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Abstract

Learning to control complex bodies and reuse
learned behaviors is a longstanding challenge in
continuous control. We study the problem of
learning reusable humanoid skills by imitating
motion capture data and joint training with com-
plementary tasks. We show that it is possible to
learn reusable skills through reinforcement learn-
ing on 50 times more motion capture data than
prior work. We systematically compare a variety
of different network architectures across different
data regimes both in terms of imitation perfor-
mance as well as transfer to challenging locomo-
tion tasks. Finally we show that it is possible to in-
terleave the motion capture tracking with training
on complementary tasks, enriching the resulting
skill space, and enabling the reuse of skills not
well covered by the motion capture data such as
getting up from the ground or catching a ball.

1. Introduction
Learning policies that can produce complex motor behavior
for articulated, physically simulated bodies is a difficult chal-
lenge that is central to artificial intelligence. Recent efforts
have demonstrated that it is possible to learn robust policies
for certain locomotion behaviors from scratch (Heess et al.,
2017) in rich environments. However this can be very data
inefficient or the quality of resulting behavior may be lack-
ing. To alleviate this problem, it is desirable to be able to
repurpose previously learned skills and use prior knowledge
to facilitate and speed up learning on subsequent tasks. Var-
ious efforts have sought to design hierarchical architectures
that enable reuse of skills (e.g. Heess et al. (2016); Florensa
et al. (2017); Haarnoja et al. (2018)), often through factoring
the problem into learning a high-level task-specific module
and a reusable low-level controller.
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While hierarchical architectures seem especially promis-
ing in multi-task reinforcement learning, discovering robust
behaviors via standard exploration techniques remains diffi-
cult. The pretrained skills could come from other, perhaps
simpler, tasks (e.g. Riedmiller et al., 2018) but this requires
careful task design and is difficult to scale to large numbers
of tasks. Alternatively, the skills could be derived from
expert demonstrations. In the case of humanoid control,
these demonstrations can be acquired from the large amount
of motion capture (mocap) data publicly available, and the
resulting skills therefore consist of more natural movements
(Merel et al., 2019b; Peng et al., 2019). While very effective,
this approach may prevent the agent from solving tasks re-
quiring other skills not well covered by the demonstrations.

In this paper, we explore this space further, studying the
trade-offs of various existing approaches for representing
and transferring reusable skills. How well skills can be
learned and transferred to new tasks depends on a number of
factors, including the nature and number of the pre-training
tasks as well the structure and capacity of the architecture,
which determines the ability to represent, re-use, and gener-
alize skills. We attempt to disentangle the dimensions of the
problem through a systematic comparison of architectures
for skill representation, evaluated using different training
regimes, transfer tasks, and varying quantities of diverse
motion capture data. Simulated humanoid character control
is a suitable problem domain, because humanoids can gen-
erate a rich set of behaviors. Furthermore, motion capture
data gives us access to a very rich, dense and scalable set of
pre-training tasks that we know can be solved. This allows
us to isolate questions relating to the capacity of different
skill architectures and the ease with which the learned skills
can be used, generalized and adapted, reducing the con-
founding effect of other factors, such as exploration during
the initial pre-training phase. In our experiments we demon-
strate that simpler architectures tend to perform better than
specialized ones, and that while a modest amount of motion
capture data is sufficient to solve challenging locomotion
tasks, asymptotic performance improves with data size.

Furthermore, we propose a flexible framework to simulta-
neously learn to solve goal-directed tasks while learning to
track the motion capture clips. This approach allows us to
combine motion capture data with additional training tasks
to induce complementary behaviors. Our results show that
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new skills can be discovered from additional tasks along
with the ones from the reference dataset, and that their dis-
covery is actually facilitated by the motion capture tracking
compared to finding them from scratch. By training the low-
level policy jointly on both tracking tasks and out-of-sample
tasks, the resulting skill embedding space incorporates both
the reference movements and those required to solve the
complementary tasks.

2. Related Work
Across multiple disciplines involving complex control chal-
lenges, there has long been an interest in building reusable
skills, using a wide range of approaches such as options
(Sutton et al., 1999; Bacon et al., 2017; Barreto et al., 2019),
movement primitives (Schaal et al., 2005; Paraschos et al.,
2013; Mülling et al., 2013), or through scheduling libraries
of control elements (Liu & Hodgins, 2017). Approaches
involving learning and reuse of skills are broadly useful in
control and robotics settings, either for humanoid control
(Da Silva et al., 2014; Yang et al., 2018) or for manipulation,
both in simulation (Rajeswaran et al., 2018) and on robotic
platforms (Strudel et al., 2020; Wulfmeier et al., 2019).

In the context of continuous control, transferable motor
skills can be obtained in various ways. A default method
that does not make use of machine learning involves man-
ually designing separate controllers for specific behaviors.
While historically popular for applications, designing many
case-specific controllers can become too difficult for com-
plex problems. Moreover, while hand-designed controllers
can be sequenced in novel ways, they may provide lim-
ited flexibility. Contemporary efforts have therefore moved
towards learning based approaches. A first class of learning-
based approaches involves carefully creating sets of tasks
whose mastery leads to emergence of useful skills (Heess
et al., 2016; James et al., 2018; Riedmiller et al., 2018;
Hausman et al., 2018). And the expectation is that the skills
that emerge to solve any particular task may be useful for
other tasks in the set. A second class of approaches involves
unsupervised learning of skills (Gregor et al., 2016; Flo-
rensa et al., 2017; Warde-Farley et al., 2019; Eysenbach
et al., 2019), generally based on maximizing the diversity
of the visited states. While these approaches require less
engineering, they often depend upon the specification of
strong priors on the dimensions that skills should affect, for
example by prioritizing the body position in the plane to
incentivize locomotion. Moreover, finding a large number
of diverse behaviors may lead to skills that are not rele-
vant for later tasks. A final alternative is to use imitation
learning techniques to acquire skills from sources such as
motion capture (Merel et al., 2017; 2019b) or even loosely
structured “play” (Lynch et al., 2019).

Howsoever learned, a common architectural motif among

recent approaches is for there to be an embedding space
that reflects the learned set of skills (Heess et al., 2016).
This can be repurposed in the context of hierarchical control
schemes where, for a new task, a high-level controller pro-
duces actions via the embedding space. Embedding vectors
can be used to trigger either a specific plan to reach a goal
(Lynch et al., 2019), a behavior for an entire episode (Wang
et al., 2017; Eysenbach et al., 2019), a segment in an episode
(Hausman et al., 2018) or a temporally correlated behavior
specified at every time step (Merel et al., 2019b). For the
latent space to be easy to control for a high-level controller,
the distribution of latent vectors is generally regularized
to be well distributed and smooth. This regularization can
also be viewed from an information bottleneck perspective
(Goyal et al., 2019; 2020). The resulting skills are usually
frozen and the reuse is limited by the behaviors that can be
triggered via the latent space (Haarnoja et al., 2018).

Articulated humanoids are an example of a high-
dimensional body that is particularly complex to control.
Our present work is situated most closely among the various
efforts to produce robust, natural, and reusable motor be-
havior for physically simulated humanoids. In this setting,
approaches which generate behavior through tracking of
motion capture demonstrations tend to produce the most
robust and realistic movements (Liu et al., 2010; Peng et al.,
2018; Chentanez et al., 2018; Bergamin et al., 2019). More-
over, there has been a longstanding recognition in this field
that skills should be able to be repurposed for new tasks
(Faloutsos et al., 2001; Liu & Hodgins, 2017). We build
most directly on recent efforts involving large scale tracking
of motion capture data (Chentanez et al., 2018) as well as
efforts to build reusable skills from these data (Merel et al.,
2019b; Peng et al., 2019).

Our joint training approach is conceptually related to pre-
vious work in supervised learning on learning shared em-
bedding spaces for multiple tasks or modalities (e.g. Frome
et al., 2013; Kiros et al., 2014). Another related strand of
research are semi-supervised approaches, both in supervised
learning (e.g. Kingma et al., 2014) and in RL (Finn et al.,
2016), that leverage a large number of unlabelled examples
to improve task performance based on a small number of
labelled examples. In a similar spirit, we use a large number
of task agnostic mocap demonstrations to improve data effi-
ciency when learning tasks of interest for which experience
is accompanied by rewards.

3. Approach
This paper aims to study the following question: How can
we best learn, represent and reuse diverse skills?

Learning reusable skills To this end, we learn low-
dimensional skill embedding spaces via imitation using
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Figure 1. Schema depict skill learning via mocap tracking with
a reference encoder producing a stochastic embedding zt which
conditions a low-level policy; skill transfer to a new task with a
frozen low-level policy; and joint training with complementary
tasks during the skill learning phase to enrich the resulting skill
space.

reinforcement learning and use the resulting low-level poli-
cies on challenging transfer tasks. All architectures consid-
ered in this work use a reference encoder πHL(zt|st, sref

t ),
which, at time t encodes the desired future target states
sref
t = (ŝt+1, . . . , ŝt+5) from the motion capture reference

data and current state st into a stochastic embedding zt,
used to condition a low-level policy πLL. πLL also receives
proprioceptive information about the state of the body as
an input and produces a distribution over actions at (see
Panel 1 in figure 1). To learn the skill embedding spaces,
we train a policy to imitate motion capture demonstrations
via reinforcement learning. We use a reward that compares
the current pose of the humanoid to the target pose from
the motion capture reference (see section 4) and maximize
the sum of discounted rewards using V-MPO (Song et al.,
2020), an on-policy variant of Maximum a Posteriori Pol-
icy Optimization (Abdolmaleki et al., 2018). In the case
of mixture low-level policies (described below), which we
train with an on-policy variant of RHPO (Wulfmeier et al.,
2019). This is equivalent to V-MPO with an additional KL
constraint on the mixture weights. We regularize the latent
embedding with a standard Gaussian prior by adding a KL
loss term to the V-MPO losses:

βEπ

[∑
t

KL(πHL(zt|st, sref
t )‖N (0, I))

]
, (1)

where the coefficient β controls the strength of the regular-
ization.

Transferring skills to new tasks Having trained on the
mocap tracking task, we can then transfer the low-level
policy to a new task by reusing the learned embedding
space as a new action space. To do this we freeze the
parameters of the low-level policy and learn a new high-
level policy that outputs a latent embedding zt at each time
step (see Panel 2 in figure 1). This high-level policy can
take as inputs task observations ot. Acting in the learned
embedding space heavily biases the resulting behavior to the
behaviors present in the motion capture data. This enables
much more coherent exploration. For example, we observe
that often a randomly initialized high-level policy already
results in naturalistic movements for an extended period of
time while randomly initialized policies in the raw action
space tend to fall immediately.

Joint training with complementary tasks On the other
hand, the bias towards behaviors from the motion capture
data can also hurt performance. Skills that are relevant for
a transfer task but not well covered by the motion capture
data may be impossible to learn. For example, getting up
from the ground is underrepresented in many motion cap-
ture datasets and a hard skill to learn but clearly desirable
in transfer tasks. To tackle this problem we propose a joint
training approach: during the skill learning phase we inter-
leave the mocap tracking task with other, complementary,
out-of-sample tasks that ensure that specific skills are well
represented in the embedding space (see Panel 3 in figure 1).
Since complementary tasks do not share the same observa-
tion as the mocap tracking task, and optimize for different
rewards, we train a separate high-level policy acting in the
learned embedding space but use the same low-level pol-
icy. This approach forces the embedding space to represent
behaviors induced by the complementary tasks.

Low-Level Architectures It is a priori unclear which net-
work architectures might permit effective transfer of skills.
The simplest choice is a monolithic feedforward architecture
but there are many possible hierarchical architectures that in-
troduce additional structure by organizing the low-level pol-
icy into primitives. Two recent, representative examples are
mixture distributions (Wulfmeier et al., 2019) and product
distributions (Peng et al., 2019). The promise of such mod-
ular architectures is compositionality: different primitives
could specialize to different skills which can then be flex-
ibly composed by varying the primitive weights. Whether
this hope is realized remains unclear and is likely highly
task-dependent. Modularity is another possible benefit of
mixture or product architectures. Both potentially allow the
addition of new primitives and importantly allow primitives
to specialize which may help represent wide ranges of skills.
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Another plausible alternative is a recurrent low-level pol-
icy which can model temporal correlation in behavior and
allows for temporally extended ‘default’ behaviors.

Guided by these considerations, we compare four represen-
tative network architectures for the low-level policy in our
experiments: a fully-connected neural network (MLP), a
recurrent neural network (LSTM), a mixture of Gaussians
policy and a product of Gaussians policy.

The mixture distribution with C components is given by:

πLL(at|st, zt) =
C∑
i=1

wi(st, zt)φ(at|µi(st), σi(st)), (2)

where φ(·|µ, σ) is the density of a normal distribution with
diagonal covariance and with mean µ and standard deviation
σ. Similarly the (unnormalized) product distribution is given
by:

πLL(at|st, zt) ∝
C∏
i=1

φ(at|µi(st), σi(st))wi(st,zt). (3)

For Gaussian factors, the resulting product distribution is
Gaussian with mean and variance given analytically as func-
tion of wi, µi, σi. Following Wulfmeier et al. (2019); Peng
et al. (2019), we do not provide the latent embedding zt
to the primitives to encourage specialization. In our exper-
iments both the mixture and the product policy networks
have a shared torso followed by per-component one hidden
layer MLPs. In order to keep the capacity of the low-level
architectures similar, we choose networks with roughly sim-
ilar numbers of parameters. We found that adding a KL
regularizer made training product distributions much more
stable.

4. Tasks
In this work, we perform our architecture comparisons and
demonstrate our joint training approach in the context of
humanoid continuous motor control tasks. Because motor
control of high-dimensional, physically simulated bodies is
difficult, it can be efficient to reuse skills; however, reuse
is only helpful if previously acquired skills are relevant for
subsequent challenges. To that end, given a distribution of
reference motions, we consider tasks that we expect can
be solved by reusing skills found in the motion capture
dataset as well as tasks which cannot. All tasks involve
simulated physics using MuJoCo (Todorov et al., 2012). We
use a humanoid body adapted from the “CMU humanoid”
available at dm control/locomotion (Merel et al., 2019a).
We adjusted limb lengths, masses, and dynamic properties
of the body to make it more consistent with an average
human. See figure 2 for an image of the body in the context
of our tracking task.

Tracking task The primary task we employ to learn skills
in this work is the multi-clip tracking task. Our task is
available in the dm control/locomotion package. The task
is similar to the ones employed in various other efforts to
produce policies that track motion capture data (Peng et al.,
2018; Merel et al., 2019a; Chentanez et al., 2018; Peng et al.,
2019). The task can be described in terms of episode initial-
izations, the instructions provided by the environment to the
agent, the reward function, and termination criteria. At the
start of each episode we randomly select a starting frame
from all frames in the underlying set of clips (excluding the
last 10 frames from each clip). At the beginning of each
episode the humanoid is initialized to the target pose in the
selected frame. We provide target reference poses to the
policy as an instruction of where to go; specifically, we pro-
vide a short snippet of future target states, {st+1, ...st+5}
(similarly to Chentanez et al., 2018; Merel et al., 2019b).
At every timestep, the reward corresponds to a similarity
function that compares the current pose to the target pose.
Our reward function contains five different terms:

r =
1

2
rtrunc +

1

2
(0.1rcom + rvel + 0.15rapp + 0.65rquat)

The first reward term rtrunc penalizes large deviations from
the reference in joint angles and the euclidean position of a
set of 13 different body parts:

ε : = ‖bpos − bref
pos‖1 + ‖qpos − qref

pos‖1

rtrunc = 1− ε

τ

where bpos and bref
pos correspond to the body positions of the

simulated character and the mocap reference and qpos and
qref

pos correspond to the joint angles. This reward terms is
linked to the termination condition of our tracking task.
Given a termination threshold τ , we terminate an episode if
ε > τ . Note that this ensures that rtrunc ∈ [0, 1]. We found
that including this termination condition and the coupled
reward speeds up training on larger clip sets but does not by
itself lead to visually appealing behavior. The second reward
term is similar to the objective proposed in Peng et al. (2018)
with terms penalizing deviations in terms of the center of
mass, the joint angle velocities, the end effector positions
and the joint orientations but uses slightly different weights.
Please refer to the supplementary material for further details.

Locomotion tasks To evaluate the reusability of the
learned low-level policies we use three challenging loco-
motion tasks from the DM Control locomotion task library
(Merel et al., 2019a; Tassa et al., 2020). Locomotion tasks
form a natural, well-motivated test bed for humanoid skills
that is within reach of current methods. The first task we
consider is a sparse go-to-target task, which involves loco-
moting to an instructed target position in an open area, and

https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion
https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion
https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion
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Figure 2. Multi-clip motion capture tracking task with physically
simulated humanoid (bronze) and offset mocap reference pose
(grey). Note how the imperfect reference pose self-intersects.

Figure 3. We evaluate transfer of trained low-level policies to chal-
lenging locomotion tasks: (left) go-to-target (center) gaps (right)
walls.

learning from sparse rewards when the target is obtained.
The other two tasks are dense reward tasks in which the
humanoid agent has to traverse an obstacle course consist-
ing of variable length walls or gaps, guided by first-person
visual observations.

Out-of-sample tasks Some motor skills may not be avail-
able, or may be underrepresented, in the motion capture
dataset. For example, the CMU motion capture database has
relatively few clips involving getting up from the ground
(compared to, e.g. walking). After training a policy that is
capable of tracking a subset of the motion capture library,
the reusable low-level controller may not provide an advan-
tage on a task that requires the humanoid to get up from
the ground – rather, the low-level controller may even bias
learning away from such movements. Consequently, we also
consider two representative out-of-sample tasks that involve
movements that were either underrepresented or absent from
our tracking reference data. The get-up and stand task con-
sists of initializing the humanoid in various poses (about 5
% lying on the ground and 95% floating slighly above the
ground in a standing pose which induces falling in a variety
of different ways) and rewarding the humanoid for being
in a standing pose with a reward of exp(−(h − htarget)

2),
where h is the head height of the humanoid and htarget is the
target height corresponding to standing. For perfect task
performance the humanoid has to both avoid falling when
initialized in a standing pose and learn to get up from the

Figure 4. Some skills are not well covered by most motion cap-
ture datasets. To obtain a rich skill space we train jointly with
complementary tasks such as getting up or catching a ball.

ground when initialized lying down. A second task involves
catching a ball thrown towards the humanoid. This task
is similar to the one considered by Merel et al. (2020). In
this task, the humanoid is initialized standing with the ball
thrown towards it at varying angles and velocities. The re-
ward function consists primarily of a negative reward if the
humanoid falls or the ball touches the ground, combined
with comparatively quite small shaping rewards to encour-
age the humanoid to stand upright and to touch the ball with
its hands. In the data we consider, while arm movements
are present, there is no data of catching a ball. Please refer
to the supplementary material for additional details.

5. Experiments
In our experiments, we compare a number of different ar-
chitectures across a range of data regimes with a focus on
architectures that permit reuse on transfer tasks. Prior work
(Merel et al., 2019b) on learning reusable skills from large
motion capture datasets used a two-stage approach of imi-
tation learning on short segments of single motion capture
clips followed by a supervised distillation phase. Our train-
ing setting allows training reusable controllers through RL
without a second distillation phase (Merel et al., 2019b) on
up to 3.5 hours of diverse motion capture data. This ap-
proach is significantly simpler, faster and cheaper than the
two stage approach taken by Merel et al., 2019b.

We restrict ourselves to architectures with a bottlenecked
latent space (Hausman et al., 2018; Merel et al., 2019b)
that serves as a new action space in transfer tasks. For the
mixture and product architectures the high-level policy acts
in the space of primitive mixture weights or exponents. Our
experiments aim to answer the following research questions:

• Does the size of the latent space affect tracking perfor-
mance and reusability in transfer tasks?

• How does KL regularization in the latent space impact
tracking performance and reusability?

• How do different architectures compare in different
regimes both in terms of tracking performance and
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reusability?

Using reinforcement learning to learn reusable skills di-
rectly gives researchers larger control over the exact training
setting. To highlight this flexibility, we show that we can
train reusable controllers in a multitask set-up where the
motion capture tracking task is interleaved with other tasks
that endow the resulting controller with specific skills that
would be difficult to acquire through motion capture alone,
such as the ability to get up from the ground from a wide
range of different positions.

5.1. Data Regimes

Different architectures inject different inductive biases and
the effect of these model choices may be more pronounced
in small data regimes. Hence, we compare different archi-
tectures across four different data regimes: a two minute
set of clips containing walking behaviors with various turns
(“Walking”), a two minute set of clips containing walking
behaviors as well as running and jumping (“Running”), a
40 minute set of locomotion clips (“Locomotion”) as well
as a 3.5 hour set of clips with a wide range of locomotion be-
haviors and hand movements (“Large”). All motion capture
data was obtained from the CMU mocap database. 1

5.2. Scaling Up Motion Capture Tracking

We find that several factors affect how well a policy can
be trained on multiple clips. Firstly, we found on-policy
reinforcement learning easier to scale to large motion cap-
ture datasets. Secondly, better learning of the value function
improved learning speed. Specifically, we explored two dif-
ferent approaches to improve value learning. We explored
giving the value function access to a one-hot encoding of
the reference clip id. Secondly, we exploit the linear nature
of the reward function and learn a separate value function
per reward term (e.g. Van Seijen et al., 2017) (see figure 5).
We found that learning a separate value function per reward
term significantly speeds up learning whereas conditioning
on the clip id only results in a modest additional improve-
ment. We use both of these improvements in all further
experiments. In line with previous work (Peng et al., 2018;
Merel et al., 2019a), we observed that the reward function
needs to be chosen carefully for best results although it
is worth noting that concurrent work (Abdolmaleki et al.,
2020) alleviates this difficulty.

5.3. Latent Space Dimensionality and KL
Regularization Strength

When training reusable low-level controllers, an important
choice is the size of the learned latent space. On the one

1mocap.cs.cmu.edu

Figure 5. Learning separate value functions per reward component
speeds up training but does not affect asymptotic performance. The
figure shows results for an MLP low-level on the “Locomotion”
dataset with D = 60 and β = 1× 10−4.

hand, choosing a smaller size reduces the action space in
transfer tasks and could lead to faster learning. On the other
hand, a smaller latent space can represent fewer behaviors
and might impair transfer performance. In addition, training
the low-level controller on the mocap tracking task is likely
to be harder, the smaller the learned latent space. Similar
considerations apply to regularization in the learned latent
space. Stronger regularization should be beneficial in trans-
fer tasks since random exploration in the latent space at the
beginning of training will be closer to the distribution of
embeddings encountered during tracking, leading to more
coherent exploration. However, too strong a regularization
might impair the tracking performance and reduce the num-
ber of behaviors represented in the latent space.

To study these questions we trained MLP low-level con-
trollers on the “Locomotion” clip set with latent space di-
mensions D = 20, 40 and 60 and a range of KL regular-
ization strengths β. The tracking performance is shown in
table 1. It remains roughly constant for different values of
D and for a range of different values of β and begins to
degrade slightly for β = 5× 10−4. Even higher values of
β lead to substantially reduced performance.

Next, we evaluate the trained low-level controllers on our
transfer tasks. Figure 6 shows the performance on the go-to-
target task. Across values of D, we find that the most highly
regularized low-level policies encounter rewards fastest.
This reflects the initial exploration behavior with a randomly
initialized high-level controller. For the most regularized
controller the initial behaviors is to take a few steps while
less regularized policies lead to almost immediate falling.
Note that for high values of D, the regularization strength

http://mocap.cs.cmu.edu
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β 1× 10−5 1× 10−4 2× 10−4 5× 10−4

D=20 0.69 0.69 0.69 0.62
D=40 0.69 0.69 0.70 0.59
D=60 0.70 0.69 0.70 0.62

Table 1. Average tracking reward per step for various latent space
dimensionalitiesD and KL regularization strengths β after 6×109

environment transitions processed.

β 1× 10−5 1× 10−4 2× 10−4 5× 10−4

D=20 514± 6 550± 5 551± 5 578± 5
D=40 536± 5 532± 6 520± 5 576± 6
D=60 527± 5 447± 5 614± 7 628± 5

Table 2. Mean return with standard errors on the gaps transfer
task for various embedding space sizes D and KL regularization
strengths β. The returns are averaged over the logged rewards
of a single run between 1.45 × 109 and 1.5 × 109 environment
transitions processed.

has a particularly strong effect on transfer learning speed.
The transfer result to the walls and gaps tasks are shown in
tables 2 and 3. On the walls task, all low-level controllers
perform quite well but the most highly regularized models
perform best. On the gaps task the picture is less clear; but
there is slight trend for more highly regularized models to
perform best.

5.4. Architecture Comparison

Next, we compare a variety of different architectures across
four different data regimes ranging from two minutes worth
of motion capture data to 3.5 hours. Figure 7 shows the per-
formance of different architectures on the motion capture
tracking task. For each architecture we compared a number
of variants and present results for the models performing
best on the transfer tasks since this is our primary motivation
in this work. For details on the different network architec-
tures, please refer to the supplementary material. Across all
data sets, we found that LSTM and MLP low-level policies

β 1× 10−5 1× 10−4 2× 10−4 5× 10−4

D=20 576± 4 635± 4 643± 4 817± 3
D=40 641± 5 591± 4 621± 4 785± 4
D=60 647± 4 524± 4 592±4 788± 4

Table 3. Mean return with standard errors on the walls transfer
task for various embedding space sizes D and KL regularization
strengths β. The returns are averaged over the logged rewards of a
single run between 0.95×109 and 1×109 environment transitions
processed

tended to be easier to train and outperform mixture and prod-
uct low-level policies. While the asymptotic performance
on the two smallest motion capture datasets is similar, we
found it difficult to achieve good tracking performance on
the larger motion capture datasets with product and mix-
ture low-level policies. One possible reason is the fact that,
following Peng et al. (2019); Wulfmeier et al. (2019), the
primitives are not conditioned on the latent variable to en-
courage specialization, making it harder to learn on a large
motion capture datasets. The LSTM low-level policy per-
forms best on the mocap tracking task since it can model
temporal structure in the behavior and overfit to difficult
reference clips. See supplementary video 1 for examples of
the tracking performance of the LSTM architecture on our
largest dataset.

Next, we evaluated the trained low-level policies on the
locomotion transfer tasks (see tables 4, 5 and 6). Across
all transfer tasks, we found the MLP low-level policy to
perform best. The LSTM performed less well, perhaps
reflecting the fact that it can model temporal structure inde-
pendent of the latent space, limiting its controllability. In
our setting mixture and product policies performed worse
than the MLP across all data regimes despite considerable
tuning effort. See supplementary video 2 for examples of
good performance on the locomotion transfer tasks.

Go To Walking Running Locomotion Large
Target (2min) (2min) (40min) (220min)

MLP 151±6 213±6 261± 4 280±7
LSTM 19± 1 30± 1 181± 4 264± 5
Mixture 19± 1 84± 2 100± 3 177± 4
Product 73± 3 13± 1 142± 3 154± 3

Table 4. Mean return with standard errors on the go to target trans-
fer task for different architectures and data regimes. The returns are
averaged over the logged rewards between 2.9×109 and 3.0×109

environment transitions processed and three runs. Across all data
regimes the MLP low-level policy performs best.

Gaps Walking Running Locomotion Large
(2min) (2min) (40min) (220min)

MLP 461±8 500±8 628± 5 556±3
LSTM 77± 1 217± 3 261± 2 266± 2
Mixture 144± 1 421± 4 506± 4 433± 3
Product 164± 1 216± 1 174± 2 417± 6

Table 5. Mean return on the gaps transfer task for different archi-
tectures and data regimes. The returns are averaged over the logged
rewards of one run between 1.4× 109 and 1.5× 109 environment
transitions processed. Across all data regimes the MLP low-level
policy performs best.

https://youtu.be/JUZmchgYh7E
https://youtu.be/Ke6Ha4opYk8
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Figure 6. Go-to-target transfer performance for various latent space dimensionalities D and KL regularization strengths β (averaged over
5 runs). More highly regularized models encounter rewards faster but achieve slightly lower asymptotic performance.

Figure 7. Architecture comparison across various data regimes. While modular architectures were competitive in small data regimes we
found it very challenging to scale them up to large motion capture datasets.

Walls Walking Running Locomotion Large
(2min) (2min) (40min) (220min)

MLP 626±5 569±5 807± 6 622± 5
LSTM 152± 2 368± 5 660± 7 725±6
Mixture 159± 2 351± 4 512± 11 679±10
Product 391± 5 264± 4 638± 7 647± 6

Table 6. Mean return on the walls transfer task for different archi-
tectures and data regimes. The returns are averaged over the logged
rewards of one run between 0.95× 109 and 1× 109 environment
transitions processed. The MLP low-level policy performs best in
most settings.

5.5. Joint training with complementary tasks

We consider joint training with two tasks that are not well
covered by the motion capture data: getting up from the
ground (present in only a few short clips) and catching a
ball (completely absent).

For these experiments we train a low-level policy on the

largest motion capture clip set with an MLP low-level policy
and an additional task. For joint training with the get up
and stand task, at the beginning of each episode, the mocap
tracking task is selected with 90 % probability and the get-
up task is selected with 10 % probability. The ball catching
task is sampled 20 % of the time. We find that in both set-
tings, joint training slightly degrades tracking performance
but it remains possible to transfer the learned skills to the
locomotion transfer tasks with similar performance. We
also investigate the transfer performance on the joint train-
ing tasks (see figure 8). In the case of get up and stand, the
jointly trained low-level policy almost instantly solves the
task. Indeed even a randomly initialized high-level policy
will rarely fall and sometimes spontaneously get up from the
ground. The low-level policy without joint training learns
much more slowly and only learns to not fall but not to get
up from the ground. In addition, the jointly trained low-
level policy solves the task in a visually human-like fashion.
Similarly, in the case of ball catching, with joint training
the task is solved faster and with higher performance. See
supplementary video 3 .

https://youtu.be/ZssTZpWro7Q
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Figure 8. Performance on the complementary tasks with and without joint training. In the case of get up and stand, the jointly trained
low-level policy almost instantly solves the task. Even a randomly initialized high-level policy will rarely fall and sometimes spontaneously
get up from the ground.

6. Discussion
Learning reusable skills is a crucial challenge for control.
This paper explored how to learn diverse, reusable skills
via imitation and joint training on complementary tasks.
Furthermore we studied which architectures facilitate effec-
tive skill reuse. Prior work (Merel et al., 2019b; 2020) on
learning reusable skills from large motion capture datasets
showed that it is possible to train reusable skills combining
reinforcement learning and distillation. In these papers, ex-
pert policies are trained to track short segments of individual
mocap clips. Expert trajectories are then distilled into a sin-
gle model in a supervised step with a low-level policy that
can be transferred to new tasks. In constrast, in this paper
we train the low-level policy directly via RL on large sets of
mocap data. This is significantly simpler, faster and cheaper
than the two stage approach taken by Merel et al., 2019b;
2020. In addition, focusing on reinforcement learning only
provides greater flexibility in terms of the training setting
(as evidenced by our joint trained results).

We exhibited a setting in which it is possible to train reusable
skills on large corpora of motion capture data. We compared
a variety of different embedding space sizes and regulariza-
tion strengths for a simple feed-forward architecture and
found that transfer results are relevant insensitive to the em-
bedding space size and strong regularization helps transfer
on sparse reward tasks and has less of an effect on perfor-
mance in dense reward tasks. Furthermore, we systemati-
cally compared a variety of different network architectures
across a range of different data regimes and found that a
simple feed-forward architecture worked best in our setting.
In particular, we found that, despite considerable effort, it
was difficult to scale modular architecture with several prim-

itives to large motion capture datasets. Indeed, even in the
low data regime a simple feed-forward low-level policy out-
performed modular architectures. This result is at odds with
results by Peng et al. (2019) and we speculate that a reason
for this discrepancy is the more challenging nature of our
tasks as well as the more realistic body. We leave a further
investigation to future work. We found that the tasks we
considered could be solved with reasonable performance
using only about two minutes worth of motion capture data
but asymptotic performance improved with the size of the
underlying motion capture dataset.

In addition, we showed that it is possible to jointly train on
complementary tasks providing an easy way for practition-
ers to ensure that skills not well covered by motion capture
data are well represented in the learned embedding space.
Future work in this space could include leveraging richer
environments than considered in this paper, or combining
imitation approaches with unsupervised skill discovery. Ul-
timately, we believe that the general approach of learning
skills both via imitation and on complementary tasks jointly
is very promising, offering the best of both worlds.
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