
Black-Box Variational Inference as Distilled Langevin Dynamics

A. Proofs for convergence of variational inference
We study convergence of ⇤n to ⇤⇤ in terms of the KL divergence from p(z) to q(z|⇤n). Before proving the convergence
rates for (stochastic) variational inference, we first derive a useful bound for the KL divergence, which will be used frequently
in the proofs to follow.

Lemma 3. The KL divergence between two normal distributions p(z) and q(z|⇤n) is upper bounded by their difference in
the Frobenius norm:
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A.1. Proof for “Open-Box” VI Convergence

Proof of Lemma 1 The update rule in equation 13 can be explicitly expressed as:
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Using the result of Lemma 3, we can obtian that

KL (p(z)kq(z|⇤n))
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By Weyl’s theorem, we know that the distance from any eigenvalue of ⇤n to the closest eigenvalue of ⇤⇤ is upper bounded
by k⇤n � ⇤⇤

k2  k⇤n � ⇤⇤
kF . Therefore, �min(⇤n) � �min(⇤⇤)�

�
1
2

�n
k⇤0 � ⇤⇤

kF , resulting in the upper bound for
the spectral norm of ⇤n that

k (⇤n)
�1

k2 
1

�min(⇤⇤)�
�
1
2

�n
k⇤0 � ⇤⇤kF

.

Therefore, for any

n � log2
2

�min(⇤⇤)

k⇤0 � ⇤⇤
kF

✏
,

KL (p(z)kq(z|⇤n))  ✏, for any ✏  1.

A.2. Proofs for “Black-Box” VI Convergence
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Applying equation 20 to Lemma 3, we upper bound the KL divergence by ✏̃:
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number of iterations, KL (p(z)kq(z|⇤n))  ✏.

Proof of Lemma 4 We first prove the convergence in Ek⇤n � ⇤⇤
k
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F then invoke the Chebychev inequality for the high

probability statement.
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When we take a constant step size, hk = h, the above expression simplifies to:
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We then invoke the following Chebyshev inequality to obtain the high probability statement:
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where the log factor can be shaved off by employing a decreasing step size.

Tightness of the bounds We now demonstrate that the convergence upper bound in Theorem 1 is tight up to a logarithmic
factor. We first prove that the Frobenius norm bound in Lemma 4, instead of a spectral norm bound, is indeed necessary to
guarantee the convergence in KL divergence.

To this end, we examine an example of the posterior with the precision matrix ⇤⇤ = 1
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We first demonstrate that Ek�(⇤;Dn)k2F = ⌦(d) for minibatch size |Dn| = O(d). From Section 4.3, we know that
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Since hj = O
�
1
d

�
, 8j, we need n = ⌦(d) for convergence.

B. Proofs for convergence of Langevin algorithm
Proof of Lemma 1 Before proving Lemma 1, we first make the assumptions explicit. We are interested in generating
samples from p(✓) / exp (�U(✓)), where U(✓) is L-Lipschitz smooth and m-strongly convex. We further assume, without
loss of generality, that U has a fixed point at the origin 0: rU(0) = 0.

To prove Lemma 1, we first analyze equation 3 as a discretization scheme of the Langevin diffusion of equation 4. Within
each iteration, the ULA update 3 is effectively integrating the following dynamics:
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where the expectation is taken with respect to the joint distribution of ✓t and ✓n. For the second term in equation 23, we
invoke Young’s inequality to bound:
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Applying this result to equation 23, we obtain an upper bound for d
dtKL (qtkp) within each iteration:
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Since function U is m-strongly convex, we obtain the following log-Sobolev inequality from the Bakry–Emery criterion (see
e.g., Bakry & Emery, 1985)
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We prove in the Lemma 5 below that E✓⇠qn
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Invoking Grönwall’s inequality, we obtain:
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This means that KL (qnkp) is converging exponentially to the level of discretization error.
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