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5. Proof of Theorem 1
As briefly mentioned in the body of the paper, our proof will
proceed by doing a large-deviation analysis of the estimation
error, and then integrating it to obtain an upper bound on
the expectation. We cannot proceed directly by attempting
to take expectation of sin2(Ŵ , w) because the WLSM ends
up dividing two random variables (specifically, Eq. (13) has
random variables in both the numerator and denominator
under the arg min).

To preview what is to come, our algorithm suffers from three
sources of error:

• The difference between pij , the true probability that
i wins a coin toss, and Fij due to randomness of the
comparisons.

• The error in taking Taylor expansions.

• The error introduced by replacing vij , which is pro-
portional to the asymptotic variance of logRij , by the
empirical estimate V̂ij .

Our analysis will need to bound the effect of each of these
factors.

5.1. Notation

We begin by reiterating all the notation we have introduced:

wi = true weight of item i

G = the comparison graph, with vertex set {1, . . . , n}
E = edge set of the comparison graph G
−→
E = set of directed edges obtained by orienting every

edge in E arbitrarily
k = number of comparisons across each edge of G

Fij = proportion of comparisons item i wins against j

pij =
wi

wi + wj
, true probability that

item i wins a comparison against item j

Rij =
Fij
Fji

ρij =
wi
wj

vij =
wi
wj

+
wj
wi

+ 2

V̂ij =
Fij
Fji

+
Fji
Fij

+ 2

We follow the convention that capitalized entries are either
random variables or matrices, while lower-case letters cor-
respond to scalars or vectors that are not random. Next, we

introduce some new notation:

V̂ = diag(V̂ij) ∈ R|
−→
E |×|

−→
E |

V = diag(vij) ∈ R|
−→
E |×|

−→
E |

M = Edge-vertex incidence matrix of the graph

({1, . . . , n},
−→
E ), with thus M ∈ Rn×|

−→
E |

LV = MV −1MT ∈ Rn×n

LV̂ = MV̂ −1MT ∈ Rn×n

X l
ij = Bernoulli random variable describing the

outcome of l’th comparison across edge (i, j)

1 = all-ones vector
ei = i’th basis vector

We take the opportunity to remind the reader of our nota-
tional conventions. We will omit the subscripts when we
stack the above quantities into vectors. For example, the
notation R represents the vector in R|

−→
E | obtained by stack-

ing up the quantities Rij , (i, j) ∈
−→
E . Furthermore, the

ordinary graph Laplacian L can be written as L = MMT ,
and he quantities LV and LV̂ correspond to weighted graph
Laplacians, where the edge (i, j) ∈ E is weighted by v−1

ij

or V̂ −1
ij , respectively.

Finally, when writing A = O(B) for two expressions
A,B, we mean that A is bounded linearly by B for k
large enough (with respect to quantities defining the prob-
lem). More specifically, there exist an absolute constant
K and a function q(n, b,G,w) such that A ≤ K.B for all
k ≥ q(n, b,G,w).

We begin by defining an appropriate rescalings of the true
weights w to which we can compare Ŵ defined in Eq. (18).
The natural approach is to define wr to be a rescaling of w
such that

n∏
i=1

(wri )
w2
i = 1, (20)

and likewise
yi = wi logwri . (21)

Observing that for each edge (i, j) ∈ E,

logwri − logwrj = log ρij .

we can therefore repeat all the same steps that led to the
derivation of Eq. (17) to obtain that

y = (diag(w)−1LV̂ diag(w)−1)†diag(w)−1MV̂ −1 log ρ.

Putting this together with Eq. (15), we obtain

Ŷ − y =(diag(w)−1LV̂ diag(w)−1)†diag(w)−1

MV̂ −1(logR− log ρ). (22)
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This equation will be the basis of our analysis for the rest of
the paper.

Since the sine is unaffected by scalings of the underlying
vectors, we note that

sin2(Ŵ , w) = sin2(Ŵ r, wr).

Hence we will analyze sin2(Ŵ r, wr) to characterize the
WLSM method, even though we do not know either of
these vectors, as it turns out that our argument are easier to
develop after these rather peculiar scalings.

We conclude this section with an observation which we will
use repeatedly in the sequel. Eq. (20) implies that there is
at least one i with wi ≥ 1 and at least one i with wi ≤ 1.
Appealing to Eq. (1), we can conclude that maxi w

r
i ≤ b

and mini w
r
i ≥ b−1.

5.2. Decomposing the sources of error

We will proceed by obtaining a rate at which the right-hand
side of Eq. (22) goes to zero. Our first step is to bound the
difference logR− log ρ. We cite a lemma from the previous
literature which derives bound on this quantity by applying
Chernoff’s inequality.

Proposition 3 (Eq. (13) from (Hendrickx et al. , 2019)).
Let us write

logR− log ρ = V (F − p) + ∆.

Then if δ ≤ e−1 and k = Ω (b log(n/δ)), we have that with
probability 1− δ, the vector ∆ ∈ R|E| satisfies

||∆||∞ ≤ O
(
b log(n/δ)

k

)
.

The interpretation of this lemma is as follows. The first term,
V (F − p), comes from the linear Taylor expansion of logR
about its limit of log ρ, while the second term, ∆, comes
from bounding the rest of the terms in the Taylor expansion.
The above lemma shows that ||∆||∞ tends to be on the order
of O(1/k). As expected, this is a faster decay as compared
to the first term: indeed, since F − p is the average of k
independent random variables, one for each comparison, by
central-limit considerations we expect F − p to be on the
order of O(1/

√
k).

Furthermore we remark that logR could potentially have
an infinite entry (this can happen if one node wins every
comparison against a neighbor). The above lemma implies
that the probability of that is at most δ under the lower
bound k ≥ Ω(b log(n/δ)).

By taking δ = n/ek
3/4

in this proposition, which satisfies
δ ≤ e−1 and k ≥ Ω(b log(n/δ)) for k large enough, we
obtain the following result.

Corollary 4. Let f(w, b,G) be any function of the weights
w, the constant b, and the graph G (and thus of n). Then

P (||∆||∞ ≥ f(w, b,G)) = O
(
ne−k

3/4
)
.

Our next lemma follows up on these observations by decom-
posing the error from Eq. (22) into three parts.

Lemma 5. We have

Ŷ − y = A+B + C,

where

A = (diag(w)−1LV diag(w)−1)†diag(w)−1M(F − p)
B = (diag(w)−1LV diag(w)−1)†diag(w)−1MV −1∆

C = (diag(w)−1LV̂ diag(w)−1)†diag(w)−1MV̂ −1

−(diag(w)−1LV diag(w)−1)†diag(w)−1MV −1)

(logR− log ρ),

and the vector ∆ is defined through Proposition 3.

Before we proceed to the proof, which is quite short, we
discuss where each of the three terms comes from. Observe
that the first term, A, is obtained by replacing all instances
of V̂ −1 with V −1 in Eq. (22) and further replacing logR−
log ρ by its first order Taylor expansion V (F−p). Naturally,
this replacement is going to create errors, and these are
handled by adding the terms B and C. The term B corrects
the error from replacing logR− log ρ by V (F − p), while
the term C corrects the error from replacing V̂ −1 by V −1.

We next give the proof of this lemma.

Proof of Lemma 5. Indeed, beginning from Eq. (22), we
can express Ŷ − y as

(diag(w)−1LV̂ diag(w)−1)†diag(w)−1MV̂ −1(logR− log ρ)

= (diag(w)−1LV diag(w)−1)†diag(w)−1MV −1(logR− log ρ)

+ ((diag(w)−1LV̂ diag(w)−1)†diag(w)−1MV̂ −1−

(diag(w)−1LV diag(w)−1)†diag(w)−1MV −1)(logR− log ρ)

= (diag(w)−1LV diag(w)−1)†diag(w)−1MV −1V (F − p)

+ (diag(w)−1LV diag(w)−1)†diag(w)−1MV −1∆

+ ((diag(w)−1LV̂ diag(w)−1)†diag(w)−1MV̂ −1−

(diag(w)−1LV diag(w)−1)†diag(w)−1MV −1)(logR− log ρ)

= A+B + C.

In the next three sections we bound each term in Lemma
5 separately. We will see that B and C decay with k at a
faster pace thanA, which will thus determine the asymptotic
dependence of ŷ − Y with k. Our first step is to bound the
norm of A.
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5.3. Part A of the error

Lemma 6. With probability 1− δ,

||A||22 ≤ O
(
b

k

)
Tr
[
(diag(w)−1LV diag(w)−1)†

](
1 + log

1

δ

)
(23)

Moreover, for any function f(w, b,G),

P (||A||22 ≥ f(w, b,G)) = O
(
e−k/g(w,b,G)

)
, (24)

for some function g(·, ·, ·) of w, b,G that can be determined
from f .

Proof. By definition,

A = (diag(w)−1LV diag(w)−1)†diag(w)−1M(F − p)
= (diag(w)−1LV diag(w)−1)†diag(w)−1MV −1/2

V 1/2(F − p)

Now let X l
ij be the Bernoulli random variable denoting the

outcome of l’th toss across edge (i, j) (i.e., 1 if i wins, 0
otherwise). Observe that

var(X l
ij − pij) = pij(1− pij) =

wiwj
(wi + wj)2

= v−1
ij ,

and therefore

var
(√
vij(X

l
ij − pij)

)
= 1.

After this calculation, remembering that V = diag(vij), we
can write

A =
[
(diag(w)

−1
LV diag(w)

−1
)
†
diag(w)

−1
MV

−1/2
] [
V

1/2
(F − p)

]
,

where the term in the right brackets is a random vector with
zero mean and variance 1/k. We can rewrite this as

A =

[
1
√
k

(diag(w)
−1
LV diag(w)

−1
)
†
diag(w)

−1
MV

−1/2

]
(25)[√

kV
1/2

(F − p)
]
,

and now the term in brackets has zero mean and unit vari-
ance. Let us introduce the notation

P = (diag(w)−1LV diag(w)−1)†diag(w)−1MV −1/2.
(26)

We have that
√
kV 1/2(F − p) is a subgaussian random

variable with subgaussian parameter of O(
√
b) (this follows

from observing that the outcome of l’th toss, X l
ij − p, has

support contained in [−1, 1], as well as rules for adding and
scaling subgaussian random variables). Via Theorem 2.1 of
(Hsu et al. , 2012) we have that4

P

(
||A||22 ≥ b

(
Tr(PPT )

k
(1 + 4t)

))
≤ e−t.

4Strictly speaking, the reference (Hsu et al. , 2012) only bounds
P (||A||22 ≥ u) for A = PZ when P is square. In our case, P is
rectangular. However, we observe that any concentration bound

Choosing t = log(1/δ) and using Tr(PTP ) =
Tr(PPT ) = Tr

[
(diag(w)−1LV diag(w)−1)†

]
, yields Eq.

(23).

To prove Eq. (24), observe that, as a consequence of Eq.
(23), for large enough k we must have that log(1/δ) has
to scale linearly with k/g(w, b,G) in order for ||A||22 >
f(w, b,G), where we spare ourselves the trouble of writing
out the function g(w, b,G) in terms of f(w, b,G). This
proves Eq. (23).

5.4. Part B of the error

We next turn our attention to the second term in Lemma
5, namely the vector B. While Lemma 6 showed that the
entries Ai of A effectively decay at an O(1/

√
k) rate, our

next lemma shows that Bi decays at the faster O(1/k) rate.
The lemma requires a few definitions from electric circuit
theory, which we next provide.

Given a weighted undirected graph, we can talk about the
effective resistance between any two nodes in the graph by
treating every edge (i, j) as if it has a resistor of resistance
equal to the weight of that edge. We will define the effective
resistance between nodes i and j by Reff(i, j). We then
define

Rmax(i) = max
j=1,...,n

Reff(i, j), (27)

to be the average effective resistance between node i and
the rest of the nodes in the graph. For a formal analysis of
the electric theory of graphs, we refer the reader to Chapter
4 of (Vishnoi, 2013).

Lemma 7. Let q ∈ R
−→
E be a positive vector. Then for every

i = 1, . . . , n,∣∣∣∣diag(q)−1MTdiag(w)−1(diag(w)−1Lqdiag(w)−1)†ei
∣∣∣∣

1

≤ wi
√
SqRmax(i),

where
Sq =

∑
(i,j)∈

−→
E

q−1
ij ,

Lq is the Laplacian of the weighted graph with weights q−1
ij ,

and Rmax(i) is defined as in Eq. (27) for a graph with the
weights q.

for A in terms of tr(PPT ) proved for the case when P is square
immediately implies the same bound when P is rectangular. This
follows because

||A||22 = ATA = ZTPTPZ = ||QZ||22,

where Q is the psd square root of PTP . Thus we can apply
the results of (Hsu et al. , 2012) to bound P (||A||22 ≥ u) =
P (||QZ||22 ≥ u); and since tr(QQT ) = tr(PPT ), the result will
be exactly the same as if we simply ignored the assumption of
(Hsu et al. , 2012) that P is square.
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Proof. The first part of the proof will consist in giving an
electrical interpretation to the vector whose norm we want
to bound. This will then allow us to apply circuit theory
result to establish the Lemma.

Consider turning the comparison graph into a circuit, with
edge (i, j) having resistance qij . In that case, for every
vector y whose entries sum to 0, any solution x of

Lqx = y

can be interpreted as a vector of electric potential consistent
with currents y going in and out of nodes in the network.
This is in particular true for

x∗ = diag(w)−1(diag(w)−1Lqdiag(w)−1)†diag(w)−1y.
(28)

Coming back to the problem of the Lemma, let us adopt the
notation

f = diag(q)−1MTdiag(w)−1(diag(w)−1Lqdiag(w)−1)†ei.

Since w is in the kernel of diag(w)−1Lqdiag(w)−1, which
is symmetric, we have (diag(w)−1Lqdiag(w)−1)†w = 0.
Together with the observation that diag(w)−1wiei = ei
and diag(w)−1w2 = w, where w2 means the element-wise
square of the entries of w, this allows re-expressing f as

f =diag(q)−1MTdiag(w)−1(diag(w)−1Lqdiag(w)−1)†

diag(w)−1

(
wiei −

wi
||w||22

w2

)
,

Observe now that the entries of
(
wiei − wi

||w||22
w2
)

sum to
zero. Hence we can apply the interpretation of (28), which
states that

diag(w)
−1

(diag(w)
−1
Lqdiag(w)

−1
)
†
diag(w)

−1

(
wiei −

wi

||w||22
w

2

)

is the vector of electric potentials when we put wi units of
current into node i and take out wi(w2

j/||w||22) out of node
j. Moreover, electrical circuit results show f is then the
vector of edge currents corresponding to this setup.

We may further view f as the superposition of n current
flows, with the j’th flow f j obtained by puttingw2

jwi/||w||22
units of current at i and taking the same amount out of j.
We will write this as

f = f1 + · · ·+ fn.

The advantage of this representation is that we may apply
Thompson’s principle (Theorem 4.7 of (Vishnoi, 2013)) to
each flow f j . Slightly rephrased, that theorem states that
the effective resistance between nodes i and j satisfies

w2
iw

4
j

||w||42
Reff(i, j) =

∑
e∈
−→
E

qe(f
j)2
e, (29)

where for e = (a, b) we use qe and qab interchangeably. We
may rewrite this as

||f j . ∗ √q||2 = wiw
2
j

√
Reff(i, j)

||w||22
,

where we use “.∗” to denote the elementwise product of two
vectors; note that both f j and v can be viewed as vectors in
R|
−→
E |. To conclude, it follows from Cauchy-Schwarz that

||f ||1 ≤
n∑
j=1

||f j ||1

=

n∑
j=1

||f j . ∗ √qj . ∗
√
qj
−1||1

≤
n∑
j=1

||f j . ∗ √qj ||2
√
S,

and applying the bound (29) leads then to

||f ||1 ≤
n∑
j=1

wiw
2
j

√
Reff(i, j)

||w||22

√
S

≤ wi
√
SRmax(i).

With the above definitions in place, we can state our decay
bound on the elements Bi of the vector B.

Lemma 8. If δ ≤ e−1 and k = Ω (b log(n/δ)), we have
that with probability 1− δ,

Bi ≤ O

(
wi
b log(n/δ)

√
SRavg(i)

k
,

)
(30)

for all i = 1, . . . , n, where

S =
∑

(i,j)∈
−→
E

v−1
ij ,

and Rmax(i) is defined as in Eq. (27) for the graph where
the edge (i, j) has resistance vij . Moreover, for any function
f(w, b,G) of the graph G and the weights w, we have that

P (Bi ≥ f(w, b,G)) ≤ O
(
ne−k

3/4
)
. (31)

Proof. By definition we have that

Bi = [(diag(w)
−1
LV diag(w)

−1
)
†
diag(w)

−1
MV

−1
∆]i

= e
T
i (diag(w)

−1
LV diag(w)

−1
)
†
diag(w)

−1
MV

−1
∆

≤ ||∆||∞
∣∣∣∣∣∣V −1

M
T

diag(w)
−1

(diag(w)
−1
LV diag(w)

−1
)
†
ei

∣∣∣∣∣∣
1

≤ O

(
b log(n/δ)

k

) ∣∣∣∣∣∣V −1
M
T

diag(w)
−1

(diag(w)
−1

LV diag(w)
−1

)
†
ei

∣∣∣∣∣∣
1
, (32)
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where the third inequality used Holder’s inequality and the
last step used Proposition 3. Now using Lemma 7, the proof
of Eq. (30) is concluded.

As for Eq. (31), it follows immediately from Eq. (32) by
taking δ = n/ek

3/4

; for large enough k, we will have both
δ ≤ e−1 and k ≥ Ω(b log(n/δ)) required for that equation
to hold.

5.5. Part C of the error

We next turn to the analysis of the final term C in Lemma 5.
Unfortunately, this term is the most cumbersome, and will
require quite a number of calculations. Our starting point
will be to argue that since Ci is by definition

e
T
i ((diag(w)

−1
LV̂ diag(w)

−1
)
†
diag(w)

−1
MV̂

−1−

(diag(w)
−1
LV diag(w)

−1
)
†
diag(w)

−1
MV

−1
)(logR− log ρ)

It can be bounded as

Ci ≤ ||eTi ((diag(w)
−1
LV̂ diag(w)

−1
)
†
diag(w)

−1
MV̂

−1 −

(diag(w)
−1
LV diag(w)

−1
)
†
diag(w)

−1
MV

−1
)||1

|| logR− log ρ||∞ (33)

We now proceed to bound both of the terms on the right-
hand side. We begin with the second term, as it’s analysis is
the easiest.

Lemma 9. If δ ≤ e−1 and k ≥ Ω (b log(n/δ)), then with
probability 1− 2δ,

||logR− log ρ||∞ ≤ O

(√
b log(n/δ)

k

)
+O

(
b log(n/δ)

k

)
,

(34)
Moreover, if f(w, b,G) is any function of w, b, and G, then

P (|| logR− log ρ||∞ ≥ f(w, b,G)) ≤ O
(
ne−k

3/4
)
.

(35)

Proof. From Proposition 3, we have that

logR− log ρ = V (F − p) + ∆, (36)

with

||∆||∞ ≤ O
(
b log(n/δ)

k

)
(37)

with probability 1− δ. This leads to the second term in the
statement of the lemma. For the first term, we will need to
bound ||V (F − p)||∞.

To that end, we observe that Lemma 1 in (Hendrickx et al. ,
2019) proved that if δ ≤ e−1 and k ≥ Ω (b log(n/δ)), then

P

(
||F − p||∞ ≥

√
O (log(n/δ))

kb

)
≤ δ. (38)

Thus with probability 1− δ,

||V (F − p)||∞ ≤ O

(√
b log(n/δ)

k

)
. (39)

Putting together the two probability 1 − δ bounds of Eq.
(37) and Eq. (39) via the union bound proves Eq. (34). As
for Eq. (35), it follows from Eq. (36) and Eq. (39), by
taking δ = n/ek

3/4

which, for large enough k, satisfies the
conditions δ ≤ e−1 and k = Ω(b log(n/δ)); and Corollary
4.

Having established this lemma, we have a bound on the
second term in Eq. (33); we now turn to analyzing the first
term the same equation. Let us introduce the following
notation for the first term,

Γi =||eTi ((diag(w)−1LV̂ diag(w)−1)†diag(w)−1MV̂ −1−
(diag(w)−1LV diag(w)−1)†diag(w)−1MV −1)||1,

(40)

which will make the ensuing discussion more compact. We
need to upper bound Γi, which is to say we need to upper
bound the change that comes from replacing V by V̂ ; what
makes things difficult, however, is that the expression in-
volves the pseudoinverses LV and L†

V̂
. We will take the

“brute force” approach of writing out the derivative of the
expression inside the one-norm in Eq. (40) and integrating
it over the path between V and V̂ .

To that end, let us define the function

Hi(u) = eTi Q
†
udiag(w)−1Mdiag(u),

where

Qu = diag(w)−1Mdiag(u)MTdiag(w)−1,

a weighted graph Laplacian when u ∈ R|
−→
E | is the vector

of weights, scaled left and right by diag(w)−1. As should
be clear from matching up dimensions in this equation, Hi

maps R|
−→
E | into R|

−→
E |. We will slightly abuse notation by

writing expressions like Hi(v
−1
ab ), which should be under-

stood to mean Hi applied to the vector in R|
−→
E | obtained

by stacking up the quantities v−1
ab as (a, b) ranges over the

edges in
−→
E .

By the definition of the weighted Laplacian, the expression
Γ can be written as

Γi = ||Hi(V̂
−1
ab )−Hi(v

−1
ab )||1.

To make the connection to the underlying coin tosses more
explicit, we can write V̂ −1

ab as a function of the fractions
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Fab, and likewise v−1
ab can be written as a function of the

true probabilities pab. To spell this out observe that

v−1
ab =

1

wa/wb + wb/wa + 2
=

wawb
(wa + wb)2

= pab(1− pab),

and likewise
V̂ −1
ab = Fab(1− Fab).

Thus defining

U(x1, . . . , x|−→E |) =
(
x1(1− x1), . . . , x|−→E |(1− x|−→E |)

)
, (41)

we can now write

Γi = ||Hi(U(Fab))−Hi(U(pab))||1. (42)

We thus proceed by upper bounding the gradient of the
function Hi(U(xab)) by using the chain rule. Our next
lemma takes the first step in this direction by giving an
explicit expression for ∂Hi/∂uab for some fixed indices
a, b ∈ {1, . . . , n}.

Lemma 10. Let a, b be elements of {1, . . . , n}. If the vector
u ∈ R|

−→
E | is elementwise positive, then

dHi
duab

=eTi

[
Q†udiag(w)−1(ea − eb)

]
[
−(ea − eb)Tdiag(w)−1Q†udiag(w)−1Mdiag(u) + eTab

]
Here eab denotes a column vector in R|

−→
E | with a one in

the (a, b) entry and zeros elsewhere. Note that the first
expression in brackets is a column vector in Rn while the
second expression in brackets is a row vector in R|

−→
E |.

Proof. We first compute

dQu
duab

= diag(w)−1Meabe
T
abM

Tdiag(w)−1 (43)

= diag(w)−1(ea − eb)(ea − eb)Tdiag(w)−1.

We next use this to find the derivative of Q†u. We use The-
orem 4.3 from (Golub & Pereyra, 1973), which provides
an expression for ∂Qu/∂uab in a neighborhood of a point
where the rank of Qu is constant. That formula applies in
our case because as long as u > 0 and G is a connected
graph, we will have that the rank of G equals n − 1 (see
Section 2.5 of (Brualdi & Ryser, 1991)).

The expression from Theorem 4.3 of (Golub & Pereyra,
1973) is

dA†

dx
= −A† dA

dx
A† +A†A†T

dAT

dx
(I −AA†)

+(I −A†A)
dAT

dx
A†TA† (44)

When we plug in A = Qu, the expression simplifies consid-
erably. Observe indeed that

(I −Q†uQu)
dQTu
duab

=(I −Q†uQu)diag(w)−1(ea − eb)

(ea − eb)Tdiag(w)−1

=
[
(I −Q†uQu)diag(w)−1(ea − eb)

]
(ea − eb)Tdiag(w)−1.

Now (I−Q†uQu) is the orthogonal projector on the kernel of
Qu, which is span{w}, and the vector diag(w)−1(ea − eb)
is orthogonal to w. Hence the expression above, and thus
the second term in Eq. (44), is zero. A symmetric argument
shows the third term is zero as well. Thus

dQ†u
duab

= −Q†u
dQu
duab

Q†u

= −Q†udiag(w)−1(ea − eb)(ea − eb)Tdiag(w)−1Q†u.

We can now use this to compute the derivative of H using
the chain rule. Indeed, we can write dH

duab
as

eTi
d
(
diag(w)−1Mdiag(u)MT diag(w)−1

)†
duab

diag(w)−1Mdiag(u)

+eTi

(
diag(w)−1Mdiag(u)MT diag(w)−1

)†
diag(w)−1M

ddiag(u)
duab

= −eTi Q
†
udiag(w)−1(ea − eb)(ea − eb)T diag(w)−1Q†u

diag(w)−1Mdiag(u)

+eTi Q
†
udiag(w)−1(ea − eb)eTab.

After some rearranging, this gives the statement of the
lemma.

With this explicit expression for the gradient of H in place,
we can proceed to upper bound Γi. However, we first need
the following lemma, which will be used in one of the
intermediate steps of the bound.

Lemma 11. If u is elementwise positive, then for any
i, a, b ∈ {1, . . . , n},

|eTi Q†udiag(w)−1(ea − eb)| ≤ wiReff(a, b) (45)

Proof. We prove this by appealing to the electrical inter-
pretation just as we did in the proof of Lemma 8. Using
the observations made in the proof of that lemma, we inter-
pret eTi diag(w)−1Q†udiag(w)−1(ea − eb) is the potential
at node i when a single unit of current is injected at a and
taken out at b in the circuit where the resistance of the edge
(i, j) is u−1

ij . Call this potential vi. The quantity we are
seeking the bound is thus just wivi.

Note, however, that the largest potential is at i = a and the
smallest potential is at i = b. Thus we can instead upper
bound max(|va|, |vb|). Moreover, va is positive and vb is
negative because anything in the range of Q†u is orthogonal
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to the positive vector w. Moreover, since by Ohm’s law
va − vb = Reff(a, b) · 1, we have that

max(|va|, |vb|) ≤ va − vb = Reff(a, b).

We now put all the pieces together and produce a high
probability bound on the quantity Ci.

Lemma 12. When δ ≤ e−1 and k = Ω (b log(n/b)), then
we have that with probability 1− 2δ, for all i = 1, . . . , n,

Ci ≤ wibn(n−1) log
(n
δ

)(
O

(
1

k

)
+O

(√
b log(n/δ)

k1.5

))
.

Moreover, if f(w, b,G) is any function of w, b, and G, then

P (Ci ≥ f(w, b,G)) ≤ O
(
ne−k

3/4
)
. (46)

Proof. Indeed, from Eq. (33) and Eq. (40), we have

Ci ≤ Γi|| logR− log ρ||∞.

Using the expression form Eq. (42), we can upper bound
this as

Ci ≤ ||Hi(U(Fij))−Hi(U(pij))||1|| logR− log ρ||∞.

As a consequence of Theorem 4.3 of (Golub & Pereyra,
1973), Hi(U(uij)) is differentiable over the set of u > 0;
we may therefore invoke the mean value theorem to obtain
the bound

Ci ≤ ||∇Hi(U(z))(F − p)||1|| logR− log ρ||∞,

where z is some point lying on the line interval connecting
the vectorsF and p. Using ||.||1 ≤ n||.||∞ and the definition
of matrix norm, we can in turn upper bound this as

Ci ≤n||∇Hi(U(z))||∞||F − p||∞|| logR− log ρ||∞

=n

(
max

j=1,...,n
||eTj ∇Hi(U(z))||1

)
||F − p||∞|| logR− log ρ||∞ (47)

where we used the standard fact that the infinity norm of a
matrix is the largest one-norm of its rows.

The second and third quantities above have been bounded in
the previous lemmas; only the quantities ||eTj ∇Hi(U(z))||1
needs to be analyzed. However, observe that

∂Hi(U(z))

∂zij
=

∂Hi(u)

∂uij

∂uij
∂zij

=
∂Hi(u)

∂uij
(1− 2zij),

where the last line used Eq. (41). Thus if z ∈ [0, 1], we
have that ∣∣∣∣∂Hi(U(z))

∂zij

∣∣∣∣ ≤ ∣∣∣∣∂Hi(u)

∂uij

∣∣∣∣ ,
which in turn implies that

||eTj ∇Hi(U(z))||1 ≤ ||eTj ∇Hi(u)||1. (48)

Thus what remains to be done is to obtain a bound on the
quantity ||eTj ∇Hi(u)||1. This can be done using the ex-
plicit expression for the partial derivatives of Hi derived in
Lemma 10. Indeed, observe that the rows of ∇Hi(u) are
the transposed vectors ∂Hi

∂uab
from Lemma 10. Thus using

that lemma we have

∣∣∣∣∣∣∣∣ max
j=1,...,n

e
T
j ∇H(u)

∣∣∣∣∣∣∣∣
1

≤
∑

(a,b)∈E

∣∣∣∣∣∣∣∣ ∂Hi∂uab

∣∣∣∣∣∣∣∣
∞

≤
∑

(a,b)∈E

∣∣∣∣∣∣eTi Q†udiag(w)
−1

(ea − eb)
∣∣∣∣∣∣
∞∣∣∣∣∣∣−(ea − eb)T diag(w)

−1
Q
†
udiag(w)

−1
Mdiag(u) + e

T
ab

∣∣∣∣∣∣
∞

≤ 2
∑

(a,b)∈E

wiReff (a, b), (49)

where the last line used Eq. (45) as well as the observa-
tion that (ea − eb)Tdiag(w)−1Q†udiag(w)−1Mdiag(u) ∈
[−1, 1]|E|. This last observation follows because each entry
of this vector is the current in the graph where the resistance
of (i, j) ∈ E is u−1

ij and a single unit of current is injected
at a and taken out at b.

Our next step is to use Foster’s identity (Foster, 1949; Tetali,
1994) ∑

(a,b)∈E

Reff(a, b)uab = n− 1,

to conclude from Eq. (49) that∣∣∣∣∣∣∣∣ max
j=1,...,n

eTj ∇H(u)

∣∣∣∣∣∣∣∣
1

≤ wi
2(n− 1)

min(a,b)∈E uab
.

Plugging this into Eq. (47) we obtain

Ci ≤ wi
2n(n− 1)

min(a,b)∈E uab
||F − p||∞|| logR− log ρ||∞

(50)
Finally, we observe that, as a consequence of Eq. (38)
and some algebra, when k ≥ Ω(b log(n/δ)), we have that
|Fij − pij | < 1/(4b) with probability 1 − δ. We can use
this to bound the quantity min(a,b)∈E uab appearing above.
Indeed, u = U(z) where z lies on the path between Fij and
pij , and thus zij ≥ 1/(4b) and 1 − zij ≥ 1/(4b) for all
(i, j) ∈ E. Then [U(z)]ij = zij(1− zij) ≥ 1

8b .

Using this bound in conjunction with Eq. (39) to bound
||F − p||∞ and Eq. (34) to bound || logR − log ρ||∞ we
obtain the first statement of the lemma.
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We now turn to proving Eq. (46). Inspecting Eq. (50),
we first argue that 1/min(a,b)∈E uab is O(b) with proba-
bility O(ne−k

3/4

). Indeed, as discussed just above, each
zij lies on the path between Fij and pij ; this means
that that minij zij < 1/(2(b + 1)) by with probability
O(ne−k

3/4

) by taking δ = n/ek
3/4

in Lemma 1 of (Hen-
drickx et al. , 2019); which implies max(i,j) 1/uij =
max(i,j)(1/zij)(1/(1− zij)) = O(b) with the same proba-
bility.

Thus returning to Eq. (50) and taking into account that
||F −p||∞ = O(1) by definition, we see that in order for Ci
to exceed some function f(w, b,G) (and thus of the number
n of nodes in G), it must be that || logR− log ρ||∞ exceeds
some function of the w and the graph G (and of n); but that
has been shown to happen with probability O(ne−k

3/4

) in
Eq. (35). In summary, the only way for Ci to exceed a fixed
function of w, b,G is one of two events to happen, both of
which have probability O(ne−k

3/4

).

5.6. Recombining the sources of errors

We now put together the bounds we have obtained on
Ai, Bi, Ci into several general bounds on the error. Our
first step will analyze the worst-case possible scalings. Here
we have to consider even the scenario when one node wins
all the comparisons to a neighbor, resulting in some Fij
which is as small as O(1/k) due to the lines 5 and 7 of our
WLSM algorithm.

Lemma 13. With probability one, we have that for all i =
1, . . . , n,

|Bi| = Ow,b,G(log k)

|Ci| = Ow,b,G(k log k)

|Ŷi| = Ow,b,G(
√
k log k)

|Ŵ r
i | ≤ eOw,b,G(

√
k log k).

where the Ow,b,G(·) notation hides factors depending on
w, b,G.

Proof. We begin with the upper bound on Bi. Our starting
point is the penultimate line of Eq. (32), which implies that
Bi = Ow,b,G (||∆||∞). Using

∆ = logR− log ρ− V (F − P ),

we immediately obtain that ||∆||∞ = O(log k) with proba-
bility one, since the smallest Fij will be on the order of 1/k
due the lines 5 and 7.

Next, we turn to the bound on Ci. Starting from Eq. (50),
we use that || logR − log ρ||∞ = Ow,b,G(log k). Since
uij = zij(1− zij), the quantity zij is on the path between

Fij and pij , and Fij cannot be smaller than (1/2)/k, we
have that 1/min(a,b) ua,b = O(k) with probability one.
Plugging these observations into Eq. (50) completes the
proof for C.

Finally, we turn to the bound on Yi. Recall that Eq. (17)
states that

Ŷ =
(
diag(w)−1LV̂ diag(w)−1

)†
diag(w)−1MV̂ −1 logR.

Moreover, Lemma 7 shows that∣∣∣∣diag(q)−1MTdiag(w)−1(diag(w)−1Lqdiag(w)−1)†ei
∣∣∣∣

1

≤ wi
√∑

(i,j)

q−1
ij Rmax(i).

Since we have already shown that logR = O(log k) with
probability one, and since

∑
(i,j) V̂

−1
ij = O(k) with proba-

bility one, this proves the bound we need.

Finally, the bound on W r
i follows from its definition,

log Ŵ r = diag(w)−1Ŷ ,

together with the bound on Ŷi.

Our next step is to argue that a sufficiently high moment
of the quantities Bi, Ci decays fast. We will rely on such
moments in the ensuing analysis. It will suffice to use the
fourth moment, as in the following lemma.

Lemma 14. For all i = 1, . . . , n,

E[B4
i ] = Ow,b,G

(
1

k4

)
E[C4

i ] = Ow,b,G

(
1

k4

)
where theOw,b,G(·) notation hides all the factors that do not
depend on δ and k. We remind that the notation O denotes
a linear bound valid for a k large enough with respect to w
b and G, and thus, crucially, independently of δ.

Proof. We prove the bound forBi, and omit the proof of the
bound on Ci, which is obtained by a similar development.
We will use the identity

E[B4
i ] =

∫ +∞

0

P (B4
i ≥ u) du, (51)

and leverage the result of Eq. (32), where we have shown
that with probability 1− δ,

B4
i ≤ Ow,b,G

(
log4(1/δ)

k4

)
. (52)
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However, this result was shown under the conditions that
k ≥ Ω(b log(n/δ)) and δ ≤ e−1, and can thus only be
used for certain values of u in the integral in (51). We will
therefore decompose that integral in different sub-parts to
which we apply different treatments.

Part 1: application of (52)
Given any u, we solve for the δ we must plug into Eq. (52)
in order to bound P (B4

i ≥ u). This yields

P (B4
i ≥ u) ≤ e−(k4u/f1(w,b,G))1/4 ,

for some function f1(w, b,G). But this only holds under the
conditions δ ≤ e−1 and k ≥ Ω(b log(n/δ)). The former
holds when u ≥ f1(w, b,G)/k4; and the latter holds if

c
1

b4
≥ log4(n/δ)

k4
.

for some absolute constant c. Observe that

log4(n/δ)

k4
≤ 8 log4 n+ 8 log4(1/δ)

k4

≤ 64 log4 n log4(1/δ)

k4

=
64(log4 n)u

f1(w, b,G)
,

where the second inequality follows from the implication
a ≥ b

b−1 ⇒ ab ≥ a+b, which applies here since 8 log4 n ≥
1.8 and 8 log4(1/δ) > 8. We can then ensure that the
condition k ≥ Ω(b log(n/δ)) holds by taking u satisfying

u ≤ cf1(w, b,G)

64b4 log4 n
= c1f1(w, b,G)(b log n)−4.

Hence,

∫ c1f1(w,b,G)(b logn)−4

f1(w,b,G)/k4
P (B

4
i ≥ u) du

≤
∫ c1f1(w,b,G)(b logn)−4

f1(w,b,G)/k4
e
−(k4u/f1(w,b,G))1/4

du

≤
∫ ∞
f1(w,b,G)/k4

e
−(k4u/f1(w,b,G))1/4

du

A substitution u = (f1(w, b,G)/k4)x transforms this last
integral in ∫ +∞

1

e−x
1/4 f1(w, b,G)

k4
dx.

Using
∫ +∞

1
e−x

1/4

dx = 64
e , we obtain thus

∫ c1f1(w,b,G)(b logn)−4

f1(w,b,G)/k4
P (B4

i ≥ u) du = Ow,b,G

(
1

k4

)
.

(53)

Part 2: small values of u
For values of u below those covered in Eq. (53), we use the
trivial bound∫ f1(w,b,G)/k4

0

P (B4
i ≥ u) du ≤ f1(w, b,G)

k4

= Ow,b,G

(
1

k4

)
. (54)

Part 3: large values of u
We now focus on the last part of the integral Eq. (51), i.e.
values of u larger than c1f1(w, b,G)(b log n)−4. It follows
from Lemma 13 that |Bi| = Ow,b,G(log k) with probability
1. Besides, the bound of Eq. (31) implies that P (B4

i ≥
u) = O

(
ne−k

3/4
)

for all u = c1f1(w, b,G)(b log n)−4

and therefore for all larger u. These two facts lead to∫ ∞
c1f1(w,b,G)(b logn)−4

P (B4
i ≥ u) du

≤
∫ Ow,b,G(log4 k)

c1f1(w,b,G)(b logn)−4

P (B4
i ≥ u) du

≤ O
(
ne−k

3/4
)
Ow,b,G(log4 k) < Ow,b,G

(
1

k4

)
(55)

The desired bound on E(B4
i ) follows then from Eq. (51)

and the combination of Eq. (53), (54) and (55).

As a consequence of the previous lemma, we can bound the
fourth moment of the quantity Ŷi − yi in the next lemma.

Lemma 15.

E(Ŷi − yi)4 = O
(
E[A4

i ]
)

+Ow,b,G

(
1

k4

)

Proof. Indeed,

E(Ŷi − yi)4 = E[(Ai +Bi + Ci)
4]

= E
[
O
(
A4
i +B4

i + C4
i

)]
= O

(
E[A4

i ]
)

+Ow,b,G

(
1

k4

)
,

where the second step follows by Young’s inequality and
the last step uses Lemma 14.

Taking stock at this point, we are proceeding to bound the
fourth moment of the quantity Ŷi − yi = Ai + Bi + Ci.
Our previous lemma reduces this to the fourth moment of
Ai, up to terms that decay as fast as O(1/k4). We thus need
to analyze the fourth moment of Ai, which is done in the
following lemma.
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Lemma 16.
n∑
i=1

√
E[A4

i ] ≤ O

(
Tr
[
(diag(wr)−1LV diag(wr)−1)†

]
k

)

Proof. Our starting point is the equations Eq. (25) and Eq.
(26). Those equations allow us to write

A =
1√
k
P
(√

kV 1/2(F − p)
)
.

Here the matrix P is defined in Eq. (26). What we need to
show is that

n∑
i=1

√
E[A4

i ] = O

(
Tr(PPT )

k

)
.

Equivalently, we need to show that

n∑
i=1

√
E[A4

i ] = O

(
||P ||2F
k

)
,

where ||P ||F is the Frobenius norm of P . Letting Z =√
kV 1/2(F − p) we have that

Ai =
1√
k

n∑
j=1

PijZj ,

and therefore

E[A4
i ] =

1

k2
E

n∑
j,q,l,m=1

PijPiqPilPimZjZqZlZm

=
1

k2

n∑
q,l=1

P 2
iqP

2
ilO(1),

because E[Zm] = 0 for all m = 1, . . . , n, so that only
terms of the form Z2

qZ
2
l or Z4

q “survive” the expectation.
The fact that these are O(1) can be confirmed by expressing
each entry Fij − pij as a sum of k independent centered
random-variables supported in [−1, 1] and variance 1/vij ,
(the centered version of the results of each test).

√
E[A4

i ] =
1

k
O

√√√√ N∑
q,l=1

P 2
iqP

2
il



=
1

k
O


√√√√√ n∑

j=1

P 2
ij

2


=
1

k
O

 n∑
j=1

P 2
ij

 .

It follows that
n∑
i=1

√
E[A4

i ] = O

(
||P ||2F
k

)
,

and we are done.

We are almost ready to put together all the pieces and prove
the final theorem. It turns out that we need a technical
estimate on how big the ratio Ŵ r

i /w
r
i can be; this will

be needed to bound various worst-case events. Our next
lemma shows that the expectation of the fourth power of
this quantity is constant. This will be helpful in the proof
of our main theorem, where we will at one point need to
interchange these quantities.

Lemma 17. For large enough k and all i = 1, . . . , n, we
have that

E

max
(

(wri )
4, (Ŵ r

i )4
)

(wri )
4

 = O(1).

Proof. Indeed, from

Ŷ − y = A+B + C,

we have
n∑
i=1

(Ŷi − yi)2 ≤ 4

n∑
i=1

(A2
i +B2

i + C2
i )

Using Eq. (18) and Eq. (21) to obtain

Ŷi − yi = wi(log Ŵ r
i − logwri ), (56)

we obtain
n∑
i=1

log2 Ŵ
r
i

wri
≤ 4

w2
min

n∑
i=1

(A2
i +B2

i + C2
i )

=
4

w2
min

(||A||22 + ||B||22 + ||C||22).

In particular, the sum of the log2 Ŵ r
i

wri
is larger then or equal

to 16 only if at least one among |A||22, ||B||22 and ||C||22
exceeds w2

min). This implies that

P

(
max
i

Ŵ r
i

wri
≥ e4

)
= P

(
max
i

log
Ŵ r
i

wri
≥ 4

)

≤ P

(
max
i

log2 Ŵ
r
i

wri
≥ 16

)

≤ P

(∑
i

log2 Ŵ
r
i

wri
≥ 16

)
≤ P (||A||22 > w2

min) + P (||B||22 > w2
min)

+P (||C||22 > w2
min),
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By Eq. (24), Eq. (31), and Eq. (46), we have that

P

(
max
i

∣∣∣∣∣Ŵ r
i

wri

∣∣∣∣∣ ≥ e4

)
= O

(
e−k/g(w,b,G)

)
+O

(
ne−k

3/4
)

Moreover, by Lemma 13 we have that with probability one

max
i
W r
i ≤ eOb,w,G(

√
k log k).

Putting this all together, we can bound Emaxi

∣∣∣ (Ŵ r
i )4

(wri )4

∣∣∣ by

(e4)4 + eOb,w,G(
√
k log k)

[
O
(
e−k/g(w,b,G)

)
+O

(
ne−k

3/4
)]

For large enough k, we therefore have

Emax
i

∣∣∣∣∣ (Ŵ r
i )4

(wri )
4

∣∣∣∣∣ ≤ e16 + 1,

which implies the lemma.

We note that constant such as e16 in the proof above are
large, but independent of the problem parameters. Smaller
constant could have been obtained at the cost of a further
increase of the proof complexity.

With all these results in place, we can finally prove our first
main result. Our concentration results on Bi, Ci will allow
us to argue we can essentially ignore them when k is large
enough; and our bound on the expectation of Ai will turn
out to give us exactly the expression in Theorem 1.

Proof of Theorem 1. Using the inequality∣∣ea − eb∣∣ ≤ max(ea, eb)|a− b|,

we obtain that

|Ŵ r
i − wri | ≤ max(wri , Ŵ

r
i )| log Ŵ r

i − logwri |. (57)

We thus have

E||Ŵ r − wr||22 ≤ E
n∑
i=1

max(w
r
i , Ŵ

r
i )

2
(log Ŵ

r
i − logw

r
i )

2

= E

n∑
i=1

max(wri , Ŵ
r
i )2

(wri )2
(w
r
i )

2
(log Ŵ

r
i − logw

r
i )

2

≤
n∑
i=1

√
E

max(wri , Ŵ
r
i )4

(wri )4√
E(wri )4(log Ŵ r

i − logwri )4

where we have used Cauchy-Schwarz. Using Lemma 17
and the definition of Y , followed by Lemma 15, we then
obtain

E||Ŵ r − wr||22 ≤
n∑
i=1

O(1)

√
E(Ŷi − yi)4

= O

(
n∑
i=1

√
E[A4

i ] +Ow,b,G

(
1

k4

))

= O

(
n∑
i=1

√
E[A4

i ]

)
+Ow,b,G

(
1

k2

)
.

We can now apply Lemma 16, which implies that

E||Ŵ r − wr||22 ≤ O

Tr
[
(diag(wr)−1LV diag(wr)−1)†

]
k


+Ow,b,G

(
1

k2

)

= O

Tr
[
(diag(wr)−1LV diag(wr)−1)†

]
k

 ,

where the last step holds for k large enough; and which
further implies that, for k large enough,

E
[
sin

2
(Ŵ , w)

]
≤ E

||W r − wr||22
||wr||22

≤ O

Tr
[
(diag(wr)−1LV diag(wr)−1)†

]
k||wr||22

 ,(58)

where we used the following identity about the sine between
two vectors:

| sin(x, y)| = inf
α

||αx− y||2
||y||2

≤ ||x− y||2
||y||2

.

Finally, the final expression on the right-hand side of Eq.
(58) is unaffected by replacing wr with w, since both numer-
ator and denominator are scaled by the same scalar. Thus
for large enough k,

E
[
sin2(Ŵ , w)

]
≤ O

(
Tr
[
(diag(w)−1LV diag(w)−1)†

]
k||w||22

)
.

We complete the proof by observing that Lγ =
diag(w)−1Lvdiag(w)−1.

6. Proof of Theorem 2
We will establish that, for large enough k,

E
[
sin2(w, ŵ)

]
≥ Ω

(
1

k

)
Tr
[
L†γ
]

||w||22
, (59)

for any estimator ŵ built from the outcomes of pairwise
comparisons. Our proof is a modification of the proof of the
lower bound from (Hendrickx et al. , 2019), with departures
at key steps. As discussed in the main body of the paper, the
main departure is to specifically pick out the solution Ŵ r

in the lower bound analysis.
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We first comment on the structure of our proof. We will be-
gin by fixing a vector w and an estimator of the true weights
ŵ(Y). This estimator ŵ(Y) is arbitrary and we may there-
fore intuitively think that the estimator ŵ(Y) “knows” w.
We then generate wz = w + 1√

k
R, where R is a particu-

lar random vector whose distribution we’ll specify below,
and generate k comparisons across each edge according to
weights wz . Once again, because the estimator ŵ(Y) is ar-
bitrary, we can also think of it as “knowing” the distribution
of wz . Provided the number of comparisons k satisfies some
lower bound depending on w and the graph, we will then
prove that

E
[
sin2(wz, ŵ(Y))

]
≥ Ω

(
Tr(L†γ)

k||w||22

)
. (60)

Because the random vector R will be upper bounded with
probability one by some function of w and G, this proves
Theorem 2.

We now turn to the proof, i.e., to the construction of the
random vector R which will allow us to prove Eq. (60).
We will use Pw(y) to denote the density on the observation
space (consisting of k measurements across each edge of
the graph) if w was the vector of true weights. We will use
the following lemma [(Hajek & Raginsky, 2019) Chap. 13,
Corollary 13.2] to obtain a lower bound on the expectation
of the sine-squared:
Lemma 6.1. Let µ be any joint probability distribution of
a random pair (w,w′), such that the marginal distributions
of both w and w′ are equal to π. Then

Eπ,Y[d(w, ŵ(Y)]] ≥ Eµ
[
d(w,w′)(1− ‖Pw − Pw′‖TV

]
where || · ||TV represents the total-variation distance be-
tween distributions and Y the observations.

It should be clear that under a random choice of w generated
according to some distribution π (described later), the ex-
pected error is a lower bound on the worst-case estimation
error over all possible w. Thus our goal is to massage the
right-hand side of Lemma 6.1 to obtain the right-hand side
of Eq. (59).

Actually, we need a slight modification of Lemma 6.1: as
remarked in (Hendrickx et al. , 2019), it is sufficient that
d(w,w′) satisfies a weak version of triangle inequality, i.e.,
αd(w1, w2) ≤ d(w1, ŵ) + d(w2, ŵ) for some pre-specified
constant α, with the result that the right-hand side in the
above lemma is multiplied by α. In particular, our (square)
error criterion sin2(ŵ, wz) satisfies the weak triangle in-
equlity with a factor of α = 1/2, see Lemma A.1 from
(Hendrickx et al. , 2019), so we can apply Lemma 6.1 to it
with an extra factor of 1/2 on the right-hand side.

Let vi be the eigenvectors of the diag(w)−1LV diag(w)−1

with corresponding eigenvalues σi. In the next paragraph,

we will use these eigenvectors to design the distribution
for w which we will use to obtain our lower bound. Note
that this is the first point where our argument diverges from
the proof of (Hendrickx et al. , 2019); the introduction of
this rescaling by diag(w)−1 here is motivated by Eq. (17)
and Eq. (18), where the quantity diag(w)−1LV diag(w)−1

appears, and comes from a desire to lower bound the error
associated with the regularized solution Ŵ r.

Let z2, . . . , zn be i.i.d random variable taking values 1 and
−1 with equal probability. We then set

wz = w + δ

n∑
i=2

zi√
σi
vi (61)

where, the sum starts at i = 2 to omit the eigenvector of
diag(w)−1LV diag(w)−1 associated with the zero eigen-
value (which is just w), δ is suitably small ( to be specified
later), and also we set z1 = 1. We remark that we will later
choose δ to be on the order of 1/

√
k, so that the above ex-

pression can be written as wz = w + (1/
√
k)R, where the

random vector R depends on w and the underlying graph,
and further with probability one R cannot be larger than
some function of w and the graph.

Let V be the unitary matrix which has vi as columns; we
can write

wz = V Λz,

where this relation defines the entries of Λ (e.g., λi =
δ/
√
σi for i = 1, . . . , n). We note that the norm of wz’s

defined this way are equal, i.e.,

‖wz‖2 =

√√√√||w||22 + δ2
n∑
i=2

1

σi

=
√
||w||22 + δ2Tr

[
(diag(w)−1Lvdiag(w)−1)†

]
. (62)

Intuitively the error in estimating wz should be lower
bounded in terms of the errors in estimating zi, and indeed
(Hendrickx et al. , 2019) showed that

min
ŵ(Y)

Eπ,Y[ρ(wz, ŵ(Y))] =
n∑
i=2

min
ηi(Y)

λ2
i

‖wz‖2
Eπ,Y (zi − ηi(Y))2 ,

where Y is the vector of outcomes of the comparisons. We
are now going to apply Lemma 6.1 to each term on the right
hand side individually. Following (Hendrickx et al. , 2019),
we define the distribution µi(z, z′) by keeping z uniformly
distributed in {−1, 1}n, and flipping the ith bit to obtain z′

(formally, z′i = −zi and z′j = zj for every j 6= i). Clearly,
Eπ,Ydi(z, z′) = 4. Moreover, by Pinsker’s inequality

‖P⊗kw − P⊗kw′ ‖
2
TV ≤ 1

2
DKL(P⊗kw ‖P ′⊗kw ) (63)

≤ O(kδ2)

where the proof of the second inequality (which holds for
small enough δ) is somewhat involved and is relegated to
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Section 6.1 below. Using these facts along with Lemma 6.1,
it follows that for every estimator ηi(Y) and for such δ,

Eπ,Y (zi − ηi(Y))
2 ≥ 1

2
4
(

1−
√
O(kδ2)

)
,

and thus

min
ŵ(Y)

Eπ,Y[ρ(w, ŵ(Y))] ≥
n∑
i=2

λ2
i

‖wz‖2
2(1−

√
O(kδ2))

≥
n∑
i=2

2δ2(1−
√
O(kδ2))

σiS
, (64)

where

S = ||w||22 + δ2Tr
[(

diag(w)−1Lvdiag(w)−1
)†]

Now choosing δ such that the O(kδ2) term is at most 1/2
(which involves choosing δ2 = Θ(1/k)), and further k is
large enough so that

||w||2 + δ2Tr
[(

diag(w)−1LV diag(w)−1
)†]

< 2||w||22,
(65)

Putting all these bounds into Eq. (64) yields

min
ŵ(Y)

Eπ,Y[ρ(w, ŵ(Y))] ≥ Ω

(
1

k

) ∑n
i=2 1/σi
||w||22

.

Using the definition of σi, we can rewrite this as

min
ŵ(Y)

Eπ,Y[ρ(w, ŵ(Y))]

≥ Ω

(
1

k

) Tr
[(

diag(w)−1LV diag(w)−1
)†]

||w||22
.

Finally noting that

diag(w)−1LV diag(w)−1 = Lγ ,

we have thus proved Eq. (59) (conditionally on Eq. (63)
which is considered in the next section).

6.1. Proof of Equation (63)

We will need to begin with several lemmas. Let B(w1, w2)
be our notation for a Bernoulli that falls on heads with
probability of w1/(w1 + w2). We will need some bounds
on how the KL-divergence evolves as we perturb w1, w2.

Lemma 18. Fix positive w1, w2. For small enough δ,

DKL(B(w1(1 + δx1), w2(1 + δx2))||B(w1(1− δx1), w2(1− δx2)))

≤ 5δ2

V12
(x1 − x2)2

where we use the notation V12 = w1

w2
+ 2 + w2

w1
(consistent

with our previous usage).

Proof. Let us introduce notations for the probabilities as-
sociated with the two Bernoulli distribution, the first corre-
sponding to z = 1 and the second to z = −1:

p =
w1(1 + δx1)

w1(1 + δx1) + w2(1 + δx2)

p′ =
w1(1− δx1)

w1(1− δx1) + w2(1− δx2)

Applying Lemma 7.2 of (Bubeck, 2011), we have the esti-
mate

DKL(p||p′) ≤ (p− p′)2

p′(1− p′)
We consider what this is like in the limit as δ → 0, as this
leads to a number of simplifications. First, consider the
denominator: we have that

lim
δ→0

1

p′(1− p′)
=

1

(w1/(w1 + w2))(w2/(w1 + w2))
= V12.

We conclude that, for δ small enough,

DKL(p||p′) ≤
(

5

4

)1/3

V12(p− p′)2.

Of course, the constant in front of the right-hand side can
be chosen to be any number greater than one.

Next, let us consider the difference of the two probabilities:

p− p′ =
w1

w1 + w2
1+δx2

1+δx1

− w1

w1 + w2
1−δx2

1−δx1

=
w1w2

(
1−δx2

1−δx1
− 1+δx2

1+δx1

)
(w1 + w2

1+δx2

1+δx1
)(w1 + w2

1−δx2

1−δx1
)

:= C(w1, w2, δ)

(
1− δx2

1− δx1
− 1 + δx2

1 + δx1

)
Observing that

lim
δ→0

C(w1, w2, δ) =
1

V12
,

we can conclude that, for δ small enough,

DKL(p||p′) ≤
(

5

4

)1/3

V12

(
5

4

)1/3 1

V 2
12

(
1− δx2

1− δx1

−
1 + δx2

1 + δx1

)2

=
(5/4)2/3

V12

(
1− δx2

1− δx1

−
1 + δx2

1 + δx1

)2

Finally, observe that the function

f(t) =
1 + tx2

1 + tx1
=

1 + tx1 + t(x2 − x1)

1 + tx1
= 1 + t

x2 − x1

1 + tx1

clearly satisfies f ′(0) = x2 − x1. Consequently, for small
enough δ, we have that(

1− δx2

1− δx1
− 1 + δx2

1 + δx1

)2

≤
(

5

4

)1/3

((x2 − x1)2δ)2.
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Putting it all together, we have that

DKL(p||p′) ≤ 5

V12
δ2(x2 − x1)2.

Corollary 19. Fix u1, u2 positive and arbitrary
a1, a2, x1, x2. Consider the same situation as Lemma 18
except that the weights of node j = 1, 2 are

wj = uj + δaj + δzxj ,

where z is either +1 or −1. The KL divergence between
the corresponding Bernoulli random variables is upper
bounded by

5δ2

V12

(
x1

u1
− x2

u2

)2

+O(δ3),

with V12 = u1

u2
+ 2 + u2

u1

Proof. The weight of node i can be rewritten as

uj+δaj+δzxj ,= uj

(
1 + δ

aj
uj

)(
1 + zδ

xj/uj
1 + δaj/uj

)
.

We can then apply Lemma 18 with the modified (bounded)
parameters w̃j = uj(1 + δaj/uj) and x̃j =

xj/uj
1+δaj/uj

, and
we obtain that the KL divergence is (with Vw,12 the variance
for the weights w̃j)

DKL =
5δ2

Vw,12
(x̃1 − x̃2)2

=
5δ2

Vw,12

(
x1/u1

1 + δa1/u1
− x2/u2

1 + δa2/u2

)2

=
5δ2

Vw,12

(
x1

u1
− x2

u2
+O(δ)

)2

=
5δ2

Vw,12

(
x1

u1
− x2

u2

)2

+O(δ3). (66)

Besides, observe that

w̃1

w̃2
=
u1

u2
· 1 + δa1/u1

1 + δa2/u2

=
u1

u2
+O(δ).

Hence

Vw,12 =
w̃1

w̃2
+ 2 +

w̃1

w̃2
= Vu,12 +O(δ).

The result follows then from (66).

With these facts in place, we can now prove the equation to
which this subsection is dedicated.

Proof of Equation (63). We can apply Corollary 19 across
each edge, with uj = wj , xj = vi, and aj =

∑
j 6=i λjvj to

argue as follows: DKL(P⊗kw ‖P ′⊗kw )

= kDKL(Pw‖P ′w)

≤
∑

(a,b)∈E

O

(
kδ2

Vab

)(
(vi)a
√
σiwa

−
(vi)b√
σiwb

)2

+O(kδ
3
)

= O(kδ
2
)

1

σi
v
T

diag(w)
−1
LV diag(w)

−1
v +O(kδ

3
)

= O(kδ
2
),

where we used that vi is an eigenvector of
diag(w)−1Lvdiag(w)−1 with eigenvalue σi.


