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Abstract

Learning to control complex bodies and reuse
learned behaviors is a longstanding challenge in
continuous control. We study the problem of
learning reusable humanoid skills by imitating
motion capture data and joint training with com-
plementary tasks. We show that it is possible to
learn reusable skills through reinforcement learn-
ing on 50 times more motion capture data than
prior work. We systematically compare a variety
of different network architectures across different
data regimes both in terms of imitation perfor-
mance as well as transfer to challenging locomo-
tion tasks. Finally we show that it is possible to in-
terleave the motion capture tracking with training
on complementary tasks, enriching the resulting
skill space, and enabling the reuse of skills not
well covered by the motion capture data such as
getting up from the ground or catching a ball.

1. Introduction
Learning policies that can produce complex motor behavior
for articulated, physically simulated bodies is a difficult chal-
lenge that is central to artificial intelligence. Recent efforts
have demonstrated that it is possible to learn robust policies
for certain locomotion behaviors from scratch (Heess et al.,
2017) in rich environments. However this can be very data
inefficient or the quality of resulting behavior may be lack-
ing. To alleviate this problem, it is desirable to be able to
repurpose previously learned skills and use prior knowledge
to facilitate and speed up learning on subsequent tasks. Var-
ious efforts have sought to design hierarchical architectures
that enable reuse of skills (e.g. Heess et al. (2016); Florensa
et al. (2017); Haarnoja et al. (2018)), often through factoring
the problem into learning a high-level task-specific module
and a reusable low-level controller.
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While hierarchical architectures seem especially promis-
ing in multi-task reinforcement learning, discovering robust
behaviors via standard exploration techniques remains diffi-
cult. The pretrained skills could come from other, perhaps
simpler, tasks (e.g. Riedmiller et al., 2018) but this requires
careful task design and is difficult to scale to large numbers
of tasks. Alternatively, the skills could be derived from
expert demonstrations. In the case of humanoid control,
these demonstrations can be acquired from the large amount
of motion capture (mocap) data publicly available, and the
resulting skills therefore consist of more natural movements
(Merel et al., 2019b; Peng et al., 2019). While very effective,
this approach may prevent the agent from solving tasks re-
quiring other skills not well covered by the demonstrations.

In this paper, we explore this space further, studying the
trade-offs of various existing approaches for representing
and transferring reusable skills. How well skills can be
learned and transferred to new tasks depends on a number of
factors, including the nature and number of the pre-training
tasks as well the structure and capacity of the architecture,
which determines the ability to represent, re-use, and gener-
alize skills. We attempt to disentangle the dimensions of the
problem through a systematic comparison of architectures
for skill representation, evaluated using different training
regimes, transfer tasks, and varying quantities of diverse
motion capture data. Simulated humanoid character control
is a suitable problem domain, because humanoids can gen-
erate a rich set of behaviors. Furthermore, motion capture
data gives us access to a very rich, dense and scalable set of
pre-training tasks that we know can be solved. This allows
us to isolate questions relating to the capacity of different
skill architectures and the ease with which the learned skills
can be used, generalized and adapted, reducing the con-
founding effect of other factors, such as exploration during
the initial pre-training phase. In our experiments we demon-
strate that simpler architectures tend to perform better than
specialized ones, and that while a modest amount of motion
capture data is sufficient to solve challenging locomotion
tasks, asymptotic performance improves with data size.

Furthermore, we propose a flexible framework to simulta-
neously learn to solve goal-directed tasks while learning to
track the motion capture clips. This approach allows us to
combine motion capture data with additional training tasks
to induce complementary behaviors. Our results show that
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new skills can be discovered from additional tasks along
with the ones from the reference dataset, and that their dis-
covery is actually facilitated by the motion capture tracking
compared to �nding them from scratch. By training the low-
level policy jointly on both tracking tasks and out-of-sample
tasks, the resulting skill embedding space incorporates both
the reference movements and those required to solve the
complementary tasks.

2. Related Work

Across multiple disciplines involving complex control chal-
lenges, there has long been an interest in building reusable
skills, using a wide range of approaches such as options
(Sutton et al., 1999; Bacon et al., 2017; Barreto et al., 2019),
movement primitives (Schaal et al., 2005; Paraschos et al.,
2013; Mülling et al., 2013), or through scheduling libraries
of control elements (Liu & Hodgins, 2017). Approaches
involving learning and reuse of skills are broadly useful in
control and robotics settings, either for humanoid control
(Da Silva et al., 2014; Yang et al., 2018) or for manipulation,
both in simulation (Rajeswaran et al., 2018) and on robotic
platforms (Strudel et al., 2020; Wulfmeier et al., 2019).

In the context of continuous control, transferable motor
skills can be obtained in various ways. A default method
that does not make use of machine learning involves man-
ually designing separate controllers for speci�c behaviors.
While historically popular for applications, designing many
case-speci�c controllers can become too dif�cult for com-
plex problems. Moreover, while hand-designed controllers
can be sequenced in novel ways, they may provide lim-
ited �exibility. Contemporary efforts have therefore moved
towards learning based approaches. A �rst class of learning-
based approaches involves carefully creating sets of tasks
whose mastery leads to emergence of useful skills (Heess
et al., 2016; James et al., 2018; Riedmiller et al., 2018;
Hausman et al., 2018). And the expectation is that the skills
that emerge to solve any particular task may be useful for
other tasks in the set. A second class of approaches involves
unsupervised learning of skills (Gregor et al., 2016; Flo-
rensa et al., 2017; Warde-Farley et al., 2019; Eysenbach
et al., 2019), generally based on maximizing the diversity
of the visited states. While these approaches require less
engineering, they often depend upon the speci�cation of
strong priors on the dimensions that skills should affect, for
example by prioritizing the body position in the plane to
incentivize locomotion. Moreover, �nding a large number
of diverse behaviors may lead to skills that are not rele-
vant for later tasks. A �nal alternative is to use imitation
learning techniques to acquire skills from sources such as
motion capture (Merel et al., 2017; 2019b) or even loosely
structured “play” (Lynch et al., 2019).

Howsoever learned, a common architectural motif among

recent approaches is for there to be an embedding space
that re�ects the learned set of skills (Heess et al., 2016).
This can be repurposed in the context of hierarchical control
schemes where, for a new task, a high-level controller pro-
duces actions via the embedding space. Embedding vectors
can be used to trigger either a speci�c plan to reach a goal
(Lynch et al., 2019), a behavior for an entire episode (Wang
et al., 2017; Eysenbach et al., 2019), a segment in an episode
(Hausman et al., 2018) or a temporally correlated behavior
speci�ed at every time step (Merel et al., 2019b). For the
latent space to be easy to control for a high-level controller,
the distribution of latent vectors is generally regularized
to be well distributed and smooth. This regularization can
also be viewed from an information bottleneck perspective
(Goyal et al., 2019; 2020). The resulting skills are usually
frozen and the reuse is limited by the behaviors that can be
triggered via the latent space (Haarnoja et al., 2018).

Articulated humanoids are an example of a high-
dimensional body that is particularly complex to control.
Our present work is situated most closely among the various
efforts to produce robust, natural, and reusable motor be-
havior for physically simulated humanoids. In this setting,
approaches which generate behavior through tracking of
motion capture demonstrations tend to produce the most
robust and realistic movements (Liu et al., 2010; Peng et al.,
2018; Chentanez et al., 2018; Bergamin et al., 2019). More-
over, there has been a longstanding recognition in this �eld
that skills should be able to be repurposed for new tasks
(Faloutsos et al., 2001; Liu & Hodgins, 2017). We build
most directly on recent efforts involving large scale tracking
of motion capture data (Chentanez et al., 2018) as well as
efforts to build reusable skills from these data (Merel et al.,
2019b; Peng et al., 2019).

Our joint training approach is conceptually related to pre-
vious work in supervised learning on learning shared em-
bedding spaces for multiple tasks or modalities (e.g. Frome
et al., 2013; Kiros et al., 2014). Another related strand of
research are semi-supervised approaches, both in supervised
learning (e.g. Kingma et al., 2014) and in RL (Finn et al.,
2016), that leverage a large number of unlabelled examples
to improve task performance based on a small number of
labelled examples. In a similar spirit, we use a large number
of task agnostic mocap demonstrations to improve data ef�-
ciency when learning tasks of interest for which experience
is accompanied by rewards.

3. Approach

This paper aims to study the following question: How can
we best learn, represent and reuse diverse skills?

Learning reusable skills To this end, we learn low-
dimensional skill embedding spaces via imitation using
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Figure 1.Schema depict skill learning via mocap tracking with
a reference encoder producing a stochastic embeddingzt which
conditions a low-level policy; skill transfer to a new task with a
frozen low-level policy; and joint training with complementary
tasks during the skill learning phase to enrich the resulting skill
space.

reinforcement learning and use the resulting low-level poli-
cies on challenging transfer tasks. All architectures consid-
ered in this work use areferenceencoder� HL(zt jst ; sref

t ),
which, at timet encodes the desired future target states
sref

t = ( ŝt +1 ; : : : ; ŝt +5 ) from the motion capture reference
data and current statest into a stochastic embeddingzt ,
used to condition a low-level policy� LL . � LL also receives
proprioceptive information about the state of the body as
an input and produces a distribution over actionsat (see
Panel 1 in �gure 1). To learn the skill embedding spaces,
we train a policy to imitate motion capture demonstrations
via reinforcement learning. We use a reward that compares
the current pose of the humanoid to the target pose from
the motion capture reference (see section 4) and maximize
the sum of discounted rewards using V-MPO (Song et al.,
2020), an on-policy variant of Maximum a Posteriori Pol-
icy Optimization (Abdolmaleki et al., 2018). In the case
of mixture low-level policies (described below), which we
train with an on-policy variant of RHPO (Wulfmeier et al.,
2019). This is equivalent to V-MPO with an additional KL
constraint on the mixture weights. We regularize the latent
embedding with a standard Gaussian prior by adding a KL
loss term to the V-MPO losses:

� E�

"
X

t

KL (� HL(zt jst ; sref
t )kN (0; I ))

#

; (1)

where the coef�cient� controls the strength of the regular-
ization.

Transferring skills to new tasks Having trained on the
mocap tracking task, we can then transfer the low-level
policy to a new task by reusing the learned embedding
space as a new action space. To do this we freeze the
parameters of the low-level policy and learn a new high-
level policy that outputs a latent embeddingzt at each time
step (see Panel 2 in �gure 1). This high-level policy can
take as inputs task observationsot . Acting in the learned
embedding space heavily biases the resulting behavior to the
behaviors present in the motion capture data. This enables
much more coherent exploration. For example, we observe
that often a randomly initialized high-level policy already
results in naturalistic movements for an extended period of
time while randomly initialized policies in the raw action
space tend to fall immediately.

Joint training with complementary tasks On the other
hand, the bias towards behaviors from the motion capture
data can also hurt performance. Skills that are relevant for
a transfer task but not well covered by the motion capture
data may be impossible to learn. For example, getting up
from the ground is underrepresented in many motion cap-
ture datasets and a hard skill to learn but clearly desirable
in transfer tasks. To tackle this problem we propose a joint
training approach: during the skill learning phase we inter-
leave the mocap tracking task with other, complementary,
out-of-sample tasks that ensure that speci�c skills are well
represented in the embedding space (see Panel 3 in �gure 1).
Since complementary tasks do not share the same observa-
tion as the mocap tracking task, and optimize for different
rewards, we train a separate high-level policy acting in the
learned embedding space but use the same low-level pol-
icy. This approach forces the embedding space to represent
behaviors induced by the complementary tasks.

Low-Level Architectures It is a priori unclear which net-
work architectures might permit effective transfer of skills.
The simplest choice is a monolithic feedforward architecture
but there are many possible hierarchical architectures that in-
troduce additional structure by organizing the low-level pol-
icy into primitives. Two recent, representative examples are
mixture distributions (Wulfmeier et al., 2019) and product
distributions (Peng et al., 2019). The promise of such mod-
ular architectures is compositionality: different primitives
could specialize to different skills which can then be �ex-
ibly composed by varying the primitive weights. Whether
this hope is realized remains unclear and is likely highly
task-dependent. Modularity is another possible bene�t of
mixture or product architectures. Both potentially allow the
addition of new primitives and importantly allow primitives
to specialize which may help represent wide ranges of skills.
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Another plausible alternative is a recurrent low-level pol-
icy which can model temporal correlation in behavior and
allows for temporally extended `default' behaviors.

Guided by these considerations, we compare four represen-
tative network architectures for the low-level policy in our
experiments: a fully-connected neural network (MLP), a
recurrent neural network (LSTM), a mixture of Gaussians
policy and a product of Gaussians policy.

The mixture distribution withC components is given by:

� LL (at jst ; zt ) =
CX

i =1

wi (st ; zt )� (at j� i (st ); � i (st )) ; (2)

where� (�j �; � ) is the density of a normal distribution with
diagonal covariance and with mean� and standard deviation
� . Similarly the (unnormalized) product distribution is given
by:

� LL (at jst ; zt ) /
CY

i =1

� (at j� i (st ); � i (st ))w i (st ;z t ) : (3)

For Gaussian factors, the resulting product distribution is
Gaussian with mean and variance given analytically as func-
tion of wi ; � i ; � i . Following Wulfmeier et al. (2019); Peng
et al. (2019), we do not provide the latent embeddingzt

to the primitives to encourage specialization. In our exper-
iments both the mixture and the product policy networks
have a shared torso followed by per-component one hidden
layer MLPs. In order to keep the capacity of the low-level
architectures similar, we choose networks with roughly sim-
ilar numbers of parameters. We found that adding a KL
regularizer made training product distributions much more
stable.

4. Tasks

In this work, we perform our architecture comparisons and
demonstrate our joint training approach in the context of
humanoid continuous motor control tasks. Because motor
control of high-dimensional, physically simulated bodies is
dif�cult, it can be ef�cient to reuse skills; however, reuse
is only helpful if previously acquired skills are relevant for
subsequent challenges. To that end, given a distribution of
reference motions, we consider tasks that we expect can
be solved by reusing skills found in the motion capture
dataset as well as tasks which cannot. All tasks involve
simulated physics using MuJoCo (Todorov et al., 2012). We
use a humanoid body adapted from the “CMU humanoid”
available at dmcontrol/locomotion (Merel et al., 2019a).
We adjusted limb lengths, masses, and dynamic properties
of the body to make it more consistent with an average
human. See �gure 2 for an image of the body in the context
of our tracking task.

Tracking task The primary task we employ to learn skills
in this work is the multi-clip tracking task. Our task is
available in the dmcontrol/locomotion package. The task
is similar to the ones employed in various other efforts to
produce policies that track motion capture data (Peng et al.,
2018; Merel et al., 2019a; Chentanez et al., 2018; Peng et al.,
2019). The task can be described in terms of episode initial-
izations, the instructions provided by the environment to the
agent, the reward function, and termination criteria. At the
start of each episode we randomly select a starting frame
from all frames in the underlying set of clips (excluding the
last 10 frames from each clip). At the beginning of each
episode the humanoid is initialized to the target pose in the
selected frame. We provide target reference poses to the
policy as an instruction of where to go; speci�cally, we pro-
vide a short snippet of future target states,f st +1 ; :::st +5 g
(similarly to Chentanez et al., 2018; Merel et al., 2019b).
At every timestep, the reward corresponds to a similarity
function that compares the current pose to the target pose.
Our reward function contains �ve different terms:

r =
1
2

r trunc +
1
2

(0:1r com + r vel + 0 :15r app+ 0 :65r quat)

The �rst reward termr trunc penalizes large deviations from
the reference in joint angles and the euclidean position of a
set of 13 different body parts:

" : = kbpos � bref
posk1 + kqpos � qref

posk1

r trunc = 1 �
"
�

wherebpos andbref
pos correspond to the body positions of the

simulated character and the mocap reference andqpos and
qref

pos correspond to the joint angles. This reward terms is
linked to the termination condition of our tracking task.
Given a termination threshold� , we terminate an episode if
" > � . Note that this ensures thatr trunc 2 [0; 1]. We found
that including this termination condition and the coupled
reward speeds up training on larger clip sets but does not by
itself lead to visually appealing behavior. The second reward
term is similar to the objective proposed in Peng et al. (2018)
with terms penalizing deviations in terms of the center of
mass, the joint angle velocities, the end effector positions
and the joint orientations but uses slightly different weights.
Please refer to the supplementary material for further details.

Locomotion tasks To evaluate the reusability of the
learned low-level policies we use three challenging loco-
motion tasks from the DM Control locomotion task library
(Merel et al., 2019a; Tassa et al., 2020). Locomotion tasks
form a natural, well-motivated test bed for humanoid skills
that is within reach of current methods. The �rst task we
consider is a sparsego-to-targettask, which involves loco-
moting to an instructed target position in an open area, and




