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A. Likelihood-free Markov chain Monte Carlo samplers

Algorithm 2 Likelihood-free Metropolis-Hastings
Inputs: Initial parameter θ0

Prior p(θ)
Transition distribution q(θ)
Trained ratio estimator d(x, θ)
Observation x

Outputs: Markov chain θ0:T

Hyperparameters: Steps T

1: t← 0
2: θt ← θ0

3: for t < T do
4: θ′ ∼ q(θ | θt)

5: λ← (log r̂(x | θ ′) + log p(θ
′
))− (log r̂(x |θt) + log p(θt))

6: ρ← min(exp(λ)
q(θt|θ′)
q(θ′|θt)

, 1)

7: θt+1 ←
{
θ′ with probability ρ
θt with probability 1− ρ

8: t← t+ 1
9: end for
10: return θ0:T

Algorithm 3 Likelihood-free Hamiltonian Monte Carlo
Inputs: Initial parameter θ0

Prior p(θ)
Momentum distribution q(m)
Trained ratio estimator d(x, θ)
Observation x

Outputs: Markov chain θ0:T

Hyperparameters: Steps T .
Leapfrog-integration steps l and stepsize η.

1: t← 0
2: θt ← θ0

3: for t < T do
4: mt ∼ q(m)
5: k ← 0
6: mk ← mt

7: θk ← θt

8: for k < l do

9: mk ← mk +
η

2

∇θ r̂(x | θk)

r̂(x |θk)

10: θk ← θk + ηmk

11: mk ← mk +
η

2

∇θ r̂(x |θk)

r̂(x |θk)

12: k ← k + 1
13: end for
14: λ← (log r̂(x |θk) + log p(θk))− (log r̂(x |θt) + log p(θt)) +K(mk)−K(mt)
15: ρ← min(exp(λ), 1)

16: θt+1 ←
{
θk with probability ρ
θt with probability 1− ρ

17: t← t+ 1
18: end for
19: return θ0:T
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D.3. Detector calibration

Figure 15. Approximate posteriors for the detector calibration benchmark. The posteriors are subsampled from several experimental runs.

Figure 16. (Left:) Posteriors are obtained using the same ratio estimator. (Middle): Diagonal ROC diagnostic, demonstrating the ability of
the proposed method to model posteriors for arbitrary observations. (Right): Observations xo.

D.4. Lotka-Volterra

(a) AALR-MCMC (b) SNPE-A (c) SNPE-B (d) APT

Figure 17. Posterior approximations for the Lokta-Volterra problem. AALR-MCMC, SNPE-A and APT are in agreement, while the SNPE-B

approximation is significantly broader.


