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Abstract
Model fusion is an emerging study in collective
learning where heterogeneous experts with private
data and learning architectures need to combine
their black-box knowledge for better performance.
Existing literature achieves this via a local knowl-
edge distillation scheme that transfuses the pre-
dictive patterns of each pre-trained expert onto a
white-box imitator model, which can be incorpo-
rated efficiently into a global model. This scheme
however does not extend to multi-task scenarios
where different experts were trained to solve dif-
ferent tasks and only part of their distilled knowl-
edge is relevant to a new task. To address this
multi-task challenge, we develop a new fusion
paradigm that represents each expert as a distri-
bution over a spectrum of predictive prototypes,
which are isolated from task-specific information
encoded within the prototype distribution. The
task-agnostic prototypes can then be reintegrated
to generate a new model that solves a new task
encoded with a different prototype distribution.
The fusion and adaptation performance of the pro-
posed framework is demonstrated empirically on
several real-world benchmark datasets.

1. Introduction
In various disciplines such as environmental sensing (Low
et al., 2007; 2009; Podnar et al., 2010; Zhang et al., 2017),
traffic monitoring (Hoang et al., 2014a;b; 2015; 2017; Yu
et al., 2019) and healthcare analytics (Fu et al., 2019; Hong
et al., 2019; Xiao et al., 2019; Huang et al., 2020), observa-
tional data that describe the same phenomenon or concept
are often acquired from multiple experiments, which are con-
ducted on different subjects. The data that they generated
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would therefore have different distributions or statistical
properties. In practice, due to privacy concerns, data col-
lected from different acquisition frameworks (e.g., sensors
and/or experiments) are also private and cannot be shared
among themselves (McMahan et al., 2017; Yoon et al., 2018;
Hoang et al., 2019b). This creates private datasets of the
same phenomenon, where each is used to train a separate
model from a local perspective. For example, in clinical
research, patient information is often recorded across differ-
ent institutions (Xu & Wang, 2019), which do not share data
with each other due to protect the patient’s sensitive infor-
mation. As such, each institution can only model the patient
population using data collected from a single demographic
region, which might not generalize well to others.

Furthermore, in settings with strict security requirements,
parameters of a local model also need to be kept private
due to a recently discovered threat of adversarial ML attack
(Finlayson et al., 2019; Zhao et al., 2019), which essentially
makes it a black box to others. This violates the model
transparency requirement of existing distributed modeling
works addressing this data federation issue (McMahan et al.,
2017; Hoang et al., 2019b; Yurochkin et al., 2019a;b; Singh
& Jaggi, 2019), which results in the black-box challenge.

This led us to the recent development of a black-box fusion
framework (Hoang et al., 2019a) which allows multiple
agents (e.g., medical institutions) to transfuse their black-
box knowledge onto the corresponding white-box surrogates
that share the same model architecture. Each surrogate can
then exchange and aggregate the parameter gradients of
their predictions to generate a parameter-correcting gradient
that combines their learning priors.

However, similar to the existing literature in federated learn-
ing (McMahan et al., 2017; Hoang et al., 2019b; Yurochkin
et al., 2019a;b), this work assumes local models were trained
to solve the same task (albeit with different data). Their
proposed methods in fact do not isolate task-specific (irrele-
vant knowledge) from task-agnostic information (relevant
knowledge) which are implicitly entangled in the parameter
representation of each model. This entanglement presents a
problem in multi-task setting since it does not tell us which
part of an existing model is relevant to a new task and which
part is not. This is also an issue in a remotely relevant litera-
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ture of meta learning (Finn et al., 2017; Yoon et al., 2018)
which tackles the model adaptation problem in multi-task
scenarios from a different technical setting that does not ac-
commodate black-box and pre-trained models with private
training data. For interested readers, a succinct review of
meta learning is provided in Section 2 below.

Motivated by the above intuition, this paper investigates a
different fusion paradigm that represents each black-box
expert as a task-dependent distribution over an infinite spec-
trum of task-agnostic predictive prototypes. The prototypes
intuitively represent the task-agnostic information, which
can be transferred among tasks to corroborate their statistical
strength, whereas their distribution encodes domain-specific
information that needs to be adapted to suit a new task. This
is substantiated by the following technical contributions:

Disentangled Black-Box Embedding. We leverage both
the meta information of each task and observations of its
model’s prediction outcome at a subset of unlabeled training
data to compute an embedded representation for these black
boxes. The embedding factorizes across two separate latent
sub-spaces wherein one encodes generic input patterns (e.g.,
basic features of a face) while the other encodes conceptual
patterns (e.g., specific facial expressions) that are correlated
with the black-box’s prediction. A task, such as emotion pre-
diction for a certain group of people, can then be represented
as a distribution over the generic patterns (Section 3.1).

Task-Agnostic Decomposition. We exploit the developed
disentangled representation to induce a natural decomposi-
tion for an arbitrary model, which is expressed as an inte-
gration over a spectrum of task-agnostic prototypes. This
allows the task-specific information to be succinctly isolated
within a low-complexity parameterization of the integration
distribution, which can be easily adapted into a new task
domain even with limited training examples (Section 3.2).

Model Fusion and Adaptation. We develop a new fusion
and adaptation algorithm that learns to generate the above
model embedding and adaptation of prototype distribution
in an end-to-end fashion. This enables communication be-
tween the embedding and adaptation components, which
allows them to converge on a latent representation that is op-
timized for both model reconstruction – how to recompose
the decomposed prototypes to best reproduce each black
box – and adaptation – how to adapt the prototype distribu-
tion to best suit a new task domain characterized by a few
shots of training examples (Section 3.4).

To demonstrate the efficacy of our framework, we evaluate
its performance in a wide range of settings and on multiple
benchmarks, which include the MNIST (LeCun et al., 2010),
n-digit MNIST (Oh et al., 2018) and Mini-ImageNet (Ravi
& Larochelle, 2017) datasets. Our empirical studies essen-
tially show that by using the proposed task-agnostic repre-

sentation, the fused model is able to localize its adaptation
to the most relevant parts of its prototypical representation,
which can be adapted well to any new task with limited
training data (Section 4).

2. Related Works
2.1. Model Fusion

Model fusion (Hoang et al., 2019a;b) is an emerging study
that arises recently from the traditional context of distributed
machine learning (ML) where a single analytic model is
engineered in the cloud (Chen et al., 2013a; Low et al.,
2015; Deisenroth & Ng, 2015; Hoang et al., 2016) as a
service to be used by local machines. Distributed ML thus
requires broadcasting data statistics from local experts to a
central server for processing. These works, however, did not
account for the privacy of data where local models cannot
access each others’ private data.

To accommodate this privacy constraint, existing works
in distributed (Allamraju & Chowdhary, 2017; McMahan
et al., 2017; Hoang et al., 2018a; 2019b; Yurochkin et al.,
2019a;b) and/or multi-agent learning (Chen et al., 2012;
2013b; Hoang & Low, 2013; Ruofei & Low, 2018; Hoang
et al., 2018b) enforce an identical knowledge representation
across all experts to impose a (hierarchical) statistical rela-
tionship between their parameters. This enables efficient
communication and aggregation of predictive knowledge
among themselves via inferential computation. This is, how-
ever, not desirable in practical domains with extra propri-
etary constraints imposed on the models themselves where
local experts cannot communicate in advance to agree on the
same model architecture, and also do not want to commu-
nicate their model parameters due to a recently discovered
threat of adversarial attack (Finlayson et al., 2019; Zhao
et al., 2019). In contrast, allowing their architecture to be
heterogeneous and to remain as black-box interface avoids
these problems, but causes difficulty in communication.

To resolve this dilemma, the most recent work of (Hoang
et al., 2019a) proposed a collective black-box fusion mech-
anism that allows black-box experts to interact, learn and
distill the predictive behaviors of one another into white-box
surrogates encoded with homogeneous information sum-
maries. This allows the black boxes to represent, communi-
cate and combine their expertise efficiently to harness the
full potential of their collective intelligence without having
to publicize their private data and/or model architecture. It
does not however accommodate for black-box models that
were trained to solve different (but related) tasks.

This necessitates the development of new computation ca-
pabilities to disentangle relevant knowledge from irrele-
vant knowledge that might carry misleading inductive bias,
which is the focal theme of this paper (Section 3).
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2.2. Meta Learning

Different from model fusion which combines pre-trained
models solving the same task into a new model with im-
proved performance, meta learning aims to compute a uni-
versal model initializer for a given distribution of task (or
meta description of task) which can be adapted to any task
characterized by its few shots of training examples.

More concretely, in meta-learning, each task is indexed with
a task descriptor τ (e.g., the vector of coefficients that define
it) and all tasks accept the same input and output spaces.
The task descriptor is further assumed to be distributed by a
given distribution p(τ). A model Q(x; γ) is defined to be a
mapping from an input x to an outcome in the output space,
which is parameterized by γ. The performance of Q in task
τ is then assessed by a differentiable loss function Lτ (γ).

During the meta-learning phase, we want to learn γ∗ for
Q(x; γ∗) such that it can be quickly updated to perform well
in an arbitrary new task τ ′ ∼ p(τ) using only its K shots
of training examples Dτ ′ = {x(i)

τ ′ , y
(i)
τ ′ }Ki=1. Assuming that

Q(x; γ∗) is updated via gradient descent, meta learning aims
to compute γ∗ such that starting from γ∗, this rule can make
rapid progress on any new task τ ′ ∼ p(τ). This is achieved
via minimizing (Finn et al., 2017),

γ∗ = min
γ

Eτ∼p(τ)
[
Lτ

(
γ − α∇γLτ (γ)

)]
, (1)

where α is a tunable step-size parameter. This in turn can
be achieved via stochastic gradient descent with unbiased
samples τ1, τ2, . . . , τn ∼ p(τ):

γ∗ = γ∗ − β
n∑
i=1

∇γ
[
Lτi

(
γ∗ − α∇γLτi(γ∗)

)]
= γ∗ − β

n∑
i=1

[(
I− α∇2

γLτi(γ∗)
)
∇γLτi(γi)

]
(2)

where γi = γ∗ − α∇γLτi(γ∗), ∇2
γLτi(γ∗) is the Hessian

of Lτi(γ) evaluated at γ∗, I is the identity matrix and β is
a tunable meta-learning step size. For computational effi-
ciency, first-order meta learning ignores the Hessian, which
reduces the above update rule to the following alternating
gradient adaptation and aggregation, γi = γi−α∇γLτi(γ∗)
and γ∗ = γ∗ − β

∑n
i=1∇γLτi(γi).

2.3. Variational Auto-Encoder (VAE)

Our embedding component is built on the seminal varia-
tional auto-encoder (VAE) framework for data embedding
of (Kingma & Welling, 2013). We review the basic of VAE
below and discuss how to extend it towards a factorized
model embedding later in Section 3.1.

Let x denote a random variable that is distributed according
to an unknown density pD(x). We want to learn a latent

variable model pθ(x, z) , p(z)pθ(x|z) that captures this
generative process. The latent variable model comprises a
fixed latent prior p(z) and a parametric likelihood pθ(x|z).
To learn θ, we maximize the variational evidence lower-
bound (ELBO) L(x; θ, φ) of log pθ(x):

L(x; θ, φ),Ez∼qφ

[
log pθ(x|z)

]
−KL

(
qφ(z||x)||p(z)

)
with respect to an arbitrary posterior surrogate qφ(z|x) '
pθ(z|x) over the latent variable z.

This can be viewed as a stochastic auto-encoder with
pθ(x|z) and qφ(z|x) acting as the encoder and decoder,
respectively. Here, θ and φ characterize the neural network
parameterization of these models. Their learning is enabled
via a re-parameterization of qφ(z|x) that enables stochastic
gradient ascent (SGA) (Kingma & Welling, 2013).

3. Multi-Task Black-Box Model Fusion
Let Bτ1 ,Bτ2 , . . . ,Bτp denote the p expert models which
were pre-trained to solve p related tasks τ1, τ2, . . . , τp where
each τi describes the corresponding task’s meta information
(e.g., attributes describing the data population and prediction
target). Each model Bτi acts as a black-box interface which
returns a predictive distribution η over a label space for each
input x (e.g., images) from an unlabeled set of data U.

Given an unseen task with meta information τ∗, we are
interested in learning a new model Bτ∗ that performs well
on τ∗ even if Dτ∗ only provides a few shots of examples.
Assuming τ∗ is drawn from the same distribution p(τ), this
can be achieved by distilling task-agnostic knowledge from
Bτ1 ,Bτ2 , . . . ,Bτp , and recomposing them to best fit the
provided few shots of training data. This defines the multi-
task model fusion task that this paper aims to address.

3.1. Disentangled Black-Box Embedding

Let H = W × Z denote a factored space that embeds
the latent features describing both the task and its solution
model. Our goal is to learn a latent representation that
distills task-dependent information in W, while encoding
the rest within Z. That is, W isolates generic input patterns
from Z which encodes task-agnostic concepts that underline
the black-box’s inferential mechanism. Both W and Z
contain encoding generative information of the input. As
a concrete example, consider the problem of handwritten
digits classification, we want to encourage the following
behavior in our model: z encodes the information central
to making predictions (i.e. the numerical value of the digit)
whereas w encodes information that does not influence the
prediction, such as the width of the stroke, the angle in
which the digit is written, the light intensity of the images,
and other abstract stylistic properties.
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Figure 1. Graphical models of (a) the generative and (b) inference
networks – p(w, z,x, η, τ ; θ, γ, α) and q(w, z|x, η, τ ;φ), respec-
tively – in our auto-encoding module. The dashed arrows in (b)
indicate the posterior surrogates that form the inference network.

Under this modeling paradigm (see Fig. 1), we adopt the
following parameterization for p(w, z,x, η, τ ; θ, γ, α),

p(w, z,x, η, τ ; θ, γ, α) , pθ(x|w, z)pγ(w|τ)

pα(η|z)p(τ)p(z) , (3)

where θ, γ, α denote an abstract parameterization often im-
plemented in form of a (deep) neural network in our experi-
ment. We assume the latent priors p(z) and p(τ) are fixed
and can be sampled from. Thus, learning this representation
means learning (θ, γ, α) that best explains the observations
(x, η, τ) which were collected by observing the prediction
of Bτ1 ,Bτ2 , . . . ,Bτp at the unlabeled data x ∈ D.

Concretely, this means optimizing for (θ, γ, α) that maxi-
mizes the following expected model evidence,

maximize
(θ,γ,α)

E(x,τ,η)∼R

[
log p(x, η, τ ; θ, γ, α)

]
, (4)

where R denotes the set of observations (x, η, τ) and
(x, η, τ) ∼ R denotes the above expectation as an empirical
average over R. Optimizing Eq. (4) however is difficult
since log p(x, η, τ ; θ, γ, α) is intractable. To sidestep this
issue, we instead exploit a surrogate distribution,

qφ(w, z|x, τ, η) , qφ(z|x, η) qφ(w|x, τ) (5)

to approximate the true posterior over the latent variable
p(w, z|x, τ, η; θ, γ, α). This is otherwise known (in the con-
text of variational auto-encoder) as the inference network,
which is parameterized by φ. Using qφ(w, z|x, τ, η), we
can re-express log p(x, η, τ ; θ, γ, α) as

log p(x, η, τ ; θ, γ, α) = L(x, η, τ ; θ, γ, α, φ) + KL(qφ||p)
≥ L(x, η, τ ; θ, γ, α, φ) (6)

where KL(qφ||p) is the short-hand notation for the Kullback-
Leibler divergence KL(qφ(w, z|x, τ, η)||p(w, z|x, τ, η)),
and L(x, η, τ ; θ, γ, α, φ) denotes the individual variational
lower-bound of log p(x, η, τ ; θ, γ, α),

L(x, η, τ ; θ, γ, α, φ) =Eqφ

[
log

p(w, z,x, η, τ ; θ, γ, α)

qφ(w, z|x, τ, η)

]
(7)

which can be further decomposed as

L(x, η, τ ; θ, γ, α, φ) =Eqφ
[

log pθ(x|w, z) + log pα(η|z)
]

−KL
(
qφ(z|x, η)||p(z)

)
+ log p(τ)

−KL
(
qφ(w|x, τ)||pγ(w|τ)

)
(8)

Similar to the variational lower-bound of VAE (Section 2.3),
Eq. (8) is expressed as an expectation over the surro-
gate instead of the true posterior over (w, z), which al-
lows us to compute its unbiased stochastic gradient via
re-parameterization (Kingma & Welling, 2013). Thus, we
can learn (θ, γ, α) via optimizing E[L(x, η, τ ; θ, γ, α, φ)]
instead of the expected model evidence in Eq. (4).

3.2. Task-Agnostic Prototype Decomposition

Once (θ, γ, α) is learned, we can express the distribution
over η conditioned on x and τ as follows,

p(η|x, τ) ∝
∫
w

∫
z

p(w, z,x, η|τ ; θ, γ, α)dzdw

=

∫
w

Gw (η|x; θ, α) pγ(w|τ)dw , (9)

where Gw(η|x; θ, α) is expressed as an integration over z,

Gw(η|x; θ, α) =

∫
z

pθ(x|w, z)pα(η|z)p(z)dz

' 1

m

m∑
i=1

pθ(x|zi,w)pα(η|zi) , (10)

where the samples z1, z2, . . . , zm are drawn independently
and identically from the latent prior p(z). This allows us
to efficiently store the entire spectrum of Gw in memory a
priori via sampling from p(z) and caching the previously
learned embedding parameterization (θ, α). The derivation
of Eq. (9) and Eq. (10) above follows immediately from the
marginalization and factorization in Eq. (3).

Then, by associating an arbitrary black-box model Bτ (x) ≡
arg maxη p(η|x, τ) with the above distribution over pre-
diction outcome, Eq. (9) reveals a decomposition of
Bτ1 ,Bτ2 , . . . ,Bτp into a spectrum of task-agnostic infer-
ential prototypes Gw(η|x; θ, α) succinctly characterized by
(θ, α). Note that while Gw(η|x; θ, α) is structured around a
generic pattern w – see Eq. (10), it is not specific to any task
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τ which is characterized by a different prototype distribution
pγ(w|τ) parameterized by γ.

Intuitively, Gw(η|x; θ, α) encodes inferential knowledge
that is commonly shared across tasks while pγ(w|τ) cap-
tures information specific to τ which measures the rele-
vance of each inferential prototypeGw(η|x; θ, α) to τ . This
presents an explicit construction of Bτ∗ which maps from
input x to the most likely outcome η,

Bτ∗(x) =

∫
w

[
arg maxη Gw(η|x; θ, α)

]
pγ(w|τ∗)dw ,

= Ew

[
arg maxη Gw(η|x; θ, α)

]
, (11)

where the expectation is over w ∼ pγ(w|τ∗) and as such,
the agnostic prototypes Gw(η|x; θ, α) are recomposed via
task τ∗’s prototype preference pγ(w|τ∗). Since the integra-
tion in Eq. (11) is generally intractable, we instead replace
it by the following unbiased estimate:

Bτ∗(x) =
1

n

n∑
i=1

[
arg maxη Gwi(η|x; θ, α)

]
, (12)

where the samples w1,w2, . . . ,wn are drawn identically
and independently from pγ(w|τ∗).

Eq. (10) and Eq. (12) thus characterize two important steps
in our new fusion paradigm: (1) decomposition to distill
task-agnostic inferential prototypes from existing models
solving related tasks – see Eq. (10); and (2) recomposition
to re-integrate them to solve a new task drawn from the
same task distribution – see Eq. (12).

Issues. There are however two remaining issues that need
to be addressed (see Sections 3.3 and 3.4):

1. Though our modeling in Section 3.1 stipulates that the
latent z that captures only generic input patterns would have
no influence on the prediction η of the black-box, there is
no explicit mechanism to enforce it. Intuitively, we need to
make sure changing the distribution of z would not change
the distribution of η if x is observed;

2. The recomposed model Bτ∗ only fits what the generative
scheme in Section 3.1 believes to be data that were plausibly
generated from task τ∗ via observing Bτ1 ,Bτ2 , . . . ,Bτp .
Intuitively, this is a fit on average over an entire data dis-
tribution induced by (θ, α, γ), which might not fit well at
a particular set Dτ∗ that contains a few shots of training
examples for an unseen task τ∗.

Addressing these issues, as explained in Sections 3.3 and 3.4
below, will show how the above algorithmic components
in Sections 3.1 and 3.2 can be put together in an end-to-
end training pipeline where (intuitively) the need to suit
a certain task is back-propagated to guide the embedding
process towards a particular decomposition that can be best
recomposed to solve the task.

3.3. Decoupling Task-Agnostic and Task-Dependent
Variables via Minimizing Mutual Information

To address the first issue, we need to regularize our embed-
ding loss in Eq. (4) such that it prioritizes representation
that induces minimal mutual information between w and
η. Since (θ, γ, α) does not have an explicit influence on the
mutual information between w and η, we need to introduce
an extra surrogate component that captures this and interact
with (θ, γ, α) at the same time.

Concretely, this is achieved by expressing the mutual in-
formation as I(η;w) = H(η)−H(η|w) in which the first
term is a constant and can be ignored. Minimizing I(η;w)
is therefore equivalent to minimizing −H(η|w)

=

∫
η,w

p(η,w) log p(η|w)dηdw

=Ep(x,τ,η)
[∫

w,z

p(w, z|x, τ, η) log p(η|w)dwdz

]
'E(x,τ,η)∼R

[∫
w,z

qφ(w, z|x, τ, η) log qψ(η|w)dwdz

]
(13)

where the first equality follows from the marginalization
identity of p(η,w) over (x, τ, η). It is then followed by
three approximations in the next step: (a) approximate the
true marginal p(x, τ, η) by its empirical distribution via
R as defined after Eq. (4); (b) re-use qφ(w, z|x, τ, η) in
Eq. (6) to approximate the true posterior; and (c) approxi-
mate p(η|w) by introducing a new surrogate qψ(η|w).

This in turn enables minimizing I(η;w) via max-
imizing E[FI(x, τ, η;φ, ψ)] where the expectation is
over (x, τ, η) ∼ R and the information regularizer
FI(x, τ, η;φ, ψ) is given as

FI(x; τ, η;φ, ψ) =

∫
w,z

qφ(w, z|x, τ, η) log qψ(η|w)dwdz

=

∫
w

qφ(w|x, τ) log qψ(η|w)dw (14)

Intuitively, qψ(η|w) is the new surrogate component that
captures the information relationship between η and w,
which interestingly interacts with φ via FI(φ, ψ) and with
(θ, γ, α) by extension if we optimize L(x, τ, η; θ, γ, α, φ)
and FI(x, τ, η;φ, ψ) together.

3.4. Model Fusion and Adaptation via Minimizing
PAC-Bayesian Generalization Bound

To address and further elaborate on the second issue, re-
call that the decomposed prototypes Gw(η|x; θ;α) in Sec-
tion 3.2 are task-independent. Thus, to incorporate them
into a new model Bτ∗ that solves an unseen task τ∗, one
approach is to re-integrate them via Eq. (11) with respect
to τ∗’s prototype distribution pγ(w|τ∗) that (intuitively) ex-
presses τ∗’s prototype preference. However, while such
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distribution can be immediately induced from the learned
generative model in Section 3.1, its parameterization γ,
which was learned as part of the aforementioned generative
model, does not take into account the few shots of training
examples Dτ∗ of the new task τ∗. As such, pγ(w|τ∗) needs
to be further adapted to fit Dτ∗ and one principled method
to achieve this is to view pγ(w|τ∗) as a reference prior over
a space of hypotheses Gw which were established with-
out observing Dτ∗ . One might then attempt to use Bayes
rule to compute a posterior over these hypotheses given the
prior pγ(w|τ∗) and the observations Dτ∗ . However, this
approach does not work unless we have already had access
to the likelihood of observing Dτ∗ from Bτ∗ which is what
needs to be estimated in the first place.

To resolve this, we instead adopt the PAC-Bayes method
(McAllester, 1999; Shalev-Shwartz & Ben-David, 2014),
which allows one to provably learn a posterior that best fits
the observations without knowing their likelihood. Instead,
this is achieved by re-characterizing the observation fitness
via a parameterized Gibbs loss,

G (qλ) = E(x,y)∼π

[
Ew∼qλ

[
`
(
ηw(x), y

)]]
, (15)

where π is the latent data distribution of τ∗ unbeknownst
to us, ηw(x) = arg maxη Gw(η|x; θ, α) and `(η, y) = 1−
(η)y where (η)y is the y-th component of η. In addition, the
above loss measure in (15) is also parameterized by λ which
defines a surrogate posterior qλ over the space of prototypes
Gw. Learning λ that minimizes G(qλ) then produces the
desired posterior qλ(w) that fit the observations. That said,
a direct minimization of G(qλ) is usually intractable since
we do not know π. To avoid this, we need to relate G(qλ)
to its empirical version,

Ĝ (qλ) = |Dτ∗ |−1
∑

(x,y)∈Dτ∗

Ew∼qλ

[
`
(
ηw(x), y

)]
, (16)

which replaces the unknown data distribution π with a finite
set of training examples Dτ∗ . This can then be achieved
by applying the classical PAC-Bayes bound of (McAllester,
1999) on G(qλ) and Ĝ(qλ). The adapted result is formally
stated in Theorem 1 below.

Theorem 1 (PAC-Bayes Bound on Prototype Space)
Let π denote τ∗’s data distribution and let Dτ∗ denote a
finite collection of a few shots of training examples drawn
independently from π. For any δ ∈ (0, 1) and learned prior
pγ(w|τ∗), with probability at least 1− δ over Dτ∗ ∼ π:

G(qλ) ≤ Ĝ(qλ) +

√
KL (qλ‖pγ) + log

|Dτ∗ |
δ

2|Dτ∗ | − 1
(17)

where G(qλ) and Ĝ(qλ) are defined in Eqs. (15) and (16)
while qλ and pγ are shorthand for qλ(w) and pγ(w|τ∗).

Thus, using Theorem 1, one can adapt pγ(w|τ∗) via opti-
mizing the following adaptation regularizer,

FR (γ, λ) , Ĝ(qλ) +

√
KL (qλ‖pγ) + log

|Dτ∗ |
δ

2|Dτ∗ | − 1
(18)

which essentially learns an adapted version qλ(w) of
pγ(w|τ∗) that best fits Dτ∗ .

Remark. Note that to apply the PAC-Bayes bound here,
the prior pγ(w|τ∗) must not depend on Dτ∗ and the lost
measure must have value between 0 and 1. Both of which
are met by our choice of the embedding model in Section 3.1
and loss function `(η, y) = 1− (η)y . In addition, note also
that the adaptation regularizer FR(γ, λ) above can be opti-
mized with respect to both γ and λ to create a bidirectional
feedback channel between the embedding and adaptation
components so that both can converge to a beneficial param-
eter state that fits both the black boxes and few-shot training
examples of the new task. As such, our approach can be
viewed as learning a data-driven prior from the black-box
models, which is similar in spirit to previous studies in
(Ambroladze et al., 2007; Germain et al., 2009).

Algorithm 1: Multi-Task Model Fusion
input :U – unlabeled dataset

Dτ∗ – few-shot dataset of τ∗
Bτ1 . . .Bτp – pre-trained black boxes
n`, ne, na, ζI and `r – training parameters

output :Learned parameters (θ, γ, α) and (φ, ψ)

1 initialize (θ, γ, α), (φ, ψ) and draw sample:
2 z1 . . . zm ∼ p(z) and R← (xi, τi, ηi)

r
i=1 where

3 xi ∼ U, τi ∈ {τ1 . . . τp} and ηi = Bτ (xi)

4 for `← 1 to n` do
5 maximize E [L− ζIFI ] over (x, τ, η) ∼ R
6 with L in Eq. (8) and FI in Eq. (14)
7 for e← to ne do
8 sample (xe, τe, ηe) ∼ R

9 ∆ξ ← ∇ξ
[
L− λIFI

]∣∣∣
(x,τ,η)=(xe,τe,ηe)

10 ξ ← ξ + `r∆ξ where ξ ∈ {θ, γ, α, φ, ψ}
11 end
12 minimize FR via Eq. (18)
13 for a← to na do
14 λ← λ− `r∇λFR(γ, λ)
15 end
16 sample w1 . . .wn ∼ qλ(w)
17 approximate Gwi(η|x; θ, α) via Eq. (10)
18 end

19 return Bτ∗ – recomposed via Eq. (12)

Fusion Algorithm. Finally, putting these together yield
the following fusion algorithm (see Algorithm 1) which
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iterates between (1) maximizing E[L(x, τ, η; θ, γ, α, φ)−
ζIFI(x, τ, η;φ, ψ)] with respect to (θ, α, φ, ψ) while fixing
γ; and (2) minimizing FR(γ, λ) with respect to λ while
fixing (θ, α, γ, φ, ψ).

In step (1), the expectation is over (x, τ, η) ∼ R. L and
FI are optimized simultaneously – the two objectives are
traded off via tunable parameter ζI . This allows us to segre-
gate generic and specific encoding information in separate
but composable latent space, as shown empirically in Sec-
tion 4.1. Steps (1) and (2) will also be iterated to allow infor-
mation from minimizing FR to propagate through (φ, ψ),
which in turn guides the decomposition process in step (1).

Likewise, information from maximizing L− ζIFI in step
(1) will be forwarded to step (2) to guide the adaptation.
This encourages the decomposition to recognize and discard
artifact noises (e.g., observational noise that pertains only
to a particular task) that are not generalizable to new tasks.
This will be shown empirically later in Section 4.1.

4. Experiments
This section presents our empirical results to demonstrate
that (1) our method is capable of decoupling task-agnostic
and task-specific information of each black-box model (Sec-
tion 4.1) into separate but composable representations (Sec-
tion 4.2); and that (2) these representations can be recom-
posed and adapted into a new model that performs well on a
new task with only a few shots of training data (Section 4.3).
This is achieved with the following experimental settings:

Task Description. We simulate a multi-task fusion sce-
nario that involves black-boxes learning from the MNIST
dataset (LeCun et al., 2010), n-digit MNIST dataset (Oh
et al., 2018), and Mini-ImageNet dataset (Ravi & Larochelle,
2017). Given black boxes Bτ1 . . .Bτp pre-trained on im-
ages of a subset of classes, and a new task τ∗ concerning
the differentiation between another subset of (potentially)
unseen classes, the task is to synthesize a new model Bτ∗

that performs well on τ∗ despite its limited data Dτ∗

Comparison Baseline. We compare the classification ac-
curacy of our algorithm’s fused model Bτ∗ on the new task
against the following baselines: (a) an additive model B+

that sums up and re-normalizes the prediction scores pro-
vided by the private black boxes {Bτi}

p
i=1; (b) a pointwise-

max model Bmax that scores a candidate label by the highest
scores given by {Bτi}

p
i=1; (c) a modified version of MAML

(Finn et al., 2017) adapted to private data setting1; and (d) a
few-shot model FS trained from scratch using only the few
shots of data from the new task. The full parameterization of
our model and these baselines are detailed in Appendix B.

1In MAML (Finn et al., 2017), one has access to the training
data of each model and its parameters, which provides more infor-
mation than our private and pre-trained setting (see Appendix A).

4.1. Task-Agnostic Embedding

To demonstrate that our method can find a decoupling and
task-agnostic representation of a pre-trained model which
segregates its generic and specific patterns into separate
latent coordinates, we randomly sample a digit image x, a
model Bτ ∼ {Bτ1 . . .Bτp}2 and extract its corresponding
class probabilities vector η = Bτ (x).

For visualization purpose, this section focuses on the
MNIST dataset. First, a digit-concept encoding z is sam-
pled from qφ(z|x, η). Fixing z, we vary the specific pat-
tern w over its latent space and generate the correspond-
ing reconstructed images (one per latent coordinate w)
x′ ∼ pθ(x|w, z). The results (see Figs. 2a/b/c/d) interest-
ingly show that all generated images x′ are about the same
digit but with different orientations and stroke variations.

This implies w and z are segregated but composable rep-
resentations that express the black box’s prediction at a
particular input. Furthermore, it can also be observed from
Fig. 2a/b/c/d that the stylistic properties encoded at early
stages (i.e., iteration 10) during training are less natural than
those encoded at latter stages (i.e., iteration 100). After 10
iterations, there is not much variation in orientation while
the strokes are somewhat distorted by artifact noises. After
100 iterations, however, we observe a wider range of orien-
tations (unlike artifact noises) across different digits. This
is expected since intuitively, it is much easier to adapt and
incorporate such generalizable patterns into the modeling
of a new task than using the artifact noises, which will be
recognized and discarded by the adaptation regularizer – see
Eq. (18) – as we increase the number of training iterations.

4.2. Prototype Visualization

Eq. (10) introduces the notion of a task-agnostic inferential
prototype Gw(η|x; θ, α) which captures the black box’s
predictive behavior around a specific pattern w. To interpret
the semantic information captured by these prototypes, we
visualize its inferential behaviour by sampling a digit image
x, a model Bτ ∼ {Bτ1 . . .Bτp} which then allows us to
acquire its probabilistic prediction η = Bτ (x) at x.

A specific pattern w is then sampled from qφ(w|x, τ) which
results in an inferential prototype Gw(η|x; θ, α). To under-
stand this prototype, we keep w and η fixed while varying
the generic pattern z over its latent space and generating:
(1) the reconstructed image x′ ∼ pθ(x|w, z); and (2) a heat-
map representing the imposed density of Gw(η|x; θ, α) on
the corresponding latent coordinate z. Notice that this is
in direct opposite to Section 4.1 wherein we keep z fix and
vary w. The results are plotted in Fig. 2f and Fig. 2h, which
show decoded images of multiple digits.

2Task τ is selected so that it describes a classification task that
involves the true label of x as a potential output candidate.
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(a) n` = 10 (b) n` = 100 (c) n` = 10 (d) n` = 100

(e) n` = 100 (f) n` = 100 (g) n` = 100 (h) n` = 100

Figure 2. [TOP – fix z and vary w] plots of reconstructed images of handwritten digits 1 – see plots (a) and (b) – and 3 – see plots
(c) and (d) – via pθ(x|w, z) after n` = 10 and 100 training iterations with respect to different samples of w drawn from the encoder
qφ(w|x, η) of a sampled image x of the corresponding digit and outcome distribution η = Bτ (x) for a sampled task τ that involves
digits 1 and 3; and [BOTTOM – fix w and vary z] plots of activation heat-maps and encoded digit patterns of two inferential prototypes
Gw(η|x; θ, α) corresponding to two fixed samples of w. The encoded digit patterns of these prototypes (via their reconstructed images) –
see plots (f) and (h) – are visualized across the space of z while the activation heat-maps – see plots (e) and (g) – show which of their
encoded patterns were activated strongest when the prototypes took images x of digits 3 and 8, respectively, as input. Here, brighter colors
correspond to higher numerical values which indicate stronger activation. See Appendix C for more visualizations and explanations.

Transferability. In contrast to the results in the previous
section, a single w can be combined with different latent
concept z to generate images of different digits. This illus-
trates that a specific pattern w tends to encode properties
that are not exclusive to any single digit. This corroborates
our proposition that the interaction between the embedding
and adaptation losses in Algorithm 1 would gear the de-
composition towards inferential patterns with transferable
information that can generalize well across different digits.

As a concrete example, the reconstructed images in Fig. 2f
are generated from the latent w that underlies Gw and they
all exhibit a two-circle pattern that manifests itself in digits
3 and 8. Likewise, the decoded images from a prototype vi-
sualized in Fig. 2h exhibit a S-like stroke pattern that can be
seen very commonly in both digits 5 and 8, thus demonstrat-
ing their ability to capture transferable knowledge patterns.

Pattern Activation. On the other hand, the corresponding
heat-maps over the decoded images in Fig. 2e and Fig. 2g
show which part of the prototype’s encoded knowledge is
activated by an input image. The prototype activation at
a latent coordinate z is computed via pθ(x|z,w)pα(η|z)

following Eq. (10). Fig. 2e and Fig. 2g thus show strong
prototype activation at decoded images visualizing digits 3
and 8, which share the same digit-concept with the sampled
images used to generate them. Thus, this demonstrates the
prototypes’ semantic consistency in their pattern activation.

4.3. Multi-Task Model Fusion

Finally, we report the performance of our algorithm in syn-
thesizing and adapting a new model to solve a new task from
previous models on three different datasets. In particular,
we evaluate and compare the performance of our model
against a set of baselines with respect to a series of 2-way
classification tasks on MNIST and n-digit MNIST as well
as 5-way classification tasks on Mini-ImageNet.

First, we partition the training classes into 2 or 3 sub-
datasets Dτ1 ,Dτ2 and Dτ3 , and train one black-box models
Bτ1 ,Bτ2 and Bτ3 for each of the corresponding sub-dataset.
In Table 1 above, different settings are presented in the left-
most column. Each setting is indexed with a dataset name,
which is followed by the number of black-box models (ei-
ther 2 or 3) and a letter S or U that indicates respectively
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1-SHOT B+ BMAX Bτ∗ (OURS) BMAML FS
MNIST-2-S 96.25± 1.06 96.25± 1.06 94.25± 4.60 92.13± 1.60 80.75± 13.7
N-MNIST-3-S 99.02± 0.71 99.12± 0.71 96.25± 0.35 80.79± 2.06 77.11± 7.07
MINI-IMAGENET-3-S 87.20± 3.75 87.21± 3.01 87.10± 1.02 41.38± 2.13 26.45± 0.55
MNIST-2-U 50.25± 0.35 50.75± 1.06 78.56± 2.70 73.92± 7.32 76.75± 5.30
N-MNIST-3-U 48.11± 4.95 48.25± 6.01 94.02± 1.41 77.25± 7.71 92.50± 0.70
MINI-IMAGENET-3-U 21.80± 3.78 22.41± 2.02 42.80± 1.11 40.78± 2.01 26.17± 0.78

5-SHOT B+ BMAX Bτ∗ (OURS) BMAML FS
MNIST-2-S 97.00± 2.12 97.00± 2.12 95.07± 1.41 95.49± 0.12 83.89± 0.16
N-MNIST-3-S 98.91± 0.71 98.94± 0.71 99.25± 0.35 94.75± 0.60 98.33± 0.46
MINI-IMAGENET-3-S 87.23± 3.60 87.23± 3.31 88.40± 1.02 40.96± 1.13 27.80± 0.15
MNIST-2-U 50.25± 0.35 50.75± 1.06 88.77± 0.35 87.49± 4.83 89.21± 3.89
N-MNIST-3-U 47.51± 7.78 47.51± 7.78 99.23± 0.35 95.79± 0.53 97.77± 1.77
MINI-IMAGENET-3-U 21.81± 3.61 22.46± 2.32 43.78± 1.97 40.77± 2.56 27.21± 0.34

Table 1. Classification performance of our method and 4 other baselines on three datasets: MNIST (2-way), n-digit MNIST (2-way) and
Mini-ImageNet (5-way). Each setting is coded by the dataset name, which is followed by the number of black-box models on related tasks
and a letter S or U which indicates whether each test classes were seen or unseen by at least one of the black-box models. In all cases, the
reported performance (with mean and standard deviation) is averaged over multiple independent data partitions and runs. The performance
of our model Bτ∗ and the best reported performance over all tested methods are highlighted in bold for each experiment setting.

whether each test class was observed by at least one black-
box model or all test classes are completely novel and have
not been seen by any of the black boxes. The S-setting
thus evaluates our algorithm’s capability of compiling and
aggregating existing knowledge from multiple black-box
models to tackle slight variants (with substantial overlap-
ping of classes) of existing tasks, whereas the U-setting tests
its ability to further adapt such knowledge to learn and solve
novel tasks whose classes have not been seen before.

For each experiment setting, the reported results (with mean
and standard deviation) are averaged over multiple indepen-
dent data partitions and runs. Our reported performance in
Table 1 in particular show that:

1. In cases where each test class was observed previously by
at least one of the black boxes (e.g., the S-setting which is
reported in the top 3 rows), simple heuristic fusion methods
such as the additive B+ and pointwise-max Bmax models
obtain results that are (a) much better than those of MAML
and the FS baseline, especially in the more sophisticated
Mini-ImageNet domain; and (b) competitive to ours in most
cases (except for MNIST where ours are slightly worse).
This (not surprisingly) implies the diminishing gain of meta
learning methods over simple aggregation heuristics.

2. Conversely, in cases where all test classes have not been
observed previously by any of the black-box models (e.g.,
the U-setting which is reported in the 3 bottom rows), the
performance of the simple heuristic methods decreases sig-
nificantly and reports accuracies that are not much better
than those of a random guess. In contrast, both MAML and
our proposed method achieve much better results, which

can be observed consistently across all datasets. In all these
cases, it is also observed that the performance of our method
is much better than MAML’s and other heuristic baselines’.

3. Lastly, in most cases (specifically, 5 out of 6 in Table 1),
the FS method performs much worse than ours, especially in
Mini-ImageNet scenarios. This demonstrates the necessity
of knowledge transferability (or meta learning) in multi-task
learning, especially in those that have more sophisticated
space of output classes (e.g., Mini-ImageNet) whose learn-
ing difficulty is further aggravated by the federated nature of
data and the limited training data available to train a model
from scratch for a new task.

5. Conclusion
This paper introduces a new fusion framework to extract and
combine transferable knowledge prototypes from multiple
black-box models (solving related tasks) to generate a new
model for a new task, which is assumed to be drawn from
the same task distribution. We address this challenge by de-
veloping a disentangled model embedding which decouples
task-specific from task-agnostic information in the latent
parameter representation of each black box. This reveals a
principled algorithm to distill task-agnostic inferential pro-
totypes via observing how the existing black-box models
make predictions at an unlabeled dataset. A prototype distri-
bution can then be learned from the same representation and
further adapted to the new task given its training examples.
This allows us to recompose the extracted prototypes into a
new model that solves the new task effectively.
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