A. Proofs for convergence of variational inference

We study convergence of Λ_{n} to Λ^{*} in terms of the KL divergence from $p(z)$ to $q\left(z \mid \Lambda_{n}\right)$. Before proving the convergence rates for (stochastic) variational inference, we first derive a useful bound for the KL divergence, which will be used frequently in the proofs to follow.
Lemma 3. The KL divergence between two normal distributions $p(z)$ and $q\left(z \mid \Lambda_{n}\right)$ is upper bounded by their difference in the Frobenius norm:

$$
\begin{aligned}
& \mathrm{KL}\left(p(z) \| q\left(z \mid \Lambda_{n}\right)\right) \\
& \leq \frac{1}{2}\left\|\left(\Lambda^{*}\right)^{-1}\right\|_{2} \cdot\left\|\left(\Lambda_{n}\right)^{-1}\right\|_{2} \cdot\left\|\Lambda^{*}-\Lambda_{n}\right\|_{F}^{2}
\end{aligned}
$$

Proof of Lemma 3

$$
\begin{aligned}
& \mathrm{KL}\left(p(z) \| q\left(z \mid \Lambda_{n}\right)\right) \\
& =\frac{1}{2}\left(-\log \frac{\left|\Lambda_{n}\right|}{\left|\Lambda^{*}\right|}+\operatorname{tr}\left(\left(\Lambda^{*}\right)^{-1} \Lambda_{n}\right)-d\right) \\
& =\frac{1}{2}\left(-\log \left|\left(\Lambda^{*}\right)^{-1} \Lambda_{n}\right|+\operatorname{tr}\left(\left(\Lambda^{*}\right)^{-1} \Lambda_{n}-I\right)\right)
\end{aligned}
$$

Since

$$
\log \left|\left(\Lambda^{*}\right)^{-1} \Lambda_{n}\right| \geq \operatorname{tr}\left(I-\Lambda_{n}^{-1} \Lambda^{*}\right)
$$

$$
\begin{aligned}
& \mathrm{KL}\left(p(z) \| q\left(z \mid \Lambda_{n}\right)\right) \\
& \leq \frac{1}{2} \operatorname{tr}\left(\left(\Lambda^{*}\right)^{-1} \Lambda_{n}+\Lambda_{n}^{-1} \Lambda^{*}-2 I\right) \\
& =\frac{1}{2} \operatorname{tr}\left(\left(\left(\Lambda^{*}\right)^{-1}\left(\Lambda_{n}-\Lambda^{*}\right)\right)+\left(\Lambda_{n}^{-1}\left(\Lambda^{*}-\Lambda_{n}\right)\right)\right) \\
& =\frac{1}{2} \operatorname{tr}\left(\left(\Lambda_{n}^{-1}-\left(\Lambda^{*}\right)^{-1}\right)\left(\Lambda^{*}-\Lambda_{n}\right)\right) \\
& \leq \frac{1}{2}\left\|\Lambda_{n}^{-1}-\left(\Lambda^{*}\right)^{-1}\right\|_{F} \cdot\left\|\Lambda^{*}-\Lambda_{n}\right\|_{F} \\
& \leq \frac{1}{2}\left\|\left(\Lambda^{*}\right)^{-1}\right\|_{2} \cdot\left\|\left(\Lambda_{n}\right)^{-1}\right\|_{2} \cdot\left\|\Lambda^{*}-\Lambda_{n}\right\|_{F}^{2}
\end{aligned}
$$

A.1. Proof for "Open-Box" VI Convergence

Proof of Lemma 1 The update rule in equation 13 can be explicitly expressed as:

$$
\begin{aligned}
\Lambda_{n} & =\Lambda_{n-1}-h_{n-1} g\left(\Lambda_{n-1}\right) \\
& =\Lambda_{n-1}-\frac{h_{n-1}}{2}\left(\Lambda_{n-1}-\Lambda^{*}\right)
\end{aligned}
$$

When we take a constant step size $h_{k}=h=\frac{1}{2}$, we can obtain that

$$
\Lambda_{n}=\left(\frac{1}{2}\right)^{n} \Lambda_{0}+\left(1-\left(\frac{1}{2}\right)^{n}\right) \Lambda^{*}
$$

Therefore,

$$
\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}=\left(\frac{1}{2}\right)^{n}\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}
$$

Using the result of Lemma 3, we can obtian that

$$
\begin{aligned}
& \operatorname{KL}\left(p(z) \| q\left(z \mid \Lambda_{n}\right)\right) \\
& \leq \frac{1}{2}\left\|\left(\Lambda^{*}\right)^{-1}\right\|_{2} \cdot\left\|\left(\Lambda_{n}\right)^{-1}\right\|_{2} \cdot\left\|\Lambda^{*}-\Lambda_{n}\right\|_{F}^{2} .
\end{aligned}
$$

By Weyl's theorem, we know that the distance from any eigenvalue of Λ_{n} to the closest eigenvalue of Λ^{*} is upper bounded by $\left\|\Lambda_{n}-\Lambda^{*}\right\|_{2} \leq\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}$. Therefore, $\sigma_{\min }\left(\Lambda_{n}\right) \geq \sigma_{\min }\left(\Lambda^{*}\right)-\left(\frac{1}{2}\right)^{n}\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}$, resulting in the upper bound for the spectral norm of Λ_{n} that

$$
\left\|\left(\Lambda_{n}\right)^{-1}\right\|_{2} \leq \frac{1}{\sigma_{\min }\left(\Lambda^{*}\right)-\left(\frac{1}{2}\right)^{n}\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}}
$$

Therefore, for any

$$
n \geq \log _{2} \frac{2}{\sigma_{\min }\left(\Lambda^{*}\right)} \frac{\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}}{\epsilon}
$$

$\mathrm{KL}\left(p(z) \| q\left(z \mid \Lambda_{n}\right)\right) \leq \epsilon$, for any $\epsilon \leq 1$.

A.2. Proofs for "Black-Box" VI Convergence

Proof of Theorem 1 We obtain the convergence bound in $\left\|\Lambda^{*}-\Lambda_{n}\right\|_{F}^{2}$ and then incur Lemma 3 to finish the proof.
Lemma 4. For the stochastic preconditioned gradient descent algorithm described in equation 15, if we take a step size of $h=\frac{\tilde{\epsilon}}{4 \sigma_{\max }^{2}\left(\Lambda^{*}\right) d \delta^{2}}$, we can obtain that when

$$
n \geq \frac{4 \sigma_{\max }^{2}\left(\Lambda^{*}\right) d \delta^{2}}{\nu \tilde{\epsilon}} \log \frac{2\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}^{2}}{\nu \tilde{\epsilon}}
$$

$\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}^{2} \leq \tilde{\epsilon}$, with probability $1-\nu$.
Then by Weyl's theorem, we know that the distance from any eigenvalue of Λ_{n} to the closest eigenvalue of Λ^{*} is upper bounded by $\left\|\Lambda_{n}-\Lambda^{*}\right\|_{2} \leq\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}$. Therefore, $\sigma_{\min }\left(\Lambda_{n}\right) \geq \sigma_{\min }\left(\Lambda^{*}\right)-\sqrt{\tilde{\epsilon}}$, resulting in the upper bound for the spectral norm of Λ_{n} that

$$
\begin{equation*}
\left\|\left(\Lambda_{n}\right)^{-1}\right\|_{2} \leq \frac{1}{\sigma_{\min }\left(\Lambda^{*}\right)-\sqrt{\tilde{\epsilon}}} \tag{20}
\end{equation*}
$$

Applying equation 20 to Lemma 3, we upper bound the KL divergence by $\tilde{\epsilon}$:

$$
\mathrm{KL}\left(p(z) \| q\left(z \mid \Lambda_{n}\right)\right) \leq \frac{1}{2 \sigma_{\min }\left(\Lambda^{*}\right)} \frac{\tilde{\epsilon}}{\sigma_{\min }\left(\Lambda^{*}\right)-\sqrt{\tilde{\epsilon}}}
$$

Choosing $\tilde{\epsilon}=\frac{\sigma_{\min }^{2}\left(\Lambda^{*}\right)}{2} \epsilon$ completes the proof that after

$$
n \geq 8 \frac{\sigma_{\max }^{2}\left(\Lambda^{*}\right) \delta^{2}}{\nu \sigma_{\min }^{2}\left(\Lambda^{*}\right)} \frac{d}{\epsilon} \cdot \log \frac{4\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}^{2}}{\nu \sigma_{\min }^{2}\left(\Lambda^{*}\right) \epsilon}=\widetilde{\mathcal{O}}\left(\frac{\sigma_{\max }^{2}\left(\Lambda^{*}\right) \delta^{2}}{\sigma_{\min }^{2}\left(\Lambda^{*}\right)} \frac{d}{\epsilon}\right)
$$

number of iterations, $\mathrm{KL}\left(p(z) \| q\left(z \mid \Lambda_{n}\right)\right) \leq \epsilon$.
Proof of Lemma 4 We first prove the convergence in $\mathbb{E}\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}^{2}$ then invoke the Chebychev inequality for the high probability statement.

Since we assumed in equation 14 that $\mathbb{E}\left[\Delta\left(\Lambda ; \mathcal{D}_{n}\right)\right]=0$, and that $\mathbb{E}\left\|\Delta\left(\Lambda ; \mathcal{D}_{n}\right)\right\|_{F}^{2} \leq \sigma_{\text {max }}^{2}\left(\Lambda^{*}\right) d \delta^{2}$, for any n,

$$
\begin{aligned}
& \mathbb{E}\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}^{2} \\
& =\mathbb{E}\left\|\Lambda_{n-1}-\Lambda^{*}-h_{n-1} \hat{g}(\Lambda)\right\|_{F}^{2} \\
& =\mathbb{E}\left\|\left(1-\frac{h_{n-1}}{2}\right)\left(\Lambda_{n-1}-\Lambda^{*}\right)+h_{n-1} \Delta\left(\Lambda_{n-1} ; \mathcal{D}_{n-1}\right)\right\|_{F}^{2} \\
& =\left(1-\frac{h_{n-1}}{2}\right)^{2} \mathbb{E}\left\|\Lambda_{n-1}-\Lambda^{*}\right\|_{F}^{2}+2 h_{n-1}\left(1-\frac{h_{n-1}}{2}\right) \mathbb{E}\left\langle\Lambda_{n-1}-\Lambda^{*}, \Delta\left(\Lambda_{n-1} ; \mathcal{D}_{n-1}\right)\right\rangle_{F}+h_{n-1}^{2} \mathbb{E}\left\|\Delta\left(\Lambda_{n-1} ; \mathcal{D}_{n-1}\right)\right\|_{F}^{2} \\
& =\left(1-\frac{h_{n-1}}{2}\right)^{2} \mathbb{E}\left\|\Lambda_{n-1}-\Lambda^{*}\right\|_{F}^{2}+h_{n-1}^{2} \mathbb{E}\left\|\Delta\left(\Lambda_{n-1} ; \mathcal{D}_{n-1}\right)\right\|_{F}^{2} \\
& \leq\left(1-\frac{h_{n-1}}{2}\right) \mathbb{E}\left\|\Lambda_{n-1}-\Lambda^{*}\right\|_{F}^{2}+h_{n-1}^{2} \mathbb{E}\left\|\Delta\left(\Lambda_{n-1} ; \mathcal{D}_{n-1}\right)\right\|_{F}^{2} \\
& \leq \prod_{i=0}^{n-1}\left(1-\frac{h_{i}}{2}\right) \mathbb{E}\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}^{2}+\sum_{j=0}^{n-1} h_{j}^{2}\left(\prod_{i=j+1}^{n-1}\left(1-\frac{h_{i}}{2}\right)\right) \mathbb{E}\left\|\Delta\left(\Lambda_{j-1} ; \mathcal{D}_{j-1}\right)\right\|_{F}^{2} \\
& \leq \prod_{i=0}^{n-1}\left(1-\frac{h_{i}}{2}\right) \mathbb{E}\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}^{2}+\sum_{j=0}^{n-1} h_{j}^{2} \prod_{i=j+1}^{n-1}\left(1-\frac{h_{i}}{2}\right) \sigma_{\max }^{2}\left(\Lambda^{*}\right) d \delta^{2} .
\end{aligned}
$$

When we take a constant step size, $h_{k}=h$, the above expression simplifies to:

$$
\begin{align*}
\mathbb{E}\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}^{2} & \leq\left(1-\frac{h_{i}}{2}\right)^{n} \mathbb{E}\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}^{2}+2 h\left(\left(1-\frac{h_{i}}{2}\right)-\left(1-\frac{h_{i}}{2}\right)^{n}\right) \sigma_{\max }^{2}\left(\Lambda^{*}\right) d \delta^{2} \\
& \leq\left(1-\frac{h_{i}}{2}\right)^{n} \mathbb{E}\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}^{2}+2 h \sigma_{\max }^{2}\left(\Lambda^{*}\right) d \delta^{2} \tag{21}
\end{align*}
$$

We then invoke the following Chebyshev inequality to obtain the high probability statement:

$$
\mathbb{P}\left(\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}^{2} \geq \tilde{\epsilon}\right) \leq \frac{1}{\tilde{\epsilon}} \mathbb{E}\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}^{2}
$$

For $\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}^{2} \leq \tilde{\epsilon}$ to hold with $1-\nu$ probability, we need $\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}^{2} \leq \nu \tilde{\epsilon}$.
Choosing $h=\frac{\nu \tilde{\epsilon}}{4 \sigma_{\max }^{2}\left(\Lambda^{*}\right) d \delta^{2}}$, we arrive at our conclusion that $\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}^{2} \leq \tilde{\epsilon}$ with probability $1-\nu$, when

$$
n \geq \frac{4 \sigma_{\max }^{2}\left(\Lambda^{*}\right) d \delta^{2}}{\nu \tilde{\epsilon}} \log \frac{2\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}^{2}}{\nu \tilde{\epsilon}}
$$

where the \log factor can be shaved off by employing a decreasing step size.
Tightness of the bounds We now demonstrate that the convergence upper bound in Theorem 1 is tight up to a logarithmic factor. We first prove that the Frobenius norm bound in Lemma4, instead of a spectral norm bound, is indeed necessary to guarantee the convergence in KL divergence.
To this end, we examine an example of the posterior with the precision matrix $\Lambda^{*}=\frac{1}{4} I$. If the initial distribution has the precision matrix $\Lambda_{0}=I$, then $\left\|\Lambda_{0}-\Lambda^{*}\right\|_{2}=\frac{3}{4}$. However,

$$
\begin{aligned}
& \operatorname{KL}\left(p(z) \| q\left(z \mid \Lambda_{0}\right)\right) \\
& =\frac{1}{2}\left(-\log \frac{\left|\Lambda_{0}\right|}{\left|\Lambda^{*}\right|}+\operatorname{tr}\left(\left(\Lambda^{*}\right)^{-1} \Lambda_{0}\right)-d\right) \geq d
\end{aligned}
$$

which can be arbitrarily large as dimension d increases.
We then use the same posterior of $\Lambda^{*}=\frac{1}{4} I$ and take an initial value Λ_{0} so that $\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}^{2}$ scales inclusively between $\Omega(1)$ and $\mathcal{O}(d)$. Under this mild condition, we demonstrate that the number of iterations, n, required for $\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}^{2}$ to decrease to $\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}^{2} \leq \frac{1}{2}\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}^{2}$ is $n=\Omega(d)$.

We first demonstrate that $\mathbb{E}\left\|\Delta\left(\Lambda ; \mathcal{D}_{n}\right)\right\|_{F}^{2}=\Omega(d)$ for minibatch size $\left|\mathcal{D}_{n}\right|=\mathcal{O}(d)$. From Section 4.3, we know that

$$
\begin{aligned}
& \mathbb{E}\left\|\Delta\left(\Lambda ; \mathcal{D}_{n}\right)\right\|_{F}^{2} \\
& =\frac{1}{\left|\mathcal{D}_{n}\right|} \mathbb{E}_{z \sim q}\left[\left\|v(\Lambda ; z)-\mathbb{E}_{\hat{z} \sim q}[v(\Lambda ; \hat{z})]\right\|_{F}^{2}\right] \\
& =\frac{1}{2\left|\mathcal{D}_{n}\right|}\left(\operatorname{tr}\left(\Lambda-\Lambda^{*}\right)\right)^{2}-\frac{1}{4\left|\mathcal{D}_{n}\right|}\left\|\Lambda-\Lambda^{*}\right\|_{F}^{2} \\
& +\frac{1}{\left|\mathcal{D}_{n}\right|}\left(\frac{1}{8}\left\|I-\Lambda^{*} \Lambda^{-1}\right\|_{F}^{2}+\frac{1}{16}(\operatorname{KL}(q(z \mid \Lambda) \| p(z)))^{2}\right) \cdot\left((\operatorname{tr}(\Lambda))^{2}+\operatorname{tr}\left(\Lambda^{2}\right)\right) .
\end{aligned}
$$

Since

$$
\left\|\Lambda-\Lambda^{*}\right\|_{F} \leq\|\Lambda\|_{2} \cdot\left\|I-\Lambda^{-1} \Lambda^{*}\right\|_{F}
$$

we employ Weyl's theorem and obtain that

$$
\begin{aligned}
\left\|I-\Lambda^{-1} \Lambda^{*}\right\|_{F} & \geq \frac{\left\|\Lambda-\Lambda^{*}\right\|_{F}}{\sigma_{\max }(\Lambda)} \\
& \geq \frac{\left\|\Lambda-\Lambda^{*}\right\|_{F}}{\sigma_{\max }\left(\Lambda^{*}\right)+\left\|\Lambda-\Lambda^{*}\right\|_{F}}=\Omega(1)
\end{aligned}
$$

Therefore, $\mathbb{E}\left\|\Delta\left(\Lambda ; \mathcal{D}_{n}\right)\right\|_{F}^{2}=\Omega(1)$ for $\left|\mathcal{D}_{n}\right|=\mathcal{O}(d)$ and for $\left\|\Lambda-\Lambda^{*}\right\|_{F}^{2}=\Omega(1 / d)$ and $\left\|\Lambda-\Lambda^{*}\right\|_{F}^{2}=\mathcal{O}(d)$.
We then analyze number of steps n required for $\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}^{2} \leq \frac{1}{2}\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}^{2}$. In the update rule of equation 15 ,

$$
\begin{aligned}
\Lambda_{n} & =\Lambda_{n-1}-h_{n-1} \hat{g}\left(\Lambda_{n-1}\right) \\
& =\Lambda_{n-1}-\frac{h_{n-1}}{2}\left(\Lambda_{n-1}-\Lambda^{*}\right)+h_{n-1} \Delta\left(\Lambda_{n-1} ; \mathcal{D}_{n-1}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Lambda_{n}-\Lambda^{*} & =\left(1-\frac{h_{n-1}}{2}\right)\left(\Lambda_{n-1}-\Lambda^{*}\right)+h_{n-1} \Delta\left(\Lambda_{n-1} ; \mathcal{D}_{n-1}\right) \\
& =\prod_{i=0}^{n-1}\left(1-\frac{h_{i}}{2}\right)\left(\Lambda_{0}-\Lambda^{*}\right)+\sum_{j=0}^{n-1} h_{j} \prod_{i=j+1}^{n-1}\left(1-\frac{h_{i}}{2}\right) \Delta\left(\Lambda_{j} ; \mathcal{D}_{j}\right)
\end{aligned}
$$

Since \mathcal{D}_{n} are sampled in an i.i.d. fashion and that $\mathbb{E}\left[\Delta\left(\Lambda ; \mathcal{D}_{n}\right)\right]=0$ from assumption 14

$$
\mathbb{E}\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}^{2}=\prod_{i=0}^{n-1}\left(1-\frac{h_{i}}{2}\right)^{2} \mathbb{E}\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}^{2}+\sum_{j=0}^{n-1} h_{j}^{2} \prod_{i=j+1}^{n-1}\left(1-\frac{h_{i}}{2}\right)^{2} \mathbb{E}\left\|\Delta\left(\Lambda_{j} ; \mathcal{D}_{j}\right)\right\|_{F}^{2}
$$

Since $\mathbb{E}\left\|\Delta\left(\Lambda ; \mathcal{D}_{n}\right)\right\|_{F}^{2}=\Omega(d)$, to have that $\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}^{2} \leq \frac{1}{2}\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}^{2}$ with a constant probability, we must require

$$
\sum_{j=0}^{n-1} h_{j}^{2} \prod_{i=j+1}^{n-1}\left(1-\frac{h_{i}}{2}\right)^{2}=\mathcal{O}\left(\frac{1}{d}\right)
$$

which implies that $h_{j}=\mathcal{O}\left(\frac{1}{d}\right), \forall j=0, \cdots, n-1$. On the other hand, to achieve $\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F} \leq \frac{1}{2}\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}$, we also need

$$
\prod_{i=0}^{n-1}\left(1-\frac{h_{i}}{2}\right)\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F} \leq \frac{1}{2}\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}
$$

which implies that

$$
\begin{aligned}
\sum_{i=0}^{n-1} h_{i} & \geq \sum_{i=0}^{n-1}\left(\left(1-\frac{h_{i}}{2}\right)^{-1}-1\right) \\
& \geq \sum_{i=0}^{n-1} \log \left(\left(1-\frac{h_{i}}{2}\right)^{-1}\right) \\
& \geq \log \frac{\left\|\Lambda_{0}-\Lambda^{*}\right\|_{F}}{\left\|\Lambda_{n}-\Lambda^{*}\right\|_{F}}=\log (2)
\end{aligned}
$$

Since $h_{j}=\mathcal{O}\left(\frac{1}{d}\right), \forall j$, we need $n=\Omega(d)$ for convergence.

B. Proofs for convergence of Langevin algorithm

Proof of Lemma 1 Before proving Lemma 1, we first make the assumptions explicit. We are interested in generating samples from $p(\theta) \propto \exp (-U(\theta))$, where $U(\theta)$ is L-Lipschitz smooth and m-strongly convex. We further assume, without loss of generality, that U has a fixed point at the origin $0: \nabla U(0)=0$.
To prove Lemma 1, we first analyze equation 3 as a discretization scheme of the Langevin diffusion of equation 4 , Within each iteration, the ULA update 3 is effectively integrating the following dynamics:

$$
\begin{align*}
d \theta_{t} & =\nabla \log p\left(\theta_{n}\right) d t+\sqrt{2} d W_{t} \\
& =\nabla \log p\left(\theta_{t}\right) d t+\sqrt{2} d W_{t}+\left(\nabla \log p\left(\theta_{n}\right)-\nabla \log p\left(\theta_{t}\right)\right) d t \tag{22}
\end{align*}
$$

for $t \in[n \eta,(n+1) \eta]$.
We then analyze the time derivative of the KL divergence $\operatorname{KL}\left(q_{t} \| p\right)$ within each step:

$$
\begin{align*}
\frac{d}{d t} \mathrm{KL}\left(q_{t} \| p\right) & =-\mathbb{E}\left\langle\nabla \log \frac{q_{t}\left(\theta_{t}\right)}{p\left(\theta_{t}\right)}, \nabla \log \frac{q_{t}\left(\theta_{t}\right)}{p\left(\theta_{t}\right)}+\left(\nabla \log p\left(\theta_{n}\right)-\nabla \log p\left(\theta_{t}\right)\right)\right\rangle \\
& =-\mathbb{E}\left\|\nabla \log \frac{q_{t}\left(\theta_{t}\right)}{p\left(\theta_{t}\right)}\right\|^{2}+\mathbb{E}\left\langle\nabla \log \frac{q_{t}\left(\theta_{t}\right)}{p\left(\theta_{t}\right)}, \nabla \log p\left(\theta_{t}\right)-\nabla \log p\left(\theta_{n}\right)\right\rangle \tag{23}
\end{align*}
$$

where the expectation is taken with respect to the joint distribution of θ_{t} and θ_{n}. For the second term in equation 23 , we invoke Young's inequality to bound:

$$
\begin{aligned}
\mathbb{E}\left\langle\nabla \log \frac{q_{t}\left(\theta_{t}\right)}{p\left(\theta_{t}\right)}, \nabla \log p\left(\theta_{t}\right)-\nabla \log p\left(\theta_{n}\right)\right\rangle & \leq \frac{1}{2} \mathbb{E}\left\|\nabla \log \frac{q_{t}\left(\theta_{t}\right)}{p\left(\theta_{t}\right)}\right\|^{2}+\frac{1}{2} \mathbb{E}\left\|\nabla \log p\left(\theta_{t}\right)-\nabla \log p\left(\theta_{n}\right)\right\|^{2} \\
& =\frac{1}{2} \mathbb{E}\left\|\nabla \log \frac{q_{t}\left(\theta_{t}\right)}{p\left(\theta_{t}\right)}\right\|^{2}+\frac{1}{2} \mathbb{E}\left\|\nabla U\left(\theta_{t}\right)-\nabla U\left(\theta_{n}\right)\right\|^{2}
\end{aligned}
$$

Since potential U is L-Lipschitz smooth, $\left\|\nabla U\left(\theta_{t}\right)-\nabla U\left(\theta_{n}\right)\right\|^{2} \leq L^{2}\left\|\theta_{t}-\theta_{n}\right\|^{2}$. Also note that we have set $\nabla U(0)=0$. Hence

$$
\begin{aligned}
\frac{1}{2} \mathbb{E}\left\|\nabla U\left(\theta_{t}\right)-\nabla U\left(\theta_{n}\right)\right\|^{2} & \leq \frac{L^{2}}{2} \mathbb{E}\left\|\theta_{t}-\theta_{n}\right\|^{2} \\
& =\frac{L^{2}}{2} \mathbb{E}\left\|-(t-\eta n) \nabla U\left(\theta_{n}\right)+\sqrt{2}\left(W_{t}-W_{\eta n}\right)\right\|^{2} \\
& =\frac{L^{2}(t-\eta n)^{2}}{2} \mathbb{E}_{\theta \sim q_{n}}\left[\|\nabla U(\theta)\|^{2}\right]+L^{2} d(t-\eta n) \\
& \leq \frac{L^{4} \eta^{2}}{2} \mathbb{E}_{\theta \sim q_{n}}\left[\|\theta\|^{2}\right]+L^{2} d \eta
\end{aligned}
$$

Applying this result to equation 23 , we obtain an upper bound for $\frac{d}{d t} \mathrm{KL}\left(q_{t} \| p\right)$ within each iteration:

$$
\begin{equation*}
\frac{d}{d t} \mathrm{KL}\left(q_{t} \| p\right) \leq-\frac{1}{2} \mathbb{E}\left\|\nabla \log \frac{q_{t}\left(\theta_{t}\right)}{p\left(\theta_{t}\right)}\right\|^{2}+\frac{L^{4} \eta^{2}}{2} \mathbb{E}_{\theta \sim q_{n}}\left[\|\theta\|^{2}\right]+L^{2} d \eta \tag{24}
\end{equation*}
$$

Since function U is m-strongly convex, we obtain the following log-Sobolev inequality from the Bakry-Emery criterion (see e.g., Bakry \& Emery, 1985)

$$
\mathbb{E}_{\theta \sim q_{t}}\left[\left\|\nabla \log \frac{q_{t}(\theta)}{p(\theta)}\right\|^{2}\right] \geq 2 m \mathrm{KL}\left(q_{t} \| p\right)
$$

Therefore,

$$
\begin{equation*}
\frac{d}{d t} \mathrm{KL}\left(q_{t} \| p\right) \leq-m \mathrm{KL}\left(q_{t} \| p\right)+\frac{L^{4} \eta^{2}}{2} \mathbb{E}_{\theta \sim q_{n}}\left[\|\theta\|^{2}\right]+L^{2} d \eta \tag{25}
\end{equation*}
$$

We prove in the Lemma 5 below that $\mathbb{E}_{\theta \sim q_{n}}\left[\|\theta\|^{2}\right] \leq \frac{4 d}{m}$.
Lemma 5. For step size $\eta \leq \frac{1}{L}$, and for q_{n} following the update of equation $3 \forall n>0, \mathbb{E}_{\theta \sim q_{n}}\left[\|\theta\|^{2}\right] \leq \frac{4 d}{m}$.
Plugging this bound into equation 25, we obtain:

$$
\begin{equation*}
\frac{d}{d t} \mathrm{KL}\left(q_{t} \| p\right) \leq-m\left(\mathrm{KL}\left(q_{t} \| p\right)-\left(2 \frac{L^{4}}{m^{2}} \eta^{2}+\frac{L^{2}}{m} \eta\right) d\right) \tag{26}
\end{equation*}
$$

Invoking Grönwall's inequality, we obtain:

$$
\begin{align*}
\mathrm{KL}\left(q_{n} \| p\right) & \leq e^{-m \eta} \mathrm{KL}\left(q_{n-1} \| p\right)+\left(2 \frac{L^{4}}{m^{2}} \eta^{2}+\frac{L^{2}}{m} \eta\right) d \tag{27}\\
& \leq e^{-m \eta n} \mathrm{KL}\left(q_{0} \| p\right)+\left(2 \frac{L^{4}}{m^{2}} \eta^{2}+\frac{L^{2}}{m} \eta\right) d
\end{align*}
$$

This means that $\mathrm{KL}\left(q_{n} \| p\right)$ is converging exponentially to the level of discretization error.
To obtain an accuracy guarantee of ϵ, we choose a step size of $\eta=\frac{m}{4 L^{2}} \frac{\epsilon}{d}$ and have (for $\epsilon \leq d$):

$$
\begin{equation*}
\mathrm{KL}\left(q_{n} \| p\right) \leq e^{-m \eta n} \mathrm{KL}\left(q_{0} \| p\right)+\frac{\epsilon}{2} \tag{28}
\end{equation*}
$$

When $n \geq \frac{1}{m \eta} \log \frac{2 \mathrm{KL}\left(q_{0} \| p\right)}{\epsilon}, e^{-m \eta n} \mathrm{KL}\left(q_{0} \| p\right) \leq \frac{\epsilon}{2}$, and therefore $\mathrm{KL}\left(q_{n} \| p\right) \leq \epsilon$.
Plugging the setting of η gives us the upper bound for number of iterations:

$$
n=4 \frac{L^{2}}{m^{2}} \frac{d}{\epsilon} \log \frac{2 \mathrm{KL}\left(q_{0} \| p\right)}{\epsilon}=\widetilde{\mathcal{O}}\left(\frac{L^{2}}{m^{2}} \frac{d}{\epsilon}\right)
$$

Proof of Lemma 5 We prove Lemma 3 by induction. We first see that for the current choice of initialization, $\mathbb{E}_{\theta \sim q_{0}}\left[\|\theta\|^{2}\right] \leq \frac{d}{m}$. We then assume that $\mathbb{E}_{\theta \sim q_{n}}\left[\|\theta\|^{2}\right] \leq \frac{d}{m}$ and prove that $\mathbb{E}_{\theta \sim q_{n+1}}\left[\|\theta\|^{2}\right] \leq \frac{d}{m}$.
We know that

$$
\theta_{n+1}=\theta_{n}-\eta \nabla U\left(\theta_{n}\right)+\sqrt{2}\left(W_{\eta(n+1)}-W_{\eta n}\right)
$$

To provide a bound on $\left\|\theta_{n+1}\right\|$, we first analyze the term: $\theta_{n}-\eta \nabla U\left(\theta_{n}\right)$. To this end, we construct a function: $V(\theta)=$ $\frac{1}{2}\|\theta\|^{2}-\eta U(\theta)$ and prove that it is $(1-m \eta)$-Lipschitz smooth. Since function U is assumed to be m-strongly convex,

$$
\begin{aligned}
\langle\nabla V(\theta)-\nabla V(\vartheta), \theta-\vartheta\rangle & =\langle(\theta-\vartheta)-\eta(\nabla U(\theta)-U(\vartheta)), \theta-\vartheta\rangle \\
& =\|\theta-\vartheta\|^{2}-\eta\langle(\nabla U(\theta)-U(\vartheta)), \theta-\vartheta\rangle \\
& \leq(1-m \eta)\|\theta-\vartheta\|^{2}
\end{aligned}
$$

Therefore, function $V(\theta)=\frac{1}{2}\|\theta\|^{2}-\eta U(\theta)$ is $(1-m \eta)$-Lipschitz smooth and satisfy $\nabla V(0)=0$, which means:

$$
\left\|\theta_{n}-\eta \nabla U\left(\theta_{n}\right)\right\|=\left\|\nabla V\left(\theta_{n}\right)\right\| \leq(1-m \eta)\left\|\theta_{n}\right\|
$$

We are now in a position to bound $\mathbb{E}\left\|\theta_{n+1}\right\|^{2}$:

$$
\begin{align*}
\mathbb{E}\left[\left\|\theta_{n+1}\right\|^{2}\right] & =\mathbb{E}\left[\left\|\theta_{n}-\eta \nabla U\left(\theta_{n}\right)+\sqrt{2}\left(W_{\eta(n+1)}-W_{\eta n}\right)\right\|^{2}\right] \\
& =\mathbb{E}\left[\left\|\theta_{n}-\eta \nabla U\left(\theta_{n}\right)\right\|^{2}\right]+2 \eta d \\
& \leq(1-m \eta) \mathbb{E}\left[\left\|\theta_{n}\right\|^{2}\right]+2 \eta d \tag{29}\\
& =\mathbb{E}\left[\left\|\theta_{n}\right\|^{2}\right]+\eta\left(2 d-m \mathbb{E}\left[\left\|\theta_{n}\right\|^{2}\right]\right) . \tag{30}
\end{align*}
$$

By the inductive hypothesis, $\mathbb{E}\left[\left\|\theta_{n}\right\|^{2}\right] \leq \frac{4 d}{m}$. If $\mathbb{E}\left[\left\|\theta_{n}\right\|^{2}\right] \geq \frac{2 d}{m}$, then $\left(2 d-m \mathbb{E}\left[\left\|\theta_{n}\right\|^{2}\right]\right) \leq 0, \mathbb{E}\left[\left\|\theta_{n+1}\right\|^{2}\right] \leq$ $\mathbb{E}\left[\left\|\theta_{n}\right\|^{2}\right] \leq \frac{4 d}{m}$. If $\mathbb{E}\left[\left\|\theta_{n}\right\|^{2}\right] \leq \frac{2 d}{m}$ instead, then we use line 29 and that $\eta \leq \frac{1}{L}$ to obtain: $\mathbb{E}\left\|\theta_{n+1}\right\|^{2} \leq\left(1-\frac{m}{L}\right) \frac{2 d}{m}+\frac{2 d}{L} \leq$ $\frac{4 d}{m}$.

Therefore, we have proven that for any $n>0, \mathbb{E}_{\theta \sim q_{n}}\left[\|\theta\|^{2}\right] \leq \frac{4 d}{m}$ by induction.

