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In this supplement, we first provide an ablation study on
local GDC. Dataset statistics, and further implementation
details are also presented. Finally, schematics of different
stochastic regularization techniques for GCNs are provided.

1. Ablation Study: Global versus Local
We further investigate our learnable GDC, in which for each
edge at each layer a different connection sampling distribu-
tion is learned. We refer to this scenario as the local learn-
able GDC. This, indeed, is a more general case than learning
a single distribution for all edges in a layer. Expanding the
variational beta-Bernoulli GDC to local learnable GDC is
straightforward. Note that the KL term in the loss function
can be derived in the same manner as in the global learnable
GDC – as described in Section 4 of the paper – except that
it will include the sum of num layers× num edges terms
as opposed to the num layers terms in the global GDC.

By training the aforementioned model on the citation
datasets, we find that the accuracy degrades and the KL
divergence reduces to zero for every choice of prior. This
phenomenon, which is known as posterior collapse or
KL vanishing, is a common problem in variational auto-
encoders for language modeling (Bowman et al., 2015;
Goyal et al., 2017; Liu et al., 2019). It is often due to
over-parametrization in the model, which is indeed the case
in the local learnable GDC. A solution to this issue could
be making the parameters of the distribution dependent on
the graph topology and/or node attributes. We leave this for
future studies.
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Table 1. Graph dataset statistics.

Dataset # Classes

Cora 7

# Nodes

2,708

# Edges

5,429

# Features

1,433
Citeseer 3 3,327 4,732 3,703
Cora-ML 7 2,995 8,416 2,879

2. Datasets and Implementation Details
All of the models are implemented in PyTorch (Paszke et al.,
2017). All of the simulations are conducted on a single
NVIDIA GeForce RTX 2080 GPU node. We evaluate our
proposed methods, GCN-BBDE and GCN-BBGDC, and
baselines on three standard citation network benchmark
datasets. We preprocess and split the dataset as done in (Kipf
& Welling, 2017) and (Bojchevski & Gunnemann, 2018).
For Cora and Cora-ML, we use 140 nodes for training, 500
nodes for validation and 1000 nodes for testing. For Citeseer,
we use 120 nodes for training and the same number of nodes
as Cora for validation and testing. Table 1 provides the de-
tailed statistics of the graph datasets used in our experiments.
The warm-up factor used in GCN-BBGDC with more than 2
layers for Cora and Cora-ML is min({1, epoch/20}), and
for Citeseer is min({1, epoch/40}). We have deployed
Adam optimizer (Kingma & Ba, 2014) in all of our experi-
ments.

3. GDC versus Other Stochastic
Regularization Techniques

To further clarify the differences of our proposed GDC from
existing stochastic regularization techniques, we draw the
schematics of a GCN layer to which DropOut, DropEdge,
Node Sampling, and our GDC are applied; shown in figures
below. The input graph topology for the GCN layer is
depicted in 1. The number of input and output features are
both two in this toy example.
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Figure 1. Top: Schematic of a GCN layer on a graph with 4 nodes. Number of both input and output features are two. The connections
are localized as explicitly depicted for node 2. Bottom: The same GCN layer shown in a more conventional way, i.e. each layer is a
vector of neurons or features. Each circle is a feature and each square represents a node. The connections are sparse and the sparsity is
based on the input graph topology. The connections for node 2 in layer l + 1 are highlighted.
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Figure 2. Schematic of our proposed GDC. Each circle is a feature and each square represents a node. GDC drops connections
independently across layers. The dashed lines show dropped connections and the gray ones show the kept connections.
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Figure 3. Schematic of DropOut (Srivastava et al., 2014). Each circle is a feature and each square represents a node. DropOut drops
features at each layer. The faded circles represent dropped features while the other ones are kept. The dashed lines show dropped
connections and the gray ones show the kept ones.
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Figure 4. Schematic of DropEdge (Rong et al., 2019). Each circle is a feature and each square represents a node. DropEdge drops edges
between nodes hence all of the connections between their corresponding channels are dropped. Note that the mask in DropEdge is
symmetric. In this example, the edge between nodes 1 and 2 as well as the edge between nodes 1 and 4 are dropped. The dashed lines
show dropped connections and the gray ones show the kept ones.
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Figure 5. Schematic of the node sampling strategy in FastGCN (Chen et al., 2018). Each circle is a feature and each square represents a
node. FastGCN drops nodes hence all of the connections to that node are dropped. The faded nodes represents the dropped nodes. The
dashed lines show dropped connections and the gray ones show the kept ones.



Bayesian Graph Neural Networks with Adaptive Connection Sampling: Supplementary Materials

References
Bojchevski, A. and Gunnemann, S. Deep gaussian em-

bedding of graphs: Unsupervised inductive learning via
ranking. In International Conference on Learning Repre-
sentations, 2018.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Joze-
fowicz, R., and Bengio, S. Generating sentences from
a continuous space. arXiv preprint arXiv:1511.06349,
2015.

Chen, J., Ma, T., and Xiao, C. FastGCN: Fast learning with
graph convolutional networks via importance sampling.
arXiv preprint arXiv:1801.10247, 2018.

Goyal, A. G. A. P., Sordoni, A., Cotˆ e,´ M.-A., Ke, N. R.,
and Bengio, Y. Z-forcing: Training stochastic recurrent
networks. In Advances in neural information processing
systems, pp. 6713–6723, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Liu, X., Gao, J., Celikyilmaz, A., Carin, L., et al. Cyclical
annealing schedule: A simple approach to mitigating kl
vanishing. arXiv preprint arXiv:1903.10145, 2019.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. In NIPS-W,
2017.

Rong, Y., Huang, W., Xu, T., and Huang, J. DropEdge:
Towards the very deep graph convolutional networks for
node classification, 2019.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.


