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Fabian Hinder 1 André Artelt 1 Barbara Hammer 1

Abstract
The notion of concept drift refers to the phe-
nomenon that the distribution, which is under-
lying the observed data, changes over time; as a
consequence machine learning models may be-
come inaccurate and need adjustment. Many on-
line learning schemes include drift detection to
actively detect and react to observed changes. Yet,
reliable drift detection constitutes a challenging
problem in particular in the context of high di-
mensional data, varying drift characteristics, and
the absence of a parametric model such as a clas-
sification scheme which reflects the drift. In this
paper we present a novel concept drift detection
method, Dynamic Adapting Window Indepen-
dence Drift Detection (DAWIDD), which aims
for non-parametric drift detection of diverse drift
characteristics. For this purpose, we establish a
mathematical equivalence of the presence of drift
to the dependency of specific random variables in
an according drift process. This allows us to rely
on independence tests rather than parametric mod-
els or the classification loss, resulting in a fairly
robust scheme to universally detect different types
of drift, as it is also confirmed in experiments.

1. Introduction
One fundamental assumption in classical machine learning
is the fact that observed data are i.i.d. according to some
unknown underlying probability measure PX , i.e. the data
generating process is stationary. Yet, this assumption is
often violated as soon as machine learning faces real world
problems: models are subject to seasonal changes, changed
demands of individual costumers, ageing of sensors, etc. In
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such settings, life-long model adaptation rather than clas-
sical batch learning is required for optimal performance.
Since drift, i.e. the fact that data is no longer identically
distributed, is a major issue in many real-world applications
of machine learning, many attempts were made to deal with
this setting (Ditzler et al., 2015).

Depending on the domain of data and application, the pres-
ence of drift is modelled in different ways. As an example,
covariate shift refers to the situation of training and test
set having different marginal distributions (Gretton et al.,
2009). Learning for data streams extends this setting to an
unlimited (but usually countable) stream of observed data,
mostly in supervised learning scenarios (Gama et al., 2014).
Here, one distinguishes between virtual and real drift, i.e.
non-stationarity of the marginal distribution only or also the
posterior. Learning technologies for such situations often
rely on windowing techniques, and adapt the model based
on the characteristics of the data in an observed time win-
dow. Active methods explicitly detect drift, usually referring
to drift of the classification error, and trigger model adap-
tation this way, while passive methods continuously adjust
the model (Ditzler et al., 2015).

Interestingly, a majority of approaches deal with supervised
scenarios, aiming for a small interleaved train-test error; this
is accompanied by first approaches to identify particularly
relevant features where drift occurs (Webb et al., 2017), and
a large number of methods, which aim for a detection of
drift and an identification of change points in given data sets
(Aminikhanghahi and Cook, 2017). These techniques often
rely on strong assumptions regarding the process, e.g. they
detect a substantial decrease of the classification accuracy
of a specific classification scheme on the given data, or they
judge important characteristics of the distribution which are
estimated on time windows of fixed size – as a consequence,
these methods face problems if the underlying drift charac-
teristics do not align with these assumptions. The purpose
of our contribution is threefold:

(I) We formalize two different notions of drift which are
used in the literature, namely drift as change of probabili-
ties, and drift as change of a loss function, which is used for
popular drift detection methods, and we show the equiva-
lence of these notions; (II) we provide a novel mathematical
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characterization of drift in terms of independence of random
variables in a drift process and we prove the equivalence
of this formalization to the notion of drift as used in the
literature; due to page limitations, all proofs in this contribu-
tion can be found in the supplement; (III) based thereon, we
provide a new drift detection method that relies on indepen-
dence tests, and this way, neither depends on an underlying
machine learning model nor relies on assumptions on the
underlying form of drift such as rate of change.

This paper is organized as follows: In section 2 (Concept
Drift Definition) we give a formal definition of concept drift
and analyse its mathematical properties; in particular, we
formalize in how far drift detection via an observed change
of a model error – a common procedure for many drift detec-
tion technologies – can be linked to the standard definition
of drift as change of an underlying probability (section 2.1);
after summarizing existing drift detection technologies, we
derive an equivalent formalization of the presence of concept
drift as the dependency of random variables (section 2.2).
This fact constitutes the foundation for a novel drift detec-
tion method, which we construct in section 3: Dynamic
Adapting Window Independence Drift Detection (DAW-
IDD). We compare this new method to popular alternatives
in section 4. Note that the method as presented in sections 3
and 4 relies on section 2 only as concerns its mathemat-
ical substantiation and formal guarantees, but, otherwise,
the proposed method DAWIDD can be accessed without
delving deep into the presented mathematical details.

2. Concept Drift Definition
In the usual, time invariant setup of machine learning one
considers a generative process PX , i.e. a probability mea-
sure, on Rd. In this context one views the realizations
of PX -distributed random variables X1, ..., Xn as samples.
Depending on the objective, learning algorithms try to in-
fer the data distribution based on these samples or, in the
supervised setting, a posterior distribution. We will not dis-
tinguish these settings and only consider distributions in
general, this way subsuming the notion of both, real drift
and virtual drift.

Many processes in real-world applications are not time in-
dependent, so it is reasonable to incorporate time into our
considerations. One prominent way to do so is to consider
an index set T, representing time, and a collection of proba-
bility measures pt on Rd indexed over T, which may change
over time (Gama et al., 2014). In the following we inves-
tigate the relationship of those pt, with drift referring to a
property of the relationship of several pt at different time
points t. However, rather than using T = {1, 2, ..., N},
as done for example by (Bifet and Gavaldà, 2007; Gama
et al., 2004; Ditzler and Polikar, 2011), we will consider the
more general case T = [0, 1] so that we may incorporate

the actual clock-time, rather than a simple index, into our
considerations. This yields the following definition:

Definition 1. A drift process (pt, PT ) is a probability mea-
sure PT on [0, 1] together with a collection of probability
measures pt on Rd with t ∈ [0, 1], such that t 7→ pt(A) is
measurable for every measurable A ⊂ Rd.

When PT is clear, we sometimes just write pt for simplicity.
Remark 1. For every drift process (pt, PT ) there exists a
probability measure P on Rd × [0, 1] which is uniquely
determined by the property

P (B ×A) =

∫
B

pt(A)dPT (t)

for all measurable B ⊂ [0, 1], A ⊂ Rd (Friedman, 1980).
In the following we will denote this measure as pt ⊗ PT .
The converse is also true: For every probability measure
P on Rd × [0, 1] there exists a uniquely determined drift
process (pt, PT ) such that (Parthasarathy, 1967)

P = pt ⊗ PT .

Remark 1 shows the main benefit in considering time di-
rectly as part of the observation, rather than just an index,
since it enables us to link drift processes to distributions
on the product space of data and time, which in turn im-
plies that sampling a sequence of observations X1, ..., Xn

at several time points ti with different distribution pti is
equivalent to sampling (X1, T1), ..., (Xn, Tn) i.i.d. from
pt ⊗ PT .

We will now define drift: A very common notion specifies
drift as the fact that distributions vary over time (Gama
et al., 2014), i.e. there exist t, s ∈ [0, 1] such that pt 6= ps.
A canonical extension of this definition for continuous time
is given by the following setting, which defines the absence
of drift as differences of distributions not being observable
in a null set:

Definition 2. Let (pt, PT ) be a drift process. We say that
pt has no drift iff pt 6= ps holds on a PT null set only, i.e.
(PT × PT )({(s, t) ∈ [0, 1]2 | pt 6= ps}) = 0.

Definition 2 is given by comparing pt at pairs of time points;
an obvious question is whether this can be simplified to the
fact that the probability distribution is constant, i.e. pt does
not depend on t (up to a null set) – this corresponds to the
standard setting of classical (drift free) machine learning.
Note that this is not an immediate consequence due to null-
sets and requires additional argumentation:

Lemma 1. Let (pt, PT ) be a drift process. The following
are equivalent:

1. pt has no drift
2. it exists PX such that pt = PX for PT -a.s.
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3. it exists PX such that pt ⊗ PT = PX × PT

Furthermore, if the probability measure PX exists it is
uniquely determined and it holds PX =

∫
pt(·)PT (dt).

Proof. All proofs are omitted due to space restrictions and
may be found in the supplemental material.

2.1. Change of Loss as Indicator for Drift

So far we have only considered drift from a theoretical,
generative process point of view; now we will consider
drift in the context of machine learning models: machine
learning models in the context of drift often learn a constant
model over a time window. It is common practice to detect
drift by a change of (characteristics of) such models, e.g. a
changed error or loss; more precisely suppose we observe
samples x1, ..., xn ∈ Rd ordered by time of occurrence and
let ˆ̀ be an empirical loss function. If for some i we have
ˆ̀(h|x1, ..., xi) � ˆ̀(h|xi+1, ..., xn), where h is the model
we consider, a drift alert is given. Drift detection methods
often aim to detect significant changes of the loss and, more
specifically, identify this change-point i. Following (Gama
et al., 2014) popular drift detection methods can be assigned
to three groups:

1. Sequential analysis based approaches follow the idea
of the Sequential Probability Ratio Test (SPRT) (Wald,
1945) by comparing the sum of characteristics com-
puted from the input signals against a threshold; if the
threshold is exceeded, drift is detected. The idea is that
expected input signals are small, whereas unexpected
signals tend to be large; therefore the sum tends to be
larger if more unexpected events happen. Prominent
examples are the cumulative sum (CUSUM) and its
variant the Page-Hinkley test (PH) (PAGE, 1954).

2. Statistical process control based approaches are
mainly applied to classification tasks where the out-
come of a prediction can be modeled as a Bernoulli
process linking the problem to time-series. Concept
drift is then detected using statistical parameters such
as mean or variation, which is common practice in the
analysis of drift in time-series. Prominent examples
are the Drift Detection Method (DDM) (Gama et al.,
2004), Early Drift Detection Method (EDDM) (Baena-
Garcı́a et al., 2006), Exponentially Weighted Moving
Average (EWMA) (Ross et al., 2012), and Reactive
Drift Detection Method (RDDM) (Barros et al., 2017).

3. Two time-window based approaches make use of a pair
of windows; one (usually fixed) representing the past
distribution - one (usually sliding along the stream)
representing the current distribution. If those windows
differ significantly (i.e. fail on a statistical test for equal
distribution) drift is detected. A similar approach is to

successively split a single window into two consecutive
ones and compare those. Prominent examples are the
Adaptive Windowing (ADWIN) (Bifet and Gavaldà,
2007), the Drift Detection Methods based on Hoeffd-
ing’s Bound (HDDMA-test and HDDMW-test) (Frı́as-
Blanco et al., 2015), Hellinger Distance Drift Detection
Method (HDDDM) (Ditzler and Polikar, 2011) and the
comparable Change Detection Test (CDT) (Bu et al.,
2018).

Most of the methods mentioned above only work for one-
dimensional, or even binary, data. It is therefore very com-
mon to consider the loss of some machine learning model,
instead of the actual data itself. This is beneficial since it
reduces a potentially very high dimensional problem to a
one dimensional or, in case of classification, binary one. We
will refer to those methods as loss-based.

There do exist methods that do not refer to the loss of a learn-
ing model, and rely on the data instead: e.g HDDDM com-
pares marginal distributions based on histograms and CDT
approximates the density functions using RBF-networks;
yet, the majority of technologies detect drift based on the
loss of a machine learning model. In the following, we
want to substantiate this practice by stating under which
conditions this is equivalent to observing drift as defined
above. For this purpose, we rely on a general definition of
a loss function ` as an indicator for how well a hypothesis
h ∈ H fits some ground truth, i.e. probability distribution
P , which is usually unknown and therefore approximated
using observations – leading to an empirical estimation ˆ̀of
`, which is often done by using the empirical mean.

Definition 3. LetH be a hypothesis class and X be a mea-
sure space (usually X = Rd). An empirical loss func-
tion is a map ˆ̀ : H × (

∐∞
n=0

∏n
i=1 X) → R, such that

for every set of X-valued random variables X1, ..., Xn

and hypothesis h ∈ H we obtain a measurable map
ˆ̀(h|X1, ..., Xn) : Ω→ R which measures the error of h
on the random samples delivered by X1, ..., Xn.

We say that an empirical loss function ˆ̀ decomposes
into sums for X1, X2, ..., XN (with N ∈ N ∪ {∞}) if
ˆ̀(h|X1, ..., Xn) = 1

n

∑n
i=1

ˆ̀(h|Xi) holds for all n ≤ N .

We say that an empirical loss function is uniformly bounded
if there exists a K <∞ such that |ˆ̀(h|x1, ..., xn)| < K for
all x1, ..., xn ∈ X and h ∈ H.

As an example: the negative log likelihood decomposes
into sums under the assumption of Independence; the mean
squared error (MSE) or the 0-1-loss always decomposes into
sums, with the letter being uniformly bounded by K = 1.

Using this definition we may formalize the idea of ”change
of loss between time-windows” giving rise to theorem 1
which basically states that the change of a specific, empir-
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ical loss function is, up to approximation error, bounded
by the total variance of the mean distributions during the
considered time windows.

Theorem 1. Let ˆ̀be an empirical loss function on a hypoth-
esis classH which is uniformly bounded by some K <∞.
Let X1, ..., Xn and X ′1, ..., X

′
m be two sets of independent

random variables for which ˆ̀decomposes into sums. Then
for all h ∈ H and ε > 0 it holds

P[|ˆ̀(h|X1, ..., Xn)− ˆ̀(h|X ′1, ..., X ′m)| ≥ ε]

≤ K

ε

√√√√( 1√
n

+
1√
m

)2

+

∥∥∥∥∥ 1

n

n∑
i=1

PXi −
1

m

m∑
i=1

PX′
i

∥∥∥∥∥
2

TV

,

where ‖ · ‖TV denotes the total variation norm and PX the
underlying distribution of X . In particular if all Xi resp.
X ′j are also identically distributed the bound becomes

P[|ˆ̀(h|X1, ..., Xn)− ˆ̀(h|X ′1, ..., X ′m)| ≥ ε]

≤ K/ε
√

(n−1/2 +m−1/2)2 +
∥∥PX1

− PX′
1

∥∥2
TV
.

In a typical application one considers resp. compares the
empirical loss of a fixed model using the samples contained
in two time windows, in theorem 1 those samples are re-
ferred to as X1, ..., Xn and X ′1, ..., X

′
m, respectively. It is

hence of particular importance that we do not make any
assumptions regarding the relation of Xi and X ′j , in particu-
lar we do not assume them to be independent. Indeed, we
actually allow that the samples are reused in the estimation,
i.e. Xi = X ′j . Furthermore, we also do not assume that
the samples within a single time window, i.e. the Xis resp.
X ′js, are identically distributed, i.e. we allow drift within a
single time window. In this sense theorem 1 upper bounds
the probability of a significant change of loss by a change
of the underlying distribution.

Unfortunately, we cannot apply theorem 1 to unbounded
loss-functions, like MSE, directly. However, we can still
use it to compare the resulting distributions. More precisely
we have:

Lemma 2. Let ˆ̀ be an empirical loss function and
X1, ..., Xn be random variables for which ˆ̀ decomposes
into sums. Denote by Fˆ̀(h|X1,...,Xn)

(x) the empirical cumu-

lative distribution over ˆ̀(h|X1, ..., Xn), i.e.

Fˆ̀(h|X1,...,Xn)
(x) =

1

n

n∑
i=1

I(ˆ̀(h|Xi),∞)(x).

Then for every x ∈ R we have that Fˆ̀(h|X1,...,Xn)
(x) is

again an empirical loss function that decomposes into sums
with K = 1.

Remark 2. Theorem 1 together with lemma 2 imply that
every quantity that is derived from an empirical loss function

that decomposes into sums, may only be non-constant if
the underlying data distribution changes, which is therefore
directly linked to all loss-based methods, i.e. if a loss-based
method detects a change, which is not due to approximation
errors, then the underlying distributions differ.

We would like to link theorem 1 to the notion of drift in
the sense of definition 2. As it turns out the change of loss
functions that decompose into sums is, up to approximation
errors, bounded above by the total variation of the expected
distribution during the time-windows, i.e. we have the fol-
lowing corollary:

Corollary 1. Let (pt, PT ) be a drift process and
ˆ̀ be an empirical loss function on a hypothe-
sis class H which is uniformly bounded by some
K <∞. Let (X1, T1), ..., (Xn, Tn) ∼ pt ⊗ PT and
(X ′1, T

′
1), ..., (X ′n, T

′
n) ∼ pt ⊗ PT be independent random

variables. Then for all h ∈ H, A,B ⊂ [0, 1] measurable
with PT (A), PT (B) > 0 and ε > 0 it holds

P[|ˆ̀(h|X)− ˆ̀(h|X′)| ≥ ε|T ∈ A,T′ ∈ B]

≤ K

ε

√
(n−1/2 +m−1/2)2 + ‖pA − pB‖2TV,

we will consider drift in the context of machine learning
models: machine learning models in the context of drift often
learn a constant model over a time window. It is common
practice to detect drift by a change of (characteristics of)
such models, e.g. a changed error or loss; more precisely
suppose we observe samples x1, ..., xn ∈ Rd ordered by
time of occurrence and let ˆ̀be

As in theorem 1 we allow drift during the time windows
A and B. In contrast to theorem 1, corollary 1 allows us
to control the bound using the observed time-value, which
is beneficial since, thought we do not know the underlying
distribution of Xi, we do know the value of Ti.

Furthermore, corollary 1 shows that statistically significant
change of the empirical loss between two time windows A
and B implies a change of the underlying distributions pA
resp. pB between those time windows. This gives rise to the
question whenever we can always detect such changes of
the underlying distribution using a loss-based method. The
answer to that question is ”yes”, as we show in the following
lemma:

Lemma 3. Let pt be a drift process. Then we may find a
model h and an empirical loss function ˆ̀such that

|ˆ̀(h|X1, ..., Xn)− ˆ̀(h|X ′1, ..., X ′n)| a.s.−−→ ‖pA − pB‖TV,

with X1, X2, ... ∼ pA, X ′1, X
′
2, ... ∼ pB independent.

Though, this shows that we can detect a change of the un-
derlying distribution using model loss, one should notice
that the choice of ˆ̀and h may be very exotic and depends
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on A and B so that it is not clear – in a concrete setup –
which occurrences of change of distribution are detected
under which circumstances.

However, by corollary 1 and lemma 3 we have proven that a
significant change of empirical loss and a change of underly-
ing distributions between two time windows are equivalent;
this leads to the following definition:
Definition 4. We say that a drift process (pt, PT ) has model
drift iff there exists measurable sets A,B ⊂ [0, 1] with
PT (A), PT (B) > 0, such that pA 6= pB or equivalent
‖pA − pB‖TV > 0, with pA = PT (A)−1

∫
A
pt(·)PT (dt)

and analogous for pB .

So by reconsidering remark 2 and lemma 3 we see that
model drift and change of our empirical loss function and
therefore any statistical quantity derived from it, are equiva-
lent (up to approximation errors). In particular this shows
that model drift is indeed exactly the class of effects that
is detected by loss-based methods. It is therefore natural
to ask whenever model drift implies drift (in the sense of
definition 2) and vice versa – which is true as shown by the
following theorem:
Theorem 2. Let (pt, PT ) be a drift process. Then it holds
that pt has drift if and only if pt has model drift.

So we see that loss based methods try to interfere drift.
However, since this is only executable if the ”right” model
was chosen it remains to derive a notion of drift that gives
rise to feasible algorithms.

2.2. Drift as Dependency between Data and Time

In addition to these notions of drift from the literature, we
will now discuss drift under a novel aspect, which will be
particularly suited to derive efficient algorithms, namely in
the context of independence of random variables, which has
the pleasant property of being directly observable in data
using well established tools.

In the classical machine learning setup one considers sam-
ples as realizations of (independent) identically distributed
random variables. In the context of drift, this distribution
changes, as discussed above. To put this into the context of
dependence of variables, we can equip each sample with a
timestamp of its occurrence: instead of Rd-valued random
variables X , we consider Rd × [0, 1]-valued random vari-
ables (X,T ). If there is no drift then the distribution of data
X should not depend on time T , i.e. X and T should be
statistically independent:
Definition 5. Let (pt, PT ) be a drift process and let
(X,T ) ∼ pt ⊗ PT a pair of random variables. We say
that pt has dependency drift iff X and T are statistically
dependent, i.e. are not independent random variables.

Notice that, other than drift or model drift, dependency drift

is directly observable in data. Furthermore we can under-
stand dependency drift using common statistical explanation
methods. It turns out that dependency drift is indeed an al-
ternative characterization of drift:

Theorem 3. Let (pt, PT ) be a drift process. Then pt has
drift if and only if it has dependency drift.

This result allows us to reduce many problems that occur
in the context of drift to already known and well studied
problems; the problem of drift detection for instance is
reduced to the problem to test independence of random
variables. The latter problem is well investigated and highly
efficient algorithms exist for independence tests.

In addition, notice that we can quantify dependency drift
using total variation between joint pt⊗PT and marginal dis-
tribution PX × PT . This allows us to compare the different
notions of drift in a quantitative fashion: If A,B are time
windows then pA and pB are always harder to distinguish
than PX × PT and pt ⊗ PT , i.e. the loss obtained form
learning independent vs. dependent bounds the one between
time window A and time window B, which in turn upper
bounds the difference of loss for a fixed model as seen in
theorem 1, i.e. up to statistical imprecisions we have

1/K|ˆ̀(h|X)− ˆ̀(h|X′)| ≤ ‖pA − pB‖TV

≤ ‖PX × PT − pt ⊗ PT ‖TV.

On the other hand, if there is abrupt drift between time
windows A and B and it is the only drift in [0, 1] then it
holds

1/K|ˆ̀(h|X)− ˆ̀(h|X′)| = ‖pA − pB‖TV

= ‖PX × PT − pt ⊗ PT ‖TV,

assuming we used a model that is maximally vulnerable to
the drift (lemma 3). We therefore see that dependency drift,
if measured using total variation, is an optimal upper bound
of the change of loss in the sense that it measures the entire
drift – whereas considering models or time windows may
miss at least part of it due to inappropriate choices of model
h or time windows A and B – but not more.

3. Drift Detection via Independence Tests on
Dynamically Adapted Windows

In section 2 we gave a definition of concept drift which
turned out to be exactly the kind of effects that is detected
by drift detectors, as discussed in section 2.1. Furthermore
in section 2.2 we discussed that concept drift may be de-
scribed as the statistical dependency between random vari-
ables, more precisely data-points and clock-time of obser-
vation. In this section we use the latter result to construct
a new drift detection method Dynamic Adapting Window
Independence Drift Detection (DAWIDD). It is a direct
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consequence of theorem 3 to design drift detection as a
dependency test: given X1, ..., Xn as samples; we add a
clock-time random variable Ti, i.e. instead of X1, ..., Xn

we consider (X1, T1), ..., (Xn, Tn). These are identically
distributed due to the fact that time has now become part
of the samples. According to theorem 3, X1, ..., Xn are
not identically distributed, i.e. they have drift, if and only
if Xi and Ti are not statistically independent. This leads
to the following idea: By performing an independence test
between Xi and Ti we obtain a drift detector.

To run independence tests we need a certain amount of
samples for significance. These may be kept in a sliding
window, i.e. new samples (together with clock-time or a
suitable surrogate) are added to the window as they arrive;
an independence test is performed to detect drift; if drift is
detected, samples are removed from the window to reach
minimum; on the other hand, if the window exceeds a certain
size, samples are randomly removed. This is numerically
more stable than sliding along the stream, i.e. removing the
oldest samples, since it better preserves signals which might
indicate a gradual drift. The validity of random deletion
is substantiated by the following lemma, that states that a
removal of samples after a fixed time or number of samples
will always change independence properties but random
removal, which theoretical allows a sample to stay in the
window forever, cannot:

Lemma 4. Let (pt, PT ) and (qt, QT ) be drift processes.
Suppose PT (A) = 0 ⇒ QT (A) = 0 for all measurable
A ⊂ [0, 1] and that pt = qt for PT -a.s. all t ∈ [0, 1]. Then
it holds: if pt has no drift then qt has no drift.

Using ADWIN (Bifet and Gavaldà, 2007) as an archetype
and including our considerations we obtain algorithm 1.
Notice however that we do not need to successively split our
sliding window since we do not rely on a two-sample test.

Assumptions regarding type of drift Mathematically,
DAWIDD can deal with any type of change, which follows
from theorem 3 and lemma 4: theorem 3 states that any form
of drift is equivalent to dependency of random variables X
and T representing data and time respectively, and therefore
can be detected using independence tests. lemma 4 states
that we do not have to keep all data points: it is suffices if
every data point has strictly positive probability to be used
by the test, which can be realized by sufficient sampling
strategies, rather than using a sliding window. Hence algo-
rithm 1 does not relies on assumptions on the underlying
form of drift such as rate of change. A restriction is, of
course, the validity of the used independence test on the
observed data and the used sampling strategy.

Algorithm 1 Dynamic Adaptive Window Independence
Drift Detector (DAWIDD)

1: Input: (xi) data stream, p p-value for statistical test,
nmin minimal number of samples in window, nmax

maximal number of samples in window
2: Initialize Window W ← []
3: repeat
4: Receive new sample xi at time ti from stream (xi)
5: W ←W ∪ {(xi, ti)}
6: if Test(W,p) rejects H0 then
7: output Drift Alert
8: Drop |W | − nmin elements from the tail of W
9: end if

10: while |W | > nmax do
11: Drop element from W keeping distribution
12: end while
13: until At end of stream (xi)

3.1. Theoretical Comparison to existing Drift Detectors

Now that we defined our algorithm we may compare it to
other approaches on a conceptual basis. Our considerations
are summarized in Table 1.

Comparison to supervised drift detection Methods
such as ADWIN (Bifet and Gavaldà, 2007), DDM (Gama
et al., 2004) and EDDM (Baena-Garcı́a et al., 2006) use the
classification error as an indicator of drift (see section 2.1).
They assume that drift leads to a change in accuracy. There
do exist scenarios in which this assumption does not hold:
Consider a binary classification data set with two clusters as
shown in Figure 1a. Both clusters are mixtures of samples
from both classes, but with different dominance. A linear
classifier yields a decision boundary as shown in Figure 1a.
Drift is constructed by moving all samples from one class
along the decision boundary in the direction of the upper
right corner, whereby we do not cross the decision boundary.
The final scenario is shown in Figure 1b. Loss-based drift
detectors do not detect this drift because the classification
error does not change when moving the data points this way,
unless the classifier is retrained. DAWIDD detects this drift

C∙

C▴

(a) A linear classifier fitted to
the original data set.

C∙

C▴

(b) Drifted data set. Note that
the accuracy does not change.

Figure 1. Fooling error based drift detection methods.
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C∙

C∙

C▴

C▴

(a) A quadratic discriminant
model fitted to the original
data set.

C∙

C∙

C▴

C▴

(b) Drifted data set. Mean,
variance and feature-wise
marginals did not change.

Figure 2. Fooling simple distributional drift detectors.

since it does not rely on the classification error.

Comparison to unsupervised drift detection Another
class of methods for drift detection is based on distribu-
tional changes (Kifer et al., 2004; Matteson and James, 2014;
Dette and Wied, 2016; Vorburger and Bernstein, 2006; Dit-
zler and Polikar, 2011; Dasu et al., 2006; Song et al., 2007;
Gretton et al., 2006). These methods try to detect drift by
detecting changes in the sampling distribution of the data
stream. Many of these methods (Kifer et al., 2004; Mat-
teson and James, 2014; Dette and Wied, 2016; Vorburger
and Bernstein, 2006; Ditzler and Polikar, 2011) use some
kind of windowing - they split the data stream (or parts of it)
into two windows and compute statistics on these windows.
However, relying on two windows can be problematic be-
cause we have to select the right length of the window so
that quickly occurring abrupt drifts are recognized – usually,
it is assumed that the distribution of the samples in a window
is fixed. Another problem of some of these methods is that
they try to reduce computational complexity by assuming
that the drift will show in the mean, variance or feature-wise
marginals (Ditzler and Polikar, 2011; Vorburger and Bern-
stein, 2006). This is problematic because one can construct
drifting data sets where the mean, variance and the feature-
wise marginal distribution do not change - such drifts can
not be perceived by methods that make these simplifying
assumptions. For instance we can construct a data set where
the points are arranged like a cross so that each class has
its own diagonal - see Figure 2a. If the cross is symmet-
ric and if the samples are placed symmetrically around the
center, then we can swap the labels of the two diagonals -
see Figure 2b - but the mean, variance and the feature-wise
marginal distributions do not change. Therefore, these meth-
ods do not recognize the drift. However, our method is able
to detect this drift since it does not make any simplifying
assumptions regarding the distributional changes.

Speed of drift As discussed so far most drift detection
methods focus, directly or indirectly, on the difference of
(mean) distributions between two time-windows (see sec-
tion 2.1). This makes it hard to detect both very slow and

Table 1. Comparison of different drift detectors
Method Model Fast Slow General

free drift drift distr.
DAWIDD 3 3 3 3
ADWIN 7 (3) 7 3

DDM 7 7 7 3
HDDDM 3 7 (3) 7

very fast (gradual) drift, i.e. the distribution does not change
abrupt but in a continuous fashion. The issue with slow drift
is that it may only be detected, due to too small changes, if
the chosen window is large enough; however a large win-
dow - besides needing more memory - will make the drift
seemingly faster. Fast drift on the other hand is even more
problematic: If the window is chosen too large then the drift
may vanish because it does not affect mean values, i.e. the
changes cancel out – if the window is chosen too small the
amount of data that can be used for estimations is small, re-
sulting in statistical inaccuracies. Since DAWIDD considers
a property that is window intrinsic it suffers from neither of
both problems.

4. Experiments
We evaluate and compare DAWIDD with different state
of the art drift detection methods - we use HDDDM (Dit-
zler and Polikar, 2011), DDM (Gama et al., 2004),
EDDM (Baena-Garcı́a et al., 2006) and ADWIN (Bifet and
Gavaldà, 2007), since these methods cover representative
different drift-detection schemes. We run our experiments
on several standard benchmark data sets. For reasons of sim-
plicity we used a sliding window in our implementation.1

Theoretical data We use the following theoretical data
sets - each data set contains 4 concepts and thus 3 concept
drifts: Rotating hyperplane (Montiel et al., 2018) (200 sam-
ples per concept), SEA (Street and Kim, 2001) (400 samples
per concept) and RandomRBF (Montiel et al., 2018) (200
samples per concept).

1The code is available at https://github.com/
FabianHinder/DAWIDD

Table 2. Rank statistic over all data sets. Results were ranked for
after every run, with rank 1 always being the best, then mean is
taken over all runs and data sets.

Method TP FN FP Delay
DAWIDD 2.2 2.2 3.3 2.4
HDDDM 3.4 3.4 1.8 3.3
EDDM 2.9 2.9 3.3 2.9
DDM 2.9 2.9 3.3 2.8

ADWIN 3.6 3.6 3.3 3.5

https://github.com/FabianHinder/DAWIDD
https://github.com/FabianHinder/DAWIDD
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Table 3. Results on theoretical and real world benchmark data sets.
Dataset Method TP FN FP Delay

T
he

or
et

ic
al

R
ot

at
in

g
H

yp
er

pl
an

e DAWIDD 1.7(±0.21) 1.3(±0.21) 0.3(±0.21) 37.18
HDDDM 0.45(±0.25) 2.55(±0.25) 0.55(±0.55) 16.67
EDDM 1.25(±0.49) 1.75(±0.49) 1.35(±0.43) 39.64
DDM 0.45(±0.25) 2.55(±0.25) 1.5(±3.15) 14.33

ADWIN 0.3(±0.21) 2.7(±0.21) 2.05(±0.55) 35.0

SE
A

DAWIDD 0.7(±0.81) 2.3(±0.81) 6.05(±5.95) 29.93
HDDDM 0.45(±0.55) 2.55(±0.55) 1.6(±1.44) 33.33
EDDM 0.15(±0.13) 2.85(±0.13) 2.4(±0.54) 28.0
DDM 1.0(±1.2) 2.0(±1.2) 7.95(±3.25) 13.45

ADWIN 0.4(±0.24) 2.6(±0.24) 3.0(±0.6) 28.5

R
an

do
m

R
B

F DAWIDD 1.3(±0.21) 1.7(±0.21) 0.55(±0.25) 41.31
HDDDM 0.55(±0.25) 2.45(±0.25) 0.0 13.64
EDDM 0.7(±0.21) 2.3(±0.21) 1.7(±0.81) 34.5
DDM 0.55(±0.25) 2.45(±0.25) 1.95(±1.75) 19.0

ADWIN 0.25(±0.19) 2.75(±0.19) 2.45(±1.45) 24.6

B
lin

ki
ng

X

DAWIDD 1.35(±0.43) 1.65(±0.43) 0.65(±0.43) 39.0
HDDDM 0.15(±0.13) 2.85(±0.13) 0.7(±0.21) 50.0
EDDM 0.7(±0.21) 2.3(±0.21) 1.95(±1.75) 32.29
DDM 0.25(±0.19) 2.75(±0.19) 1.8(±1.56) 32.8

ADWIN 0.15(±0.13) 2.85(±0.13) 0.6(±1.14) 47.0

M
ix

in
g

G
au

ss
ia

ns

DAWIDD 0.55(±0.25) 3.45(±0.25) 2.45(±0.25) 24.27
HDDDM 0.7(±0.21) 3.3(±0.21) 0.45(±0.25) 28.57
EDDM 0.3(±0.21) 3.7(±0.21) 2.85(±0.13) 23.5
DDM 1.3(±0.81) 2.7(±0.81) 1.45(±1.15) 8.19

ADWIN 0.5(±0.45) 3.5(±0.45) 3.85(±1.03) 21.4

R
ea

l

W
ea

th
er

DAWIDD 1.4(±0.54) 2.6(±0.54) 6.55(±0.85) 25.0
HDDDM 0.0 4.0 0.85(±0.13) –
EDDM 0.55(±0.25) 3.45(±0.25) 2.55(±0.85) 23.27
DDM 0.55(±1.15) 3.45(±1.15) 1.7(±2.91) 22.64

ADWIN 0.15(±0.13) 3.85(±0.13) 1.0(±0.6) 18.0

Fo
re

st
C

ov
er

Ty
pe

DAWIDD 1.4(±0.54) 2.6(±0.54) 7.55(±0.85) 31.82
HDDDM 0.45(±0.55) 3.55(±0.55) 0.55(±0.25) 28.67
EDDM 0.4(±0.24) 3.6(±0.24) 2.25(±2.29) 17.38
DDM 0.3(±0.51) 3.7(±0.51) 1.75(±1.09) 29.5

ADWIN 0.15(±0.13) 3.85(±0.13) 2.3(±1.71) 29.0

E
le

ct
ri

ci
ty

M
ar

ke
t

DAWIDD 0.15(±0.13) 3.85(±0.13) 1.3(±2.01) 21.0
HDDDM 0.0 4.0 0.1(±0.09) –
EDDM 0.3(±0.21) 3.7(±0.21) 2.5(±0.75) 31.0
DDM 1.2(±1.56) 2.8(±1.56) 2.85(±1.93) 20.42

ADWIN 0.4(±0.34) 3.6(±0.34) 2.4(±1.14) 23.88

Furthermore we developed two additional data sets: ”Blink-
ing X” and ”mixing Gaussians”. Both are two dimensional
and have two classes. The Blinking X data set is shown in
Figure 2 - each concept corresponds either to samples from
the left or right plot in Figure 2, a concept drift simply swaps
the labeling. The mixing Gaussians dataset consists of 4
Gaussians containing either 75 or 25 samples - each halve
of the plane containing two Gaussians with 100 samples in
total. At the beginning one halve contains 75 samples of
class 1 (reps. 2) and 25 samples of class 2 (resp. 1) uni-

formly choose from each of the two respective Gaussians;
after the drift occurred each Gaussian only contains samples
of a single class. This process is repeated 4 times.

Real world data We use a total number of three real
world data sets: ”Electricity market prices data set” (Harries
et al., 1999), ”Forest Covertype data set” (Blackard et al.,
1998) and the ”Weather data set” (Elwell and Polikar, 2011).
We do not rely on classification accuracy, but on the ability
of methods for drift detection. Therefore, we modify the
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data set such that moments of drift are known: we randomly
choose 4 time-points and permute the samples within the
resulting intervals randomly.

Setup The supervised methods use a Gaussian Naive
Bayes classifier. We used standard hyperparameter settings.
DAWIDD uses a permutation based conditional indepen-
dence test which uses RBF-SVMs as underlying model
(Chalupka et al., 2018).

The task was to pinpoint drift events in streaming data. After
a drift event occurs drift should be alerted within a time-
window of 50 samples. If drift was detected it is considered
as a true positive. Every alert outside such a time-window
is considered as a false positive. The number of samples
between the occurrence of the drift event and the first alert
is referred to as delay.

We report the mean number and variance (if larger than
10−2) of true positives, false negatives, false positives and
drift detection delay over 80 repetitions of the experiments
presented in Table 3. We also ranked each method in each
experiment allowing as to gain an overall résumé shown in
Table 2.

4.1. Results

We find that DAWIDD yields a competitive performance and
is better than the other methods when it comes to detecting
drift. However, notably DAWIDD yields more false alarms
than some of the other methods, although not with respect
to all data sets, which is due to the used independence test;
an improvement of tests regarding this criterion are subject
to future work.

4.2. Hyper Parameters and Stability

We evaluated the performance of DAWIDD with respect to
different choices of hyper parameters, such as window size
and independence test, as well as its stability with respect
to dimensionality and data perturbation.

Window size We found no negative effect when increas-
ing nmax, it hence should be chosen as large as possible.
nmin appears to be a crucial parameter: if it is chosen too
large, it can cause false positives, if it is too small, the test
accuracy is reduces. In practice, the results are stable in a
large range of choices, however.

Independence tests We tried several independence tests
including the classical χ2-test (F.R.S., 1900), the HSIC-test
(Gretton et al., 2007) and the original FCI test (Chalupka
et al., 2018). FCI suffers from a high computational com-
plexity and appeared to be numerically instable if used with
only few samples. Many tests yield a large amount of type I
or type II errors. DAWIDD with KCI and FCI outperform

all other methods but yield comparably high false positives.

Dimensionality We tested the sensitivity of DAWIDD to
data dimensionality. We checked using 1 to 50 dimensional
data with normal distributed noise and random linear mix-
ing. The results show that DAWIDD used with KCI inde-
pendence test is not affected, FCI only if random mixing is
used. The RBF-SVM test suffers from high dimensionality
due to the used Monte Carlo like sampling scheme.

5. Discussion
We have introduced a formalization for the presence of drift
in continuous time via a probability theoretic framework,
which enables us to show the equivalence of the notion
to change of a loss in an idealized, window-based machine
learning setting, and equivalence to independence of random
variables induced by data and time. The latter formulation
gave rise to a novel drift detection mechanism, which relies
on independence tests, hence provides a step towards model-
free methods which neither require the choice of a specific
window size nor a specific loss such as the classification
loss of a classification prescription. The novel method is yet
restricted insofar as independence tests depend on hyper-
parameters such as the choice of a kernel, threshold of a
hypothesis test, and minimum and maximum window size,
yet it performs more robustly if different types of drift are
present in particular drift which does not show in an asso-
ciated marginal or classification loss. One problem is yet
given by a comparably high false positive rate, due to the
vulnerability of independence test to provide false negatives
for limited data sets with possible spurious correlations.
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