
Communication-Efficient Distributed PCA by Riemannian Optimization

Long-Kai Huang 1 Sinno Jialin Pan 1

Abstract

In this paper, we study the leading eigenvec-
tor problem in a statistically distributed setting
and propose a communication-efficient algorithm
based on Riemannian optimization, which trades
local computation for global communication. The-
oretical analysis shows that the proposed algo-
rithm linearly converges to the centralized empiri-
cal risk minimization solution regarding the num-
ber of communication rounds. When the number
of data points in local machines is sufficiently
large, the proposed algorithm achieves a signif-
icant reduction of communication cost over ex-
isting distributed PCA algorithms. Superior per-
formance in terms of communication cost of the
proposed algorithm is verified on real-world and
synthetic datasets.

1. Introduction
Finding top eigenvectors of a symmetric matrix is a fun-
damental problem for various machine learning problems,
such as principal component analysis (PCA) (Hotelling,
1933; Wilkinson, 1965; Bishop, 2006), spectral cluster-
ing (Ng et al., 2002; Von Luxburg, 2007), etc. In this paper,
we focus on finding the first principal component of PCA,
i.e. the leading eigenvector of the data covariance matrix,
in a statistical setting where the data instances x ∈ Rd are
from some unknown but fixed distribution. This goal can be
formulated as a population risk minimization problem as

min
w∈Rd,‖w‖=1

F (w) = − 1
2w
>Ex∼D

[
xx>

]
w. (1)

Given a set of i.i.d. data examples xi for i = 1, 2, ..., N
from the distribution D, we can use the solution of the
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following empirical risk minimization (ERM) problem

w∗ = arg min
w∈Rd,‖w‖=1

F̂ (w) = − 1
2w
>Âw, (2)

as an approximate minimizer of F in (1), where Â =
1
N

∑N
i=1 xix

>
i is the empirically normalized covariance ma-

trix. If the eigengap δ between the first and second eigenval-
ues of Â is positive, the optimum of (2) is w∗=v (or −v)
where v is the leading eigenvector of Â.

In the literature, various algorithms based on the Eu-
clidean space have been developed to solve the PCA prob-
lem (Golub & Van Loan, 1996; Oja & Karhunen, 1985;
Shamir, 2015; 2016). In recent years, the problem (2) is
also studied based on Riemannian optimization (Absil et al.,
2008) as the unit norm constraint on the variable in (2)
indeed admits the geometry structure as a hypersphere (a
Riemannian manifold). On the hypersphere manifold, the
objective function (2) becomes an unconstrained problem
and thus Riemannian optimization algorithms (Absil et al.,
2008), such as Riemannian SGD (Bonnabel, 2013; Zhang
& Sra, 2016), Riemannian SVRG (RSVRG) (Zhang et al.,
2016), can be directly applied to solve it.

All of the aforementioned algorithms assume that a single
machine is able to store and access all the training data to
solve the leading eigenvector problem in (2). However, due
to the explosive increase of training data, the data size may
exceed the storage and computation capacities of a single
machine. In addition, the training data may be originally
geo-distributed over different local machines. Centralizing
all the training data to a single machine is impractical due
to the extremely high data transmission cost. Thus, it is
crucial to consider (2) in a distributed setting, where N
data samples are stored in K machines, each maintaining n
instances xki .1 In the distributed setting, each machine k can
construct a local estimate of F (w): fk(w) = − 1

2w
>Akw,

whereAk = 1
n

∑n
i=1 x

k
i x

k
i
>. In general, the local empirical

estimation fk(w) is much less accurate than centralized
estimation F̂ (w). Therefore, the local machines should
cooperate and communicate with each other to obtain a
solution converging to the centralized ERM solution w∗.

A simple algorithm to solve (2) in the distributed setting is

1For simplicity in analysis, we assume the sample size in each
machine is the same.
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to extend Power Method, Lanczos algorithm or Riemannian
Gradient Descent (RGD) to their distributed versions. To
achieve ε-far solution from w∗, Distributed Power Method
or RGD requires O

(
λ/δ log(1/ε)

)
communication rounds;

Distributed Lanczos algorithm and accelerated RGD re-
quires O

(√
λ/δ log(1/ε)

)
. Here, λ is the largest eigen-

value of Â in (2) and O(·) suppresses logarithmic fac-
tors in d and failure probability. When δ is very small,
i.e. δ = Ω(1/

√
Kn) as discussed in (Garber et al., 2017;

Shamir, 2015), the number of communication rounds of
these algorithms increases with the sample size. As in real-
world systems, the communication speed is limited, which is
a bottleneck for distributed optimization (Jaggi et al., 2014),
these algorithms are impractical for large-scale datasets.

Most existing communication-efficient distributed algo-
rithms (Shamir et al., 2014; Zhang & Lin, 2015; Jaggi et al.,
2014; Saparbayeva et al., 2018) cannot be directly adapted
to the PCA problem due to the non-convex structure and
unit norm constraints of the objective function. In a re-
cent paper, Garber et al. (2017) proposed to replace the
explicit Power Method iterations with a series of convex
optimization problems and developed a distributed version,
named Distributed Shift-and-Invert Power Method (DSI),
by approximately solving these convex problems using ex-
isting communication-efficient algorithms designed for con-
vex problems. Assume the squared `2 norm of the data
instances xi is bounded by b. Then the communication
rounds of DSI needed to achieve an ε-accurate solution is
O
(√

b
δ
√
n

[
log2(1/ε) log(1/δ) + log(1/ε) log2( 1

δ
√
n
)
])

. When

δ is as small as δ = Ω(1/
√
Kn), the communication cost

nearly does not increase with the sample size. Therefore,
DSI is communication-efficient for getting a low to medium-
accuracy solution. However, the quadratic dependence on
log(1/ε) is a concern for getting a high-accuracy solution.

Another line of distributed PCA algorithms (Kannan et al.,
2014; Liang et al., 2014; Boutsidis et al., 2016; Fan et al.,
2017) is studied in the deterministic setting where data are
arbitrarily partitioned over local machines. To reduce the
communication cost, these algorithms first approximate the
local data by low-rank approximation or random sketching,
and then perform one-shot communication to aggregate all
local approximations to a master machine and reconstruct an
approximate covariance matrix. The communication rounds
required by these algorithms scale polynomially with 1/δ
and 1/ε, which means they are not communication-efficient
for getting a high-accuracy solution or for small eigengap.

In this paper, we propose a novel communication-efficient
algorithm for distributed stochastic PCA based on Rieman-
nian optimization, named Communication-Efficient Dis-
tributed Riemannian Eigensolver (CEDRE). As will be an-
alyzed in Theorem 3 and Corollary 2, the communication
rounds of CEDRE needed to achieve an ε-accurate solution

is O
(

b
δ
√
n

log(1/ε)
)
. Compared to distributed versions of

Power Method, Lanczos algorithm and RGD, the communi-
cation complexity of CEDRE does not scale with the sample
size when δ = Ω(1/

√
Kn). Besides, for a fixed δ, the num-

ber of communication rounds required decreases when the
sample size increases. Compared to DSI, the communica-
tion complexity of CEDRE depends only logarithmically
on the accuracy ε. Therefore, for a sufficiently large n,
the proposed algorithm is communication-efficient to get a
high-accurate solution even when the eigengap δ is small.

The key technique to make CEDRE communication-
efficient is to independently update the local variables by a
surrogate gradient (defined in (6)) whose difference from
the global full gradient is bounded (as analyzed in Lemma
4). With this technique, the local update approximates the
global update with small error and therefore only regular
communication is required to get consensus on the local vari-
ables among different local machines. This technique is in-
spired by the variance reduced eigensolvers (Shamir, 2015;
2016; Xu et al., 2017). However, their analysis requires an
unbiased estimation of the global gradient in each iteration,
which cannot be satisfied in the distributed setting. Be-
sides, this technique is also inspired by the communication-
efficient frameworks that trade local computation for com-
munication (Shamir et al., 2014; Jaggi et al., 2014; Jordan
et al., 2018; Saparbayeva et al., 2018). However, these
frameworks rely on the strong convexity of the optimization
problem, while our objective function in (2) is not convex
in either the Euclidean space or the Riemannian manifold.
Therefore, the analysis of our proposed algorithm is new
and different from the previous works.

2. Preliminaries
Given a Riemannian manifoldM, its tangent space, denoted
by TwM, is a set of all tangent vectors at the point w. The
manifold gradient of an objective function f(w), denoted by
∇̃f(w), can be obtained by mapping the Euclidean gradient
onto the tangent space TwM with the projection operator
Pw(·). Applying Riemannian GD (Absil et al., 2008) on
f , its variable w can be updated while preserving in the
manifoldM as w+ = Rw(−η∇̃f(w)), where η > 0 is the
step size andRw(ξ) is the retraction (a.k.a exponential map)
atw mapping a tangent vector ξ ∈ TwM to another point on
M along a geodesic. Here, the geodesic is a shortest curve
connecting two points on a manifold with zero acceleration,
which is a generalization of a straight line in the Euclidean
space. The inverse of Rw(·), denoted by R−1

w (u), returns
a tangent vector ξ in TwM pointing towards u ∈ M such
that Rw(ξ) = u. The distance of two points w, u ∈ M is
defined as D(w, u) = ‖R−1

w (u)‖. Along the geodesic, the
parallel transport, Γuw(ξ), maps a tangent vector ξ ∈ TwM
to TuM. The vector transport, denoted as T uw (ξ), is a first-
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order approximation of the parallel transport.

Following (Zhang & Sra, 2016; Zhang et al., 2016), we
define the smoothness, convexity and gradient-dominated
properties of functions on manifolds.

Definition 1. L-g-smooth: A function f : M → R is
geodesicallyL-smooth if for anyw, u ∈M, f(u) ≤ f(w)+
〈∇̃f(w), R−1

w (u)〉+ L
2 ‖R

−1
w (u)‖2.

Definition 2. µ-g-convex: A function f : M → R

is geodesically µ-strongly-convex if for any w, u ∈ M,
f(u) ≤ f(w) + 〈∇̃f(w), R−1

w (u)〉+ µ
2 ‖R

−1
w (u)‖2.

Definition 3. τ -gradient-dominated: A function f :M→
R is τ -gradient-dominated if for any w ∈ M, f(w) −
f(w∗) ≤ τ‖∇̃f(w)‖2, where w∗ is the global minimizer.

2.1. Riemannian Eigensolver

Due to the unit `2 norm constraint in (2), w is embedded on
the Riemannian manifold, hypersphere. In the rest of this
paper, we refer toM as the hypersphere manifold. On the
hypersphere manifold, the projection is defined as Pw(ξ) =
(I−ww>)ξ, and the Riemannian gradient of F̂ (w) in (2) is
obtained via the projection of the Euclidean gradient∇F̂ (w)
as ∇̃F̂ (w) = Pw(∇F̂ (w)) = −(I−ww>)Âw. The vector
transport is defined as T uw (ξ) = Pu(ξ). And the definition
of other Riemannian operators can be found in Appendix A.

We then introduce the smoothness and the gradient-
dominated properties of the objective function F̂ (w) in (2)
on the hypersphere manifold.

Lemma 1. F̂ (w) is geodesically λ-smooth.

Lemma 2. For any w ∈ B = {w : w ∈ M, (w>v)2 > 0},
F̂ (w) is 2

δ -gradient-dominated, where δ is the eigengap and
v is the leading eigenvector.

The proof of Lemmas can be found in Appendix B.

3. Algorithm
Our proposed algorithm CEDRE is summarized in Algo-
rithm 1. Each global iteration consists of two main stages:
1) communication round (Steps 4-6 and 14-17) and 2) local
computation round (Steps 7-13). In each communication
round, the master server communicates with all local ma-
chines to update the global variable w̃s and its corresponding
full gradient ∇̃F̂ (w̃s).

Between two communication rounds is a local computa-
tion round. In each computation round, each local machine
independently updates its local variable based on its local
information, including local data and the information re-
ceived from the master server in the latest communication
round. The local variable is then updated by a surrogate
gradient as described in Step 10. To construct this surrogate
gradient, it is required to pass through all local data, which

is computationally expensive when n is large. In practice,
it is preferred to update the variables using the mini-batch
stochastic gradient, which is computationally flexible, and
the computation of gt becomes

gt =
1

B

∑
i∈It

∇̃fk,i(ws,kt )

−T w
s,k
t

w̃s

( 1

B

∑
i∈It

∇̃fk,i(w̃s)− ∇̃F̂ (w̃s)
)
, (3)

where It ⊂ [n] is a stochastic mini-batch set with size B
and fk,i(w) = − 1

2w
>xki x

k
i
>
w.

In Algorithm 1, the update of the global variable (Step 15)
and the choice of output (Step 19) are both by random selec-
tion. This is a common technique for analyzing nonconvex
objective functions (Zhang et al., 2016; Allen-Zhu, 2017;
Reddi et al., 2016). However, in practice, we can generate
the output using the latest global variable w̃S ; and update
global variable by sign-fixed averaging (Option II in Step
16) as:

w̃s+1 =

∑K
k=1 sign(ws,km

>
ws,1m )ws,km

‖
∑K
k=1 sign(ws,km

>
ws,1m )ws,km ‖

, (4)

or by geodesically averaging (Option III in Step 17) as:

w̃s+1 = w̄K , (5)

where w̄1 = ws,1m and w̄k = Rw̄k−1
( 1
kR
−1
w̄k−1

(ws,km )) for
k = 2, 3, ...,K. Detailed discussion about the update strate-
gies can be found in Section 4.2 and Section 6.4.

4. Convergence Analysis
To analyze the convergence of Algorithm 1, we start by
introducing the bounds of Ak and gt defined in Algorithm
1. All the proofs of Lemmas and Theorems can be found in
Appendix B and C.
Lemma 3. Assume the data instances in every local ma-
chine are i.i.d., and sampled from some unknown distri-
bution with squared `2 norm at most b. Then for each
local machine k, with probability at least 1 − p, we have
‖Ak − Â‖22 ≤ α2b2, where α2 = 32log(d/p)

n , and p ∈ (0, 1).

Lemma 3 is a corollary of matrix Hoeffding’s inequal-
ity (Tropp, 2012). When the data are not i.i.d., we can
still have the same upper bound of ‖Ak − Â‖22 by applying
the without-replacement version of Bernstein’s inequality
for matrices (Gross & Nesme, 2010) if the data are ran-
domly partitioned over all local machines. Based on the
spectral norm bound of ‖Ak− Â‖22, we derive the bound for
gt defined in Step 10 of Algorithm 1. To avoid confusion
with (3), we redefine it as

G(w) = ∇̃fk(w)− T ww̃s

(
∇̃fk(w̃s)− ∇̃F̂ (w̃s)

)
. (6)
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Algorithm 1 CEDRE(w0, S,m, η)
1: Input: initial variable w0, global iteration length S, local iteration length m, learning rate η
2: Initialize w̃0 = w0

3: for s = 0, 1, 2, ..., S − 1 do
4: Broadcast w̃s to all machines
5: Aggregate local gradient ∇̃fk(w̃s) from all machines
6: Broadcast full gradient ∇̃F (w̃s) =

1
K

∑K
k=1 ∇̃fk(w̃s) to all machines

7: for local machine k = 1, 2, ...,K in parallel do
8: Set ws,k0 = w̃s
9: for t = 0, 1, 2, ....,m− 1 do

10: gt=∇̃fk(ws,kt )−T w
s,k
t

w̃s

(
∇̃fk(w̃s)−∇̃F̂ (w̃s)

)
11: ws,kt+1=Rws,k

t
(−ηgt)

12: end for
13: end for
14: Aggregate local variable ws,km from all machines
15: option I: w̃s+1 = ws,km for randomly chosen k ∈ {1, 2, ...,K}
16: option II: Update w̃s+1 by sign-fixed averaging as in (4).
17: option III: Update w̃s+1 by geodesically averaging as in (5).
18: end for
19: Output: wa is chosen uniformly randomly from

{{
{ws,kt }m−1

t=0

}K
k=1

}S−1

s=0

Lemma 4. For G(w) defined in (6), given any w ∈ M,
it holds with probability at least 1 − p that ‖G(w) −
∇̃F̂ (w)‖2 ≤ 6α2b2 D2(w, w̃s), where α2 = 32log(d/p)

n .

Lemma 4 describes the key difference of the update rule be-
tween the distributed setting and the single machine setting.
In the single machine setting, fk(w) = F̂ (w) and we have
G(w) = ∇̃F̂ (w). In this case, the variable is updated by
Riemannian GD. However, in distributed setting, G(w) is
a biased estimation of the global full ∇̃F̂ (w), and the bias
becomes large with the increment of distance between w̃s
and w. To bound the bias, it requires careful control over
the distance between w̃s and w by choosing proper step size
η and inner iteration length m.

Based on the observation in Lemma 4, we derive the follow-
ing theorems for convergence analysis of CEDRE.

Theorem 1. Consider Algorithm 1 with option I. Set the
step size η = ρ/λ with ρ satisfying 12α2b2ρ2m2

/λ2 + ρ ≤ 1,
where α is defined in Lemma 3. Then for the output wa of
Algorithm 1, it holds with probability at least 1− p that

E[‖∇̃F̂ (wa)‖2] ≤ 2λ
ρmS

(
F̂ (w0)− F̂ (w∗)

)
,

where w∗ = v is the global minimizer of F̂ (w).

Corollary 1. Set ρ = 1/4 and m = bλ/αbc in Theorem 1.
Then the output of the proposed algorithm converges to the
leading eigenvector with a rate of O(λ/mS). That is it takes
O(αb/ε) = O( b

ε
√
n

) communication rounds to obtain an
ε-accurate solution.

Corollary 1 demonstrates that the convergence rate of Al-
gorithm 1 is sublinear. With the same parameters setting
in Corollary 1, a larger size of local data set indicates less

Algorithm 2 RST-CEDRE(ŵ0, R, S,m, η)

1: Input: initial variable w0, global iteration length S, local
iteration length m, learning rate η and restart iteration length
R

2: Initialize ŵ0 = w0

3: for r = 0, 1, 2, ..., R− 1 do
4: ŵr+1 = CEDRE(ŵr, S,m, η)
5: end for
6: Output: ŵR

communication cost to converge to the same accuracy of
solution due to the factor n−1/2. When the local variable is
updated by mini-batch stochastic gradient shown in (3), its
convergence analysis is studied in the following theorem.

Theorem 2. Consider Algorithm 1 with option I, replace
the computation of gt in Step 10 with (3), and set the step
size η = ρ/λ with ρ satisfying 12(α2+1/B)b2ρ2m2

/λ2 + ρ ≤ 1,
where α is defined in Lemma 3. Then for the output wa
of Algorithm 1, it holds with probability at least 1 − p
that E[‖∇̃F̂ (wa)‖2] ≤ 2λ/ρmS

(
F̂ (w0) − F̂ (w∗)

)
, where

w∗ = v is the global minimizer of F̂ (w).

Theorem 2 tells that even the local variables are updated by
stochastic local first-order information, the algorithm still
achieves sublinear convergence rate of O( λ

mS ) with proper
setting of parameters. The difference is that it admits a
smaller step size η or fewer local computation iterations m.

The convergence analysis presented in Theorems 1-2 is
eigengap-free but sublinear. In the next theorem, we present
that with a restart strategy as summarized in Algorithm 2,
the algorithm enjoys an eigengap-dependent linear conver-
gence rate. The analysis is based on the gradient-dominated
property of the objective function in (2). For simplification,
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we assume the initial variable w0 satisfies (v>w0)2 > 0.
Based on Theorem 3 and Lemma 5, the variable generally
approaches v. Therefore, (v>w)2 is always positive during
update and F̂ (w) is always 2

δ -gradient-dominated.
Theorem 3. Consider Algorithm 2 plugged with CEDRE
using option I. Assume the eigengap of Â is δ and set the
step size η = ρ/λ with ρ satisfying 12α2b2ρ2m2

/λ2 + ρ ≤ 1,
where α is defined in Lemma 3. Then given any initial
variable w0 satisfying (v>w0)2 > 0, for the output ŵR of
Algorithm 2, it holds with probability at least 1− p that

E
[
F̂ (ŵR)− F̂ (w∗)

]
≤
(

4λ
ρδmS

)R(
F̂ (w0)− F̂ (w∗)

)
,

where w∗ = v is the global minimizer of F̂ (w).
Corollary 2. Set ρ = 1/4 and m = bλ/αbc and S =
d32αb/δe in Theorem 3. We then have E

[
F̂ (ŵR)−F̂ (w∗)

]
≤

2−R
(
F̂ (w0) − F̂ (w∗)

)
. And it takes O

(
αb/δ log(1/ε)

)
=

O
(

b
δ
√
n

log(1/ε)
)

communication rounds to obtain an ε-
accurate solution.

The analysis in Collory 2 presents that even when δ is as
small as δ = Ω(1/

√
Kn), the communication cost does not

increase with the sample size. For Algorithm 2 plugged with
CEDRE using mini-batch stochastic update, its analysis is
similar to Theorem 3, but with a condition on ρ as presented
in Theorem 2.

4.1. Another Accuracy Measure

In the above convergence analysis of CEDRE, the optimiza-
tion accuracy is measured by either the squared norm of
the gradient (as in Theorems 1-2) or the difference from the
optimal function value (as in Theorem 3). For the leading
eigenvector problem studied in Euclidean space (Shamir,
2015; 2016; Xu et al., 2017; Garber et al., 2017), the op-
timization accuracy is often measured by the squared sine
distance, 1−(w>v)2, which is the squared sine value of the
angle between w and the optimal solution v. Since the sign
of w does not affect the value of F̂ (w), we assume w>u≥0
is satisfied by default for any w, u∈M in the discussion of
this paper. Then the accuracy measure used in Theorem 3,
F̂ (w)−F̂ (v), can be transformed to the accuracy measure
1−(w>v)2 based on the following lemma.
Lemma 5. For any vector w ∈M, it holds that

δ
2 (1− (w>v)2) ≤ F̂ (w)− F̂ (v) ≤ λ

2 (1− (w>v)2).

With Lemma 5 and Theorem 3, we have

E[1− (v>ŵR)2] ≤
(

4λ
ρδmS

)R
λ
δ E[1− (v>w0)2].

Applying the same settings in Corollary 2, it takes
O
(

b
δ
√
n

log( λδε )
)

communication rounds to obtain an ε-
accurate solution if using 1− (w>v)2 as the accuracy mea-
sure.

4.2. The Averaging Strategy

In the aforementioned convergence analysis of Algorithm
1, the global variable is assumed to be updated by random
selection (option I). In this part, we discuss the convergence
analysis with another two averaging strategies. As will be
presented in Lemma 6, if the global variable is updated
by sign-fixed averaging in (4), the optimization accuracy,
if measured by the squared sine distance to the optimal
solution, does not decrease after averaging.

Lemma 6. Given K variables wk ∈ M which are close
enough to the leading eigenvector v of A such that 1−
(v>wk)2< 1/2 for k = 1, 2, ...,K. Consider the following
unit norm vector (averaging with sign-fixed),

w̄=

∑K
k=1 sign(w>k w1)wk

‖
∑K
k=1 sign(w>k w1)wk‖

,

we then have 1−(v>w̄)2≤ 1
K

∑K
k=1

{
1− (v>wk)2

}
.

Theorem 4. Consider Algorithm 2 plugged with CEDRE
using option II and set the parameters the same as presented
in Theorem 3. Then given any initial variable w0 satisfying
(v>w0)2 > 1/2, for the output ŵR of Algorithm 2, it holds
with probability at least 1− p that

E
[
F̂ (ŵR)− F̂ (w∗)

]
≤
(

4λ2

ρδ2mS

)R (
F̂ (w0)− F̂ (w∗)

)
.

The geodesically averaging presented (5) is a geodesically
convex combination ofK variables. If the objective function
is g-convex and the global variable is updated by geodesi-
cally averaging (option III), the objective value will not
increase after averaging. As studied in (Shamir, 2016), if
the objective function in (2) is formulated as a negative
Rayleigh quotient problem in the Euclidean space, it is con-
vex within a small area around the optima. However, the
convexity of F̂ (w) has not been studied on Riemannian
manifolds. Here, we present the locally geodesical convex-
ity of F̂ (w) in Lemma 7 and derive the convergence analysis
of CEDRE with option III in Theorem 5.

Lemma 7. For any w ∈ A = {w ∈ M : (w>v)2 ≥
1− δ

λ+δ}, F̂ (w) is geodesically-convex.

Theorem 5. Consider Algorithm 2 plugged with CEDRE us-
ing option III and set the parameters the same as presented
in Theorem 3. Then given any initial variable w0 ∈ A , for
the output ŵR of Algorithm 2, it holds with probability at
least 1− p that

E
[
F̂ (ŵR)− F̂ (w∗)

]
≤
(

4λ
ρδmS

)R (
F̂ (w0)− F̂ (w∗)

)
.

The analysis depends on a high-accurate initialization of w0,
which might be achieved via a warm start.
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4.3. Warm Start

To accelerate the convergence of the algorithm, we can
initialize the algorithm with the leading eigenvector of a
local covariance matrix, e.g., A1, if the local data size n is
sufficiently large. The theoretic analysis of the warm start is
presented in Lemma 8.

Lemma 8. Define the leading eigenvector of A1 as v1. We
then have F̂ (v1)− F̂ (v) ≤ αb = O(n−1/2).

Assume we run Algorithm 2 with parameters settings as in
Corollary 2 and set w0 = v1. Then based on the observa-
tion in Lemma 8, we have that it takes O

(
αb/δ) log(αb/ε)

)
communication rounds to achieve an ε-accurate solution.
Moreover, by combining Lemma 8 and Lemma 5, we have
(v>v1)2 ≥ 1− 2αb/δ. For a sufficiently large n, it is with
high probability that 2αb/δ < 1/2 and therefore the assump-
tion 1− (v>w0)2 < 1/2 in Lemma 6 is satisfied.

5. Related Work
Besides the distributed PCA algorithms (Garber et al., 2017;
Fan et al., 2017; Liang et al., 2014; Boutsidis et al., 2016)
discussed in Section 1, recently an extension of distributed
power method for sparse PCA is proposed by Ge et al.
(2018). Different from our algorithm, their focus is privacy
preservation. Without considering privacy preservation, its
communication efficiency is not better than the distributed
power method. Another way to develop distributed PCA
algorithms is to apply existing communication-efficient Rie-
mannian algorithms to solve (2). To the best of our knowl-
edge, there exists only one communication-efficient Rieman-
nian algorithm, named Iterative Local Estimation Algorithm
(ILEA) (Saparbayeva et al., 2018). It approximates the
global objective function in one local machine with first-
order global information and higher-order local information,
and optimizes the surrogate function locally. However, the
PCA problem may not satisfy the assumptions of ILEA, e.g.,
strongly geodesically convexity around the optimal point
and high-order moment bounds. Thus, whether ILEA is
applicable to PCA is still under exploration.

6. Experiments
6.1. Datasets and Settings

We implement CEDRE with a manifold optimization tool-
box manopt (Boumal et al., 2014) on a distributed com-
puting platform MATLAB Parallel Server with multiple
computers. The empirical performance is evaluated on three
real-world datasets with different scales. These datasets are
a9a, CIFAR-10 and rcv1. For a9a and CIFAR-10, we only
use the training sets. For rcv1, we combine the original train-
ing sets and testing sets of rcv1.binary and rcv1.multiclass
datasets to construct a large-scale dataset. The details are

Table 1. Summary of Datasets
Datasets a9a CIFAR-10 rcv1

# of Samples (N ) 32, 561 60, 000 1, 231, 776
# of features (d) 123 3072 47, 236
Leading Eigenvalue (λ) 1.00 1.00 1.00
Eigengap (δ) 0.3691 0.6152 0.2833

summarized in Table 1. The data instances are randomly
and evenly partitioned over K=100 local machines. And
they are normalized to have zero mean by subtracting the
mean of all data points. The global mean can be obtained
by aggregating the means of local data and then averaging
these local means. This requires sending and receiving only
one vector for all machines and thus it is not an issue in prac-
tice. Besides, for convenience of results comparison across
different datasets, the data in three datasets are re-scaled
such that their largest eigenvalues are the same. As for the
settings of CEDRE, we run the stochastic update, which
means Step 10 in Algorithm 1 is replaced by (3) with batch
size B=1 and with option II. In addition, we set the local
iteration length m=5n and choose the step size η based on
the best training loss with one communication round.

In the experiments, the communication cost is measured
by the number of communicated vectors, where the vector
is with the same dimension as the data instances. And we
count one communicated vector for the following two types
of communication: 1) the master server sends one vector
to all local machines; and 2) each local machine sends one
vector to the master server. Note that for CEDRE, 4 vectors
will be communicated in one communication round.

6.2. Comparison on Real-World Datasets

We compare CEDRE with two deterministic distributed
PCA algorithms, i.e. (Boutsidis et al., 2016), denoted by
DisPCA-B, (Liang et al., 2014), denoted by DisPCA-L, and
three iterative-update distributed PCA algorithms, i.e. the
distributed implementation of accelerated RGD (Absil et al.,
2008), ILEA (Saparbayeva et al., 2018) and DSI (Garber
et al., 2017). The distributed power method and Lanczos
algorithm are not selected as a baseline because their per-
formance is similar to but a little worse than RGD. The
algorithms in (Fan et al., 2017; Liang et al., 2014; Boutsidis
et al., 2016) all focus on approximating the local covari-
ance matrix by a small set of vectors and communicating
these vectors to master machines to reconstruct the global
covariance matrix. (Fan et al., 2017) and (Liang et al., 2014)
both apply PCA to construct local covariance matrix ap-
proximation, but (Fan et al., 2017) sends the eigenvectors
of local covariance matrix while (Liang et al., 2014) sends
eigenvectors together with eigenvalues. (Boutsidis et al.,
2016) applies random projection to map the local covari-
ance matrix to low dimension space. Since the accuracy
of (Fan et al., 2017) decreases with more communication
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Figure 1. Communication cost comparison results of different distributed optimization algorithms on real-world datasets.
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Figure 2. Running time comparison results of different distributed optimization algorithms on real-world datasets.
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Figure 3. Results on synthetic datasets. (a) displays convergence
of CEDRE regarding different size of dataset in local machines.
(b) displays convergence of CEDRE regarding different eigengaps.

rounds, it is not selected as a baseline. To avoid the effect of
randomness in (Boutsidis et al., 2016), we run it 100 times
and report the averaged results. DSI and ILEA have been
introduced.

The comparison results are presented in Figure 1. On all the
datasets, the proposed algorithm CEDRE converges to high
accuracy with the least number of communicated vectors,
which verifies that CEDRE is communication-efficient. And
the gain of CEDRE over the competitors becomes larger
when the scale of the datasets increases. To be specific, on
a9a, CEDRE converges to about −32 log error after 24 vec-
tors are communicated while its best competitor, RGD, takes
66% more communication cost to converges to the same
accuracy. On CIFAR-10, CEDRE achieves high accuracy
with 16 vectors communicated while the best competitor
RGD obtains the same accuracy with 75% more vectors
communicated. On rcv1, CEDRE achieves high accuracy
after 20 vectors are communicated. The best competitor
ILEA achieves the same accuracy with more than 56 vectors

communicated, which is 175% more than CEDRE. Spe-
cially, with extremely few vectors communicated (i.e. only
4 or fewer vectors are communicated), DisPCA-L achieves
better accuracy than CEDRE. But with a few more vec-
tors communicated, the accuracy of CEDRE increases by
a large margin while the accuracy of DisPCA-L improves
slowly. Moreover, the accuracy improvement of DisPCA-L
regarding the increase of communication cost depends on
the dimension of data instances. If the number of features is
small, the improvement is large as shown on a9a dataset. If
the d is large, which is the case of rcv1 dataset, the improve-
ment of accuracy is slow. Due to the uncertainty of random
projection, the performance of DisPCA-B is not good. As
for DSI, its convergence is slow because it requires high
communication cost to solve a series of convex objectives
to high accuracy. Compared to CEDRE, RGD does not
perform the local update and therefore its convergence is
slower than CEDRE, especially when the size of the dataset
is large. For example, RGD converges to only−14 log error
after communicating 80 vectors on the rcv1 dataset. And
for ILEA, it converges slower than CEDRE because the dis-
tance to the optimal solution from an exact solution of the
local surrogate function may be farther than an early-stop
solution of the local surrogate function.

We also compare the running time of CEDRE with dis-
tributed RGD and DSI. ILEA is not compared because it
fails to complete one iteration within the maximal time we
show in the figure. And DisPCA-L, DisPCA-B require to
solve a PCA problem on an approximate covariance matrix
in the master machine, which is computationally expensive
and cannot complete within the maximal time. The results
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Figure 4. Comparison of different options to update the global variable on a9a dataset. The × symbols represent the accuracy of variables
returned by local machines.

are presented in Figure 2. The results show that CEDRE
costs significantly less wall-clock time to achieve a high-
accuracy solution.

6.3. Convergence Analysis on Synthetic Datasets

We generate synthetic datasets using normal distribution
with zero-mean and specially designed covariance matrix
X = UΣU> with U being a random d×d orthonormal
matrix, where d= 1, 000, and Σ being a diagonal matrix
satisfying: Σ(1, 1) = 1, Σ(2, 2) = 1− δ and Σ(j, j) =
0.9Σ(j−1, j−1), ∀j ≥ 3. To reduce the uncertainty ef-
fect of random sampling, we generate 10 datasets for each
type of synthetic dataset and show the averaged results run
on the 10 datasets.

Convergence Regarding Different Sizes of Local
Datasets: We first examine the convergence speed of the
proposed algorithm CEDRE with different sizes of local
datasets n on the synthetic dataset by varying n = 100 to
n = 2, 000 with eigengap δ = 0.2. Specially, we define
the error by the gap between current function value to the
population optimal function value. The empirical results
are displayed in Figure 3(a). When n ≥ 400, the algorithm
converges to a low-error solution almost after only 1 round
of communication. When n = 200, the algorithm converges
after about 3 communication rounds. And when n = 100,
it converges after about 7 rounds. These results show that
the number of communication rounds it takes to obtain a
high accuracy solution is approximately polynomial to 1/

√
n,

which meets the theoretic analysis in Theorem 1 and Theo-
rem 3 that the number of communication rounds is linear to
λ/m, where m = 5n in our experiments. Moreover, we can
observe from Figure 3(a) that the error after convergence
decreases with n increases. This meets the theoretic analysis
that the error of ERM optimal solution to the population risk
minimal solution is Ω(1/

√
n).

Convergence Regarding Different Eigengaps: We then
test the convergence speed of CEDRE on the synthetic
dataset with different eigengaps. Based on the analysis
in Theorem 3 and Corollary 2, the number of communica-

tion rounds to obtain high accuracy solution is linear to 1/δ.
By varying the eigengap from δ = 0.01 to δ = 0.2 on the
synthetic dataset with n = 2, 000, we observe from Figure
3(b) that the convergence of CEDRE becomes slow with the
decrease of eigengap δ. To be specific, when δ = 0.2, CE-
DRE achieves−25 log error in 4 communication rounds and
converges after 6 communication rounds. When δ = 0.01,
CEDRE uses 14 communication rounds to obtain −25 log
error, which converges much slower. The empirical results
meet the theoretic analysis in Corollary 2 that the commu-
nication cost of CEDRE to converge to the same accuracy
increases when the eigengap δ becomes small.

Extra experimental results can be found in Appendix D.

6.4. Averaging Strategy

In this section, we compare the performance using three
different options to update the global variable (Steps 15-17
in Algorithm 1) on a9a. The results in Figure 4 show that
the losses of global variables generated by three options are
not worse than the largest loss among all local variables.
Specifically, the global variable obtained by sign-fixed aver-
aging or by geodesically averaging may achieve a smaller
loss than all the local variables (as shown in Figures 4(b)
and 4(c)). Therefore, with these two options (Options II and
III), CEDRE converges faster than that with random selec-
tion (Option I). Besides, the sign-fixed averaging slightly
outperforms the geodesically averaging.

7. Conclusion
We propose a Communication-Efficient Distributed Rieman-
nian Eigensolver (CEDRE) algorithm, which converges to
the optimal ERM solution with a linear rate regarding the
number of communication rounds. The theoretic analysis
shows CEDRE is more communication-efficient than the
distributed PCA algorithms in previous works. The numeri-
cal experiments on real-world and synthetic datasets verified
that CEDRE achieves competitive performance to the exist-
ing communication-efficient distributed eigensolvers.
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