectively:

• The capacity (weight) of an edge is the mapping c :
E→ R+, declared by ce,

• A Flow is a mapping f : E → R+, denoted by fe,
from node u to v, if: 1) fe ≤ ce for each e ∈ E. 2)
∑Inputs to v fe = ∑out put f rom v fe for all v ∈ V except
source and sink nodes,

• The flow rate is denoted by | f |= ∑s→v fsv, where s is
the source of G. This value depicts the amount of flow
passing from a source node to a chosen sink node.

• The maximum flow problem is to maximize | f |.

The maximum flow problem is typically used for sparse
directed networks to assess their input/output propagation
performance. The TW circuit is a sparse directed network,
and therefore, we chose to evaluate its propagation proper-
ties by computing the maximum flow rate.

TW realizes higher flow-rate from arbitrary chosen source
to sink node, compared to randomly-wired networks of the
same size. Formally, consider a directed weighted graph
G(V,E), with V vertices, E � V 2 edges and, S ⊂ V , S =
{s1, ...,sk} source (sensory neurons), T ⊂V , T = {t1, ..., tn}
sink (motor neurons), I ⊂ V , I = {i1, ..., iNi} interneurons,
C ⊂V , I = {c1, ...,cNc} command neurons. Then, the high-
est max. flow is achievable for randomly-weighted and
-wired networks, when the architecture approaches that of
randomly-weighted TW.

To show this, we construct 40000 randomly-wired networks
and compare their max-flow rate to randomly-weighted TW.
We witnessed an enhanced max-flow rate between 1% and
17% when a network is constrained to be wired similar to
TW. (See details in Section 2). Accordingly, this finding
motivated us to explore the TW circuit’s dynamics from a
control theory perspective.
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Figure 1. Left: C. elegans’ general neuronal circuit structure.
Right: Tap-Withdrawal (TW) neural circuit schematic. Total num-
ber of interneurons = Ni +NC. We preserve the TW circuit wiring
topology and deploy a search-based reinforcement learning algo-
rithm to control robots.

1.2. TW can be trained to govern control tasks

The behavior of the TW reflexive response is substantially
similar to the control agent’s reaction in standard control
settings such as a controller acting on driving an underpow-
ered car, to go up on a steep hill, known as the Mountain
Car (Singh & Sutton, 1996), or a controller acting on the
navigation of a rover robot that plans to go from point A to
B.

We model the TW circuit by continuous-time biophysical
neuronal and synaptic models that bring about useful at-
tributes; I) In addition to the nonlinearities expressed by the
neurons’ hidden state, synapses possess additional nonlin-
earity. This property results in realizing complex dynamics
with a fewer number of neurons (Hasani et al., 2018). II)
Their dynamics are set by grounded biophysical properties,
which ease the interpretation of the network’s dynamics.

We construct instances of the TW network obtained by learn-
ing its parameters and define these learning systems as ordi-
nary neural circuits (ONC). We experimentally investigate
ONC’s properties in terms of their learning performance,
their ability to solve tasks in different RL domains, and
introduce ways to interpret their internal dynamics. For
this purpose, we preserve the wiring structure of an exam-
ple ONC (the TW circuit) and adopt a search-based opti-
mization algorithm for learning the neuronal and synaptic
parameters of the network.

We discover that sparse ONCs (Natural lottery winners) not
only establish a higher maximum flow rate from any arbi-
trary source to sink node but also when trained in isolation
for control tasks, significantly outperform randomly wired
networks of the same size and in many cases contemporary
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deep learning models with larger capacities.

1.3. Contributions of the work

• Quantitative illustration of achieving the highest max-
imum flow rate for randomly wired sparse networks,
when their architecture gets closer to ONCs.

• Demonstration of the performance of a compact ONC
as an interpretable controller in a series of control tasks
and the indication of its superiority compared to sim-
ilarly structured networks and to contemporary deep
learning models.

• Experiments with ONCs in simulated and physical
robot control tasks, including the autonomous parking
of a reak mobile robot. This is performed by equipping
ONCs with a search-based RL optimization scheme.

• Interpretation of the internal dynamics of the learned
policies. We introduce a novel computational method
to understand continuous-time network dynamics. The
technique (Definition 2) determines the relation be-
tween the kinetics of sensory/interneurons and a motor
neuron’s decision. We compute the magnitude of a
neuron’s contribution (positive or negative), of these
hidden nodes to the output dynamics in determinable
phases of activity, during the simulation.

2. Design Ordinary Neural Circuits
In this section, we first briefly describe the structure and
dynamics of the tap-withdrawal neural circuit as an instance
of ONCs. We then delve into the graph theory properties
of the network to motivate the TW circuit choice as the
natural lottery winner for control. We then introduce the
mathematical neuron and synapse models utilized to build
up the circuit, as an instance of ordinary neural circuits.

2.1. Tap-withdrawal neural circuit

A mechanically exposed stimulus (i.e., tap) to the petri dish
in which the worm inhabits, results in the animal’s reflexive
response in the form of a forward or backward movement.
This response has been named as the tap-withdrawal reflex,
and the circuit identified to underlay such behavior is known
as the tap-withdrawal (TW) neural circuit (Rankin et al.,
1990). The circuit is shown in Fig. 1B. It is composed
of four sensory neurons, PVD and PLM (posterior touch
sensors), AVM and ALM (anterior touch sensors), five in-
terneuron classes (AVD, PVC, AVA and AVB, DVA), and
two subgroups of motor neurons which are abstracted as
forward locomotory neurons, FWD, and backward locomo-
tory neurons, REV. Interneurons recurrently synapse into
each other with excitatory and inhibitory synaptic links. TW
consists of 28 synapses connecting 11 neurons.

Algorithm 1 Design ONC-like random networks
S =sensory, T =motor, I =interneuron, C =command,
E =No. of synapses
Generate E synapse weights, W ∼ Binomial(E,ρ)
Step 1
for e in range [1,40%E] do

source = Rand(SP1), target = Rand(I&CP1)
end for
connect source and target
Step 2
Eic = 53%E selected from the remainder of the synapses
for e in Eic do

source = Rand(I&CP1), target = Rand(I&CP1)
connect source and target

end for
Step 3
Connect C = {c1, ...,cNc}, one-to-one to T = {t1, ..., tn}
Return RandomTW Graph

2.2. Maximum flow rate in ONCs vs. other networks

The TW neural circuit, is wired with a set of network-design
constraints. Formally, given V vertices and E edges:

• It realizes a 77% network sparsity.

• The structure exclusively determines four distinct lay-
ers of neurons: S ⊂ V , S = {s1, ...,sk} source (sen-
sory neurons), T ⊂V , T = {t1, ..., tn} sink (motor neu-
rons), I ⊂V , I = {I1, ..., INi} interneurons, and C ⊂V ,
I = {C1, ...,CNc} command neurons.

• Sensory nodes unidirectionally synapse into upper in-
terneurons with 40% of the total number of connec-
tions.

• Interneurons and command neurons recurrently
synapse into each other (without any self-connections)
by 53% of the total number of connections.

• Command neurons exclusively synapse into motors by
the rest of the synapses (7%).

We discovered that with the construction of randomly-wired
sparse networks while applying the aforementioned TW
constraints, we can achieve the highest maximum flow rate
for such networks. To demonstrate this quantitatively, we
developed Algorithm 1 to design random networks with
a series of assumptions gradually increased to satisfy TW
constraints. We then compute the ratio of the average maxi-
mum flow (computed by a tree-search max-flow algorithm
(Boykov & Kolmogorov, 2004)) from sensory nodes to mo-
tor neurons of the TW circuit, to the obtained networks and
report results in Table 1. The ratio approaches 1, which
indicates that networks designed based on the TW con-
straints would benefit from a better max-flow rate than less-
constrained, randomly connected networks.
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A B C D- No wiring constraints
- Sensory to inter and 
command  neurons

- No wiring constraints
- Sensory only to inter 
neurons

- No multiple connections 
From a source node to 
the same target node

- No multiple connections 
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the same target node
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Figure 2. Sparse and randomly wired network samples. A to D indicate random neural circuits with the same number of elements as in
TW, wired with modified constraints in Algorithm 1: A) In Step 1, target = Rand(IP1) B) In Step 1, target = Rand(I&CP1) C) In Step 1
and Step 2, if the tuple (sourcee, targete) is repeated, remove and loop again. D) In Step 1 and Step 2, if (sourcee, targete) is repeated,
remove and loop again. In Step 2, if sourcee = targete, remove the selection, and loop again. The colorbar represents network hubs –
nodes with highest number of inward/outward edges.

2.3. Neuron and synapse model for ONCs

Here, we briefly describe the neuron and synapse model
(Hasani et al., 2018; Lechner et al., 2019), used to design
neural circuit dynamics (Hasani et al., 2020):

V̇i(t) = [Ii,L+ ∑
n
j=1 Îi, j(t)+∑

n
j=1 Ii, j(t)]/Ci,m

Ii,L(t) = ωi,L [Ei,L−Vi(t)]

Îi, j(t) = ω̂i, j [Vj(t)−Vi(t)]

Ii, j(t) = ωi, j [Ei, j,R−Vi(t)]gi, j(t)

gi, j(t) = 1/ [1+ exp(−σi, j (Vj(t)−µi, j))]

(1)

where Vi(t) and Vj(t) stand for the potential of the post
and pre-synaptic neurons, respectively. Ei,L and Ei, j are the
reversal potentials of the leakage and chemical channels.
Ii,L, Îi, j, and Ii, j present the currents flowing through the
leak channel, electric-synapse, and chemical-synapse, with
conductances ωi,L, ω̂i, j, and ωi, j, respectively. gi, j(t) is the
dynamic conductance of the chemical-synapse, and Ci,m is
the membrane capacitance. Ei, j determines the whether a
synapse is inhibitory or excitatory.

This neural representation belongs to the continuous-time
recurrent neural networks class which has recently been
shown to give rise to certain computational advantages, such
as adaptive computation schemes through numerical solvers
of ordinary differential equations (ODEs), parameter ef-
ficiency, and strong capabilities on modeling time-series
arriving at arbitrary time-steps (Chen et al., 2018; Dupont
et al., 2019; Lechner & Hasani, 2020; Lechner et al., 2020).

For interacting with the environment, We introduced sensory

Table 1. Ratio of the avg. max-flow of TW to variations of other
networks of Fig. 2. The ratio of the max flow of the Random
networks of each subcategory to the max flow of TW has been
simulated for 10000 times. Total No. of networks tested = 40000.

Average Average
Networks MaxFlowTW

MaxFlow
max f lowTW

MaxFlow
of FWD neuron of REV neuron

Fig. 2A 1.15±0.01 1.14±0.01
Fig. 2B 1.12±0.005 1.10±0.01
Fig. 2C 1.03±0.003 1.04±0.005
Fig. 2D 1.01±0.001 1.01±0.001

and motor neuron models. A sensory component consists
of two neurons Sp, Sn and an input variable, x. Sp gets
activated when x has a positive value, whereas Sn fires when
x is negative. The potential of the neurons Sp, and Sn, as a
function of x, are defined by an affine function that maps the
region [xmin,xmax] of the system variable x, to a membrane
potential range of [−70mV,−20mV ]. (See the formula in
Supplementary Materials Section 2). Similar to sensory
neurons, a motor component is composed of two neurons
Mn, Mp and a controllable motor variable y. Values of y
is computed by y := yp + yn and an affine mapping links
the neuron potentials Mn and Mp, to the range [ymin,ymax].
(See supplements, Section 2). FWD and REV motor classes
(Output units) in Fig. 1B, are modeled in this fashion.

For simulating neural networks composed of such dynam-
ical models, we adopted a hybrid numerical solver (Press
et al., 2007). Formally, we combined both implicit and ex-
plicit Euler’s discretization method (Lechner et al., 2019).
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Algorithm 2 Adaptive Random Search
Input: A stochastic objective indicator f and a starting parame-
ter θ , noise scale σ , adaption rate α ≥ 1
Output: Optimized parameter θ

fθ ← f (θ)
for k← 1 to maximum iterations do

θ ′← θ + rand(σ); fθ ′ ← f (θ ′);
if fθ ′ < fθ then θ ← θ ′; fθ ← fθ ′ ; i← 0; σ ← σ ·α else
σ ← σ/α end if
i← i+1
if i > N then fθ ← f (θ) end if;

end for
return θ

(See Supplementary Materials Section 3, for a concrete dis-
cussion on the model implementation, and the choice of
parameters.) Note that the solver has to serve as a real-time
control system, additionally.

For reducing the complexity, therefore, our method realizes
a fixed-timestep solver. The solver’s complexity for each
time step ∆t is O(|# neurons|+ |# synapses|). In the next
section, we introduce the optimization algorithm used to
reparametrize the tap-withdrawal circuit.

3. Search-based Optimization Algorithm
In this section we formulate a Reinforcement learning (RL)
setting for tuning the parameters of a given neural circuit
to control robots. The behavior of a neural circuit can be
expressed as a policy πθ (oi,si) 7→ 〈ai+1,si+1〉, that maps an
observation oi, and an internal state si of the circuit, to an
action ai+1, and a new internal state si+1. This policy acts
upon a possible stochastic environment Env(ai+1), that pro-
vides an observation oi+1, and a reward, ri+1. The stochastic
return is given by R(θ) := ∑

T
t=1 rt . The objective of the RL

is to find a θ that maximizes E
(

R(θ)
)

.

Simple search based RL (Spall, 2005), as suggested in (Sal-
imans et al., 2017), in (Duan et al., 2016), and very recently
in (Mania et al., 2018), can scale and perform competitively
with gradient-based approaches, and in some cases even
surpass their performance, with clear advantages such as
skipping gradient scaling issues. Accordingly, we adopted a
simple search-based algorithm to train the neuronal policies.

Our approach combines an Adaptive Random Search (ARS)
optimization (Rastrigin, 1963), with an Objective Estimate
(OE) function f : θ 7→ R+. The OE generates N rollouts
with πθ on the environment and computes an estimate of
E(Rθ ) based on a filtering mechanism on these N samples.
We compared two filtering strategies in this context; 1) tak-
ing the average of the N samples, and 2) taking the average
of the worst k samples out of N samples.

The first strategy is equivalent to the Sample Mean estimator

(Salimans et al., 2017), whereas the second strategy aims to
avoid getting misled by high E(Rθ ) outliers. The objective
was that a suitable parameter θ enforces the policy πθ con-
trol the environment in a reasonable way even in challenging
situations (i.e., rollouts with the lowest return). We treat this
filtering strategy as a hyperparameter (see Algorithm 2).

4. Experiments
The goal of our experimentation is to answer the follow-
ing questions: 1) How would an ONC with a preserved
biological connectome, perform in basic standard control
settings, compared to that of a randomly-wired circuit? Are
ONCs natural lottery ticket winners? 2) When possible,
how would the performance of our learned circuit compare
to the other methods? 3) Can we transfer a policy from a
simulated environment to a real environment? 4) How can
we interpret the behavior of the neural circuit policies?

We use four benchmarks for measuring and calibrating this
approach’s performance, including one robot application
to parking for the TW sensory/motor neurons and then de-
ployed our RL algorithm to learn the parameters of the TW
circuit and optimize the control objective. The environments
include I) Inverted pendulum of Roboschool (Schulman
et al., 2017), II) Mountain car of OpenAI Gym, III) Half-
CHeetah from Mujoco, and IV) Parking a real rover robot
with a transferred policy from a simulated environment. The
code is available online. 2 The TW neural circuit (cf. Fig.
1B) allows us to incorporate four input observations and to
take two output control actions. We evaluate our ONC in
environments of different toolkits on a variety of dynamics,
interactions, and reward settings.

4.1. How to map ONCs to environments?

The TW neural circuit is shown in Fig. 1B, contains four
sensory neurons. It, therefore, allows us to map the circuit
to four input variables. Let us assume we have an inverted
pendulum environment which provides four observation
variables The position of the cart x, together with its velocity
ẋ, the angle of the pendulum ϕ .3 along with its angular
velocity ϕ̇ . Since the main objective of the controller is
to balance the pendulum in an upward position and make
the car stay within the horizontal borders, we can feed ϕ

(positive and negative values), and x (positive and negative),
as the inputs to the sensors of the TW circuit.

Control commands can be obtained from the motor neuron
classes, FWD and REV. Likewise, any other control problem
can be feasibly mapped to an ONC. We set up the search-

2Code is available online at: https://github.com/
mlech26l/ordinary_neural_circuits

3Remark: The environment further splits ϕ into sin(ϕ) and
cos(ϕ) to avoid the 2π → 0 discontinuity

https://github.com/mlech26l/ordinary_neural_circuits
https://github.com/mlech26l/ordinary_neural_circuits
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Figure 3. Mapping the environments to the TW circuit in A) Park-
ing task, B) mapping for the parking. C) half-cheetah, and C)
mapping for the half-cheetah experiment. See Table S3 in the
Supplementary Material for more details.

based RL algorithm to optimize neurons’ and synapses’
parameters ω, ω̂,σ ,Cm,EL and GL, within their correspond-
ing range, shown in Table S2. A video of different stages of
the learned ordinary neural circuit for the inverted pendulum
can be viewed at https://youtu.be/cobEtJVw3A4

In a simulated Mountaincar experiment, the environmental
variables are the car’s horizontal position, x, together with
its linear velocity. The control signal applies force to the
car to build momentum until finally reaching the top of the
hill. The TW circuit can then be learned by the search-based
RL algorithm. A video illustrating the control of the car
at various episodes during the optimization process can be
viewed at https://youtu.be/J7vXFsZz7EM.

4.2. Scale the functionality of ONCs to environments
with larger observation spaces

We extend the application of the TW circuit as an instance
of ordinary neural circuits, to handle tasks with more obser-
vation variables. We choose the HalfCheetah-v2 test-bed
of Mujoco. The environment consists of 17 input and six
output variables. We add a linear layer that maps an arbi-
trary number of input variables to two continuous variables
fed into the four sensory neurons of the TW circuit, as
shown in Fig. 3D. Similarly, we add a linear layer that maps
the neuron potentials of the two motor neurons to the con-
trol outputs. A video of this experiment can be viewed at
https://youtu.be/zG_L4JGOMbU.

Table 2. ONC vs. random circuits - n=10, High standard deviations
are due to the inclusion of unsuccessful attempts.

Env / Method Random Circuit ONC

Inverted Pendulum 138.1± 263.2 866.4 ±418
Mountain car 54 ±44.6 91.5±6.6
Half-Cheetah 1742.9±642.3 2891.4±1016

4.3. Transfer learned ONCs to control real robot

In this experiment, we generalized TW to learn a real-world
control task. We let TW learn to park a rover robot on a
determined spot, given a set of checkpoints on a trajectory,
in a deterministic simulated environment. We then deploy
the learned policy on a mobile robot in a real environment
shown in Fig. 3A. The key objective here is to show the
capability of the method to perform well in a transformation
from a simulated environment to real. For doing this, we
developed a custom deterministic simulated RL environment.

The rover robot provides four observational variables (start
signal, position (x, y) and angular orientation θ ), together
with two motor actions (linear and angular velocity, v and
w). We mapped all four observatory variables, as illustrated
in Fig. 3B, to the sensors of the TW. Note that the geomet-
ric reference of the surrounding space is set at the initial
position of the robot. Therefore, observation variables are
positive.

We mapped the linear velocity (which is a positive variable
throughout the parking task) to one motor neuron and the
same variable to another motor neuron. We determined two
motor neurons for the positive and negative angular velocity.
(See Table S3 in Supplementary for mapping details). This
configuration implies that the command neuron, AVA, con-
trols two motor neurons responsible for the turn-right and
forward motion-primitives, and AVB to control the turn-left
and also forward motor neurons.

Optimization setup for the parking task – A set of check-
points on a pre-defined parking trajectory was determined
in the custom simulated environment. For every checkpoint,
a deadline was assigned. At each deadline, a reward was
given due to the rover’s negative distance to the current
checkpoint. The checkpoints are placed to resemble a real
parking trajectory composed of a sequence of motion primi-
tives: Forward, turn left, forward, turn right, forward, and
stop. We then learned the TW circuit by the RL algorithm.

The learned policy has been mounted on a Pioneer AT-3
mobile robot and performed a reasonable parking perfor-
mance. The video of the TW ordinary neural circuit’s per-
formance on the parking task can be viewed at https:
//youtu.be/p0GqKf0V0Ew.

https://youtu.be/cobEtJVw3A4
https://youtu.be/J7vXFsZz7EM
https://youtu.be/zG_L4JGOMbU
https://youtu.be/p0GqKf0V0Ew
https://youtu.be/p0GqKf0V0Ew
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Figure 4. Learning curves. A) Inverted pendulum B) Mountain
car (OpenAI Gym) C) Half-Cheetah D) The parking task. The
shadows represent standard deviation. n = 10

5. Experimental Evaluation
In this section, we thoroughly assess the results of our ex-
perimentation. We qualitatively and quantitatively explain
the performance of our ordinary neural circuits. We then
benchmark our results with the existing methods, and de-
scribe the main attributes of our methodology. Finally, we
quantitatively interpret the dynamics of the learned policies.

5.1. Do ONCs perform better than random circuits?

We performed an experiment where we designed circuits
with randomly wired connectomes, with the same number of
neurons and synapses used in the TW circuit. The synapses’
initial polarity is set randomly (excitatory, inhibitory, or
electrical synapse) with a simple rule that no synapse can
be fed into a sensory neuron, which is a property of ONCs.

The random circuits were then trained over a series of con-
trol tasks described earlier, and their performance is reported
in Table 2. We observe that ONCs significantly outperform
the randomly wired networks, which is empirical evidence
for ONCs being the lottery ticket winners.

5.2. Relation to the lottery ticket hypothesis

The Lottery ticket hypothesis (Frankle & Carbin, 2018)
states that we can train sparse networks from an obtained
winning ticket – i.e., weight initialization. Now in terms
of ONCs, TW realizes a sub-circuit of 77% sparsity and
more importantly, TW synapses are initialized by naturally-
determined weight structures.

It is worth noting that biological weights are not simply
determined by scalar weight values to be initialized. Instead,
they are declared as shown in Eq. 1, by:

• different types of synapses (gap-junctions or chemical
synapses see Îi j and Ii j in Eq. 1).

Table 3. Comparison of ONC to artificial neural networks with
policy gradient algorithms

Method Inverted Pendulum MountainCar
MLP + PPO 1187.4±51.7 94.6±1.3

(Schulman et al., 2017)

MLP + A2C 1191.2±45.2 86.4±18.3
(Mnih et al., 2016)

ONC + RS (ours) 1168.5±21.7 91.5±6.6

• different polarities i.e. excitatory/inhibitory (set by an
independent variable E in Ii j).

• a nonlinear weight profile shown by gi j(t), in Eq. 1,
and a maximum weight value.

TW is one of the few circuits for which not only the sparse
structure is discovered, but also their synaptic polarity and
synaptic types are identified (Wicks et al., 1996). We strictly
preserved such initialization of synaptic structures through-
out our experiments and observed a better performance
consistently compared to other random circuits.

5.3. Performance

The training algorithm solved all the tasks, after a reasonable
number of iterations, as shown in the learning curves in
Fig. 4A-D. Jumps in the learning curves of the mountain
car (Fig. 4B) are the consequence of the sparse reward.
For the deterministic parking trajectory, the learning curve
converges in less than 5000 iterations.

ONCs’ sample efficiency is highly dependent on the envi-
ronment in which they are being evaluated. As shown in
Fig. 4, TW compared to LSTM, is more sample efficient
in Half-cheetah and the pendulum, and less in Mountain-
car. It also realizes a better sampling efficiency to MLP
in Half-Cheetah, a similar rate in Pendulum, and worst in
Mountain-car.

5.4. How does ONC + random search compare with
policy gradient-based algorithms?

ONCs + Random search algorithm demonstrates compara-
ble performance to the state-of-the-art policy gradient RL
algorithms such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017), and advantage actor-critic (A2C)
(Mnih et al., 2016). Table 3 reports the performance of the
mentioned algorithms compared to NPC+RS.

5.5. How does ONC compare to deep learning models?

The final return values for the basic standard RL tasks (pro-
vided in Table 4), matches that of conventional policies
(Heidrich-Meisner & Igel, 2008), and the state-of-the-art
deep neural network policies learned by many RL algo-
rithms (Schulman et al., 2017; Berkenkamp et al., 2017).
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Table 4. Compare ONC with deep learning models. numbers show the Mean, standard deviation, and success rate for 10 runs. N = 10
Agent Inverted Pendulum Mountaincar HalfCheetah Sparsity
LSTM 629.01 ± 453.1 (40.0%) 97.5 ± 1.25 (100.0%) 1588.9 ± 353.8 (10.0%) 0% (fully connected)
MLP 1177.49 ± 31.8 (100.0%) 95.9 ± 1.86 (100.0%) 1271.8 ± 634.4 (0.0%) 0% (fully connected)

ONC (ours) 1168.5± 21.7 (90.0%) 91.5 ± 6.6 (80.0%) 2587.4 ± 846.8 (72.7%) 77% (28 synapses)
Random circuit 138.10 ± 263.2 (10.00%) 54.01± 44.63 (50.0%) 1743.0 ± 642.3 (50.0%) 77% (28 synapses)
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Figure 5. Interpretability analysis of the parking task. A) The parking trajectory. B) TW circuit drawn with the range of possible variations
of the individual neuron’s time-constants; the radius of the darker color circle for each neuron corresponds to the range within which the
time-constant varies between τmin and τmax while the robot performs the parking. (Values in Supplementary Materials, Table S7). C)
Projection of individual neuron’s output over the parking trajectory. The plots demonstrate when neurons get activated while the rover is
performing the parking task. D) Histogram of the slopes in manifolds’ point-pair angles for a motor neuron in the parking task. (See
Supplementary Materials Section 6, for full circuit’s analyses, in other experiments.)

We compared the performance of the learned TW circuit to
long short-term memory (LSTM) recurrent neural networks
(Hochreiter & Schmidhuber, 1997), multi-layer perceptrons
(MLP), and random circuits.

We tried to keep the comparison to other models as fair
as possible; not only the number of neurons, their linear
mapping, and their learning algorithm are the same, but also
we let the trainable parameters of the other models to be
larger than TW (e.g., in HalfCheetah, the total number of
params for TW is 102, for MLP is 104, and for LSTM is
169) and we see TW’s superior performance.

We select the same number of cells (neurons) for the LSTM
and MLP networks, equal to the size of the tap-withdrawal
circuit. LSTM and MLP networks are fully connected, while
the TW circuit realizes a 77% network sparsity.

In simple experiments, the TW circuit performs in par with
the MLP and LSTM networks, while in HalfCheetah, it
significantly achieves a better performance. Results are

summarized in Table 4.

5.6. Interpretability of the ordinary neural circuits

In this section, we introduce a systematic method for inter-
preting the internal dynamics of an ONC. The technique
determines how the kinetics of sensory neurons and interneu-
rons relate to a motor neuron’s decision. Fig. 5B illustrates
how various adaptive time-constants are realized in the park-
ing environment. Interneurons (particularly PVC and AVA)
change their time-constants significantly compared to the
other nodes. This corresponds to their contribution to var-
ious dynamical modes and their ability to toggle between
dynamic phases of an output decision.

Fig. 5C visualizes the activity of individual TW neurons
(lighter colors correspond to a more activation phase) over
the parking trajectory.

It becomes qualitatively explainable how individual neurons
learned to contribute to performing autonomous parking.
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For instance, AVA, the command neuron for turning the
robot to the right-hand side (Motor neuron RGT) while
moving, gets highly activated during a right-turn. Similarly,
AVB and LFT neurons are excited during a left-turning
phase. (See Fig. 5C).

Next, we formalize a quantitative measure of an ONC ele-
ment’s contribution to its output decision.

Definition 2. Let I = [0,T ] be a finite simulation time of
an ONC with k input neurons, N interneurons and n motor
neurons, (Shown in Fig. 1), acting in an RL environment.
For every neuron-pair (Ni,n j), (Ni, N j) and (ki, n j), in a
cross-correlation space, let S = {s1, ....sT−1} be the set of
the gradients amongst every consecutive simulation time-
points, and Ω = {arctan(s1), ...,arctan(sT−1} be the set of
all corresponding geometrical angles, bounded to a range
[−π

2 ,
π

2 ]. Given the input dynamics, we quantify the way
sensory neurons and interneurons contribute to motor neu-
rons’ dynamics, by computing the histogram of all Ωs, with
a bin-size equal to l (i.e. Fig 5D), as follows:

• If sum of bin-counts of all Ω > 0, is more than half of
the sum of bin-counts in the Ω < 0, the overall contri-
bution of Ni to n j is positive.

• If sum of bin-counts of all Ω < 0, is more than half of
the sum of bin-counts in the Ω > 0, the overall contri-
bution of Ni to n j is negative,

• Otherwise, Ni contributes in phases (switching between
antagonistic and phase-alighted) activity of n j, on de-
terminable distinct periods in I.

To exemplify the use of the proposed interpretability method,
let us consider the neuronal activity of a learned circuit
driving a rover robot autonomously on a parking trajectory.

Fig. 5D presents the histograms computed by using Defini-
tion 1 for the RGT motor neuron dynamics (i.e., the neuron
responsible for turning the robot to the right) with respect
to that of other neurons. Based on Definition 1, we mark
AVM, AVD, AVA as positive contributors to the dynamics
of the RGT motor neuron.

We determine PVD, PLM, and PVC as antagonistic con-
tributors. Neurons such as DVA and AVB realized phase-
changing dynamics where their activity toggles between
positive and negative correlations, periodically. (For the
analysis of the full networks’ activities visit Supplementary
Materials Section 6).

Such analysis is generalizable to the other environments too.
(See Supplementary Materials Section 6). In that case, the
algorithm determines principal neurons in terms of neuron’s
contribution to a network’s output decision in computable
intervals within a finite simulation time.

6. Scope and limitations
Scalability We emphasize that the field of connectome-
analysis, although being in its infancy, is rapidly growing
(Sarma et al., 2018; Gleeson et al., 2018; Cook et al., 2019).
For instance, the discovery of the mapping of fruit fly’s
brain (Xu et al., 2020), in combination with our method,
constructs an exciting prospective line of research. As our
knowledge about connectomes grows, we are confident that
our proposed approach emerges as a significant viewpoint
casting on network-design paradigms in deep learning and
deep RL, in more general domains.

Moreover, instead of solely scaling our experiments to larger
problems, we diversified them to multiple settings, estab-
lishing a solid foundation for ONCs on well-established
environments, and thus enabling the machine learning com-
munity to build over this new line of research. In this regard,
our experiments included benchmarking RL tasks, sim-to-
real robotics, a general framework for efficient network
design, and higher dimensional observation/action spaces
to the degree compatible with the natural neural circuit.

Network design and dynamical systems Design princi-
ples provided in this work are ad-hoc, although we made
sure to provide statistically significant evidence to support
our quantitative findings. Moreover, applying advanced
but solely graph theory analysis to connectomes (Varshney
et al., 2011) misses the control and dynamical systems as-
pect. Thus, an ideal platform would take both measures into
account. This is an exciting line of research with very few
proposals (Towlson & Barabási, 2020), including ours.

7. Conclusions
We showed the performance of ONCs in control environ-
ments as the natural lottery winner networks. We quanti-
tatively demonstrated that the sub-networks taken directly
from the small species’ nervous system realize an attrac-
tive max-flow rate and, when trained in isolation, perform
significantly better than randomly-wired circuits, as well
as contemporary deep learning models in simulated and
real-life tasks.

We experimentally demonstrated the interpretable control
performance of the learned circuits in action and introduced
a quantitative method to explain networks’ dynamics. The
proposed method can also be utilized as a building block for
the interpretability of recurrent neural networks, despite a
couple of fundamental studies (Karpathy et al., 2015; Chen
et al., 2016; Olah et al., 2018; Hasani et al., 2019), is still a
grand challenge to be addressed (Hasani, 2020).

Finally, we open-sourced our methodologies to encourage
other researchers to further explore the attributes of ONCs
and apply them to other control and RL domains.
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