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Abstract
Recent successes of game-theoretic formulations
in ML have caused a resurgence of research inter-
est in differentiable games. Overwhelmingly, that
research focuses on methods and upper bounds on
their speed of convergence. In this work, we ap-
proach the question of fundamental iteration com-
plexity by providing lower bounds to complement
the linear (i.e. geometric) upper bounds observed
in the literature on a wide class of problems. We
cast saddle-point and min-max problems as 2-
player games. We leverage tools from single-
objective convex optimisation to propose new lin-
ear lower bounds for convex-concave games. No-
tably, we give a linear lower bound for n-player
differentiable games, by using the spectral prop-
erties of the update operator. We then propose
a new definition of the condition number arising
from our lower bound analysis. Unlike past def-
initions, our condition number captures the fact
that linear rates are possible in games, even in the
absence of strong convexity or strong concavity
in the variables.

1. Introduction
Game formulations arise commonly in many fields, such
as game theory (Harker and Pang, 1990), machine learning
(Kim and Boyd, 2008; Goodfellow et al., 2014), and com-
puter vision (Chambolle and Pock, 2011; Wang et al., 2014)
among others, and encompass saddle-point problems (Pala-
niappan and Bach, 2016; Chambolle and Pock, 2011; Chen
et al., 2017).

The machine learning community has been overwhelm-
ingly using gradient-based methods to train differentiable
games (Goodfellow et al., 2014; Salimans et al., 2016).
These methods are not designed with game dynamics in
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mind (Mescheder et al., 2017), and to make matters worse,
have been often tuned suboptimally (Gidel et al., 2019b).
A recent series of publications in machine learning brings
in tools from the minimax and game theory literature to of-
fer better, faster alternatives (Daskalakis et al., 2018; Gidel
et al., 2019a;b). This exciting trend begs the question: how
fast can we go? Knowing the fundamental limits of this
class of problems is critical in steering future algorithmic
research.

In order to answer this question, the optimisation literature
contains a few different approaches based on the distance
between the iterates at a step t and the optimal choice of
parameters. Given an optimisation algorithm, it is possible
to show under certain assumptions on the objectives that this
error is in O (ρt), where the rate of convergence ρ depends
on the algorithm (Nesterov, 2004). If ρ ∈ (0, 1), we say
that the rate of convergence is linear, which corresponds to
the error decaying exponentially fast. Hence, a lower bound
on the rate of convergence limits how fast an algorithm may
converge. This is important as it helps establish the tight-
ness of upper bounds, which happens when they are matched
by the lower bounds, and may otherwise indicate possible
acceleration of the method considered. For example, in
single-objective optimisation, the lower bound on the rate
of convergence of first-order black box algorithms is known
to be linear for smooth, strongly convex objectives, and can
be derived via a domino-like coverage argument by Nes-
terov (2004). Another recent, spectral approach by Arje-
vani et al. (2016) complement these results by proposing
linear lower bounds for a large class of optimisers in finite-
dimensional settings. As the lower bounds for Nesterov’s
accelerated gradient obtained by those techniques match the
upper bound, we know that Nesterov’s accelerated gradi-
ent is optimal within a large class of methods for smooth,
strongly convex objectives. Additionally, in optimisation, a
natural concept of condition number arises to describe the
difficulty of µ-strongly convex, L-smooth objectives. This
condition number is the only problem-dependent quantity
that appears in both the upper and lower bounds and is given
by κ = L/µ (Nesterov, 2004). In optimisation, there is a
clear distinction between strongly convex objectives, where
the condition number is finite and linear rates are achievable,
and general convex objectives where the condition number
can be undefined and only sublinear rates are possible in
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general.

When studying lower bounds for convex-concave min-max,
one is faced with a number of distinct challenges compared
to the optimisation setting. In particular, there is no uni-
versally accepted definition of a condition number. Some
commonly used definitions, like the one used in Chambolle
and Pock (2011); Palaniappan and Bach (2016), are unde-
fined for bilinear problems, which lack strong convexity and
strong concavity in the variables. This is problematic be-
cause we know that both extragradient and gradient methods
with negative momentum achieve linear convergence in bi-
linear games (Korpelevich, 1976; Gidel et al., 2019b). Can
we get a condition number that captures the fact that linear
rates are possible even in the absence of strong convexity
and strong concavity?

We show that it is possible by providing new lower bounds,
obtained by casting saddle-point and min-max problems as
games and leveraging existing proof techniques originally
designed for smooth strongly convex, single-objective opti-
misation. These bounds also yield a meaningful condition
number for the bilinear case, in the absence of strong convex-
ity and strong concavity in the variables. Our contributions
are summarised as follows:

1. We generalise Nesterov’s domino argument and design
a difficult min-max problem to derive a linear lower
bound on the rate of convergence of several first-order
black box optimisation algorithms for 2-player games
and min-max problems. In order to get an asymptotic
rate using the domino bound, one needs to resort to the
analysis of infinite-dimensional problems.

2. We propose a linear lower bound for finite-dimensional
problems by generalising the p-SCLI framework pro-
posed by Arjevani et al. (2016) to n-objective optimi-
sation algorithms. This lower bound stems from the
spectral properties of the algorithms on quadratics, and
is valid for any number of players, and in particular
2-player games and min-max problems. This bound is
tight for n = 1 since it reduces to the one presented
by Arjevani et al. (2016) for strongly convex, smooth
single-player optimisation.

3. We provide a formulation of the condition number of
2-player games consistent with the existing literature
on upper bounds for games and min-max problems. In
particular, this condition number is finite for bilinear
games.

After the results of this work were made available on-
line, several researchers have proposed methods to match
some of our bounds in the smooth strongly-convex-strongly-
concave setting (Fallah et al., 2020; Lin et al., 2020) and
the bilinear setting (Azizian et al., 2020), which is merely

convex-concave, thereby establishing the tightness of some
of the bounds and the optimality of those methods in those
regimes.

The rest of the paper is organised as follows. We purposely
discuss preliminaries first in Section 2 to introduce the gen-
eral framework used to present in Section 3 the relevant
literature in the context of our results. In Section 4, we pro-
vide lower bounds using Nesterov’s domino argument, and
in Section 5 we improve on those bounds using the spectral
technique. We conclude with some discussion.

2. Preliminaries
2.1. Differentiable games

Following the definition of Balduzzi et al. (2018), a differen-
tiable game is characterised by n players, each associated
with a set of parameters wi ∈ Rdi and a twice continuously
differentiable objective function li : Rd → R of all the
parameters w = (w1, ...,wn) ∈ Rd, where d =

∑n
i=1 di.

In particular, if
∑n
i=1 li(w) = 0, we say that the game is

zero-sum.

Often, we seek to minimise the objectives li, and look for
Nash equilibria w∗ = (w∗1, ...,w

∗
n), which satisfy1 for all i

w∗i ∈ arg min
wi

li
(
w∗1, ...,w

∗
i−1,wi,w

∗
i+1, ...,w

∗
n

)
. (1)

In order to find the Nash equilibria, we may look for sta-
tionary points, corresponding to the zeros of the vector field
v(w) = (∇w1

l1(w) . . .∇wn ln(w))
>. In single-objective

optimisation, which corresponds to a 1-player game, we
know that stationary points of v do not necessarily represent
minima of the objective function, and higher order informa-
tion, such as the Hessian, is necessary to determine whether
a stationary point is a minimum. The same is true for a
game with several players (Balduzzi et al., 2018), where the
Jacobian of v, given by

∇v(w) =

 ∇2
w1
l1(w) . . . ∇wn∇w1

l1(w)
...

...
∇w1
∇wn ln(w) . . . ∇2

wn ln(w)


(2)

gives sufficient conditions to determine whether a stationary
point is a Nash equilibrium. Note that our lower bound
analysis encompasses games with stable stationary points
that are not Nash equilibria.

1Of course, we could be trying to maximise some players’
objectives, but we can without loss of generality work with minima
since argmax f = argmin(−f)
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2.2. Quadratic games

In order to gain insight on general games, we focus on
quadratic games2, corresponding to games with quadratic
objectives li. In our analysis, we will mostly discuss two-
player games, where the players respectively control the
parameters x ∈ Rd1 and y ∈ Rd2 . The quadratic objectives
take the form

l1(x,y) =
1

2
x>S1x+ x>M12y + x>b1

l2(x,y) =
1

2
y>S2y + y>M21x+ y>b2 (3)

with S1 and S2 symmetric. In that case the vector field is
given by

v(x,y) =

(
S1x+M12y + b1

M21x+ S2y + b2

)
= A

(
x
y

)
+ b (4)

withA ,

(
S1 M12

M21 S2

)
, b ,

(
b1

b2

)
whereA is the Jacobian of v. For n-player quadratic games,
the vector field and JacobianA take the form

v(w) = Aw + b (5)

withA ,

 S1 . . . M1n

...
...

Mn1 . . . Sn

 , b ,

b1

...
bn


where the Si are symmetric. For more details on quadratic
games, see Appendix A. Further assumptions on the dimen-
sionality or properties of Si will be introduced in the rest
of the paper as they become relevant (e.g. positive semi-
definiteness in the next subsection).

We shall henceforth refer to the Jacobian of the vector
field of quadratic n-player games simply as the Jacobian,
since our analysis will be solely based on quadratic objec-
tives. Interestingly, the problem of finding w such that
v(w) = 0 consists in solving a system of linear equations
(SLE) (Richardson, 1911). In fact, several techniques to
precondition systems of linear equation make use of casting
the SLE as a game and optimising it with proximal methods,
such as Benzi and Golub (2004).

In this paper, we will denote the spectrum of a ma-
trix M by σ(M), and define the block spectral bounds
µ1, µ2, µ12, L1, L2, L12 as constants bounding the spectra
of the blocks in the Jacobian of eq. 4:

µ1 ≤ |σ(S1)| ≤ L1 µ2 ≤ |σ(S2)| ≤ L2

µ2
12 ≤ |σ(M12M

>
12)| ≤ L2

12 (6)

2Note that quadratic games are inherently relevant; e.g. in
reinforcement learning to learn a linear value function from the
mean squared projected Bellman error (Du et al., 2017)

where we assume that M12 is a wide or square matrix (if
it is a tall matrix, we use µ2

12 ≤ |σ(M>
12M12)| ≤ L2

12 to
define µ12 and L12 instead of the last inequality of eq. 6).

2.3. Min-max of quadratics as 2-player quadratic
games

Consider the family P of min-max problems of the form

min
x∈Rd1

max
y∈Rd2

f(x,y) = x>My +
1

2
x>S1x−

1

2
y>S2y

+ x>b1 − y>b2 + c (P)

where σ(MM>), σ(S1), σ(S2) ⊆ [0,+∞)

with possible constraints and where the dimension need not
be finite, e.g. x,y ∈ `2 , {u ∈ RN |

∑∞
i u2

i <∞}. The
optimisation of such a problem is equivalent to finding a
pair (x∗,y∗) such that,

x∗ ∈ arg min f(x,y∗) and y∗ ∈ arg max f(x∗,y) (7)

Noting that arg max f = arg min(−f), we get that this
optimisation problem is equivalent to a zero-sum 2-player
game with objectives l1 = −l2 = f (see eq. 1). This
problem can be reduced to searching for the Nash equi-
libria of the 2-player quadratic game with simplified ob-
jectives lx(x,y) = 1

2x
>S1x + x>My + x>b1 and

ly(x,y) = 1
2y
>S2y − x>My + y>b2, where the Si

have been symmetrised (see Appendix A for an explanation
of the symmetrisation of Si and why the objectives can be
simplified). Eq. 4 yields the vector field

v(x,y) =

(
S1 M

−M> S2

)(
x
y

)
+

(
b1

b2

)
(8)

Therefore, the pair (x∗,y∗) from eq. 7 exists if and only
if the corresponding games with vector field given in eq. 8
admit a Nash equilibrium since S1,S2 � 0. Note that we
could also go from a quadratic game satisfying the above
to a min-max formulation. Hence, any lower bound on
quadratic games of the form of eq. 8 is a lower bound on
min-max problems (in P), and vice versa.

3. Background
3.1. Existing bounds for 2-player quadratic min-max

problems

Some upper bounds on the rate of convergence of certain
optimisation algorithms exist for unconstrained problems
in P . These upper bounds on the rate of convergence ρ
imply that for any problem in P , the iterates will converge
to a solution in O (ρt). For clarity’s sake, we reformulate
these upper bounds to be consistent with the notation of
P and eq. 6. Letting κ = L12√

µ1µ2
, Chen and Rockafel-

lar (1997) analyse the forward-backward algorithm, and
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find a convergence inO

(√1−
(

min(µ1,µ2,µ12)
max(L1,L2,L12)

)2
)t.

Chambolle and Pock (2011) give an algorithm for which the

convergence is in O
((√

1− 2
κ+2

)t)
. Palaniappan and

Bach (2016) present an accelerated version of the forward-
backward algorithm with variance reduction with conver-

gence in O
((

1− 1
1+2κ

)t)
. Note that asymptotically, the

Chambolle-Pock and accelerated Forward-Backward rates
match up to a factor of 2 on κ. Finally, Gidel et al. (2019b)

give an upper bound in O
((

1− 1
4L2

12/µ
2
12

)t)
on the con-

vergence of alternating gradient descent with negative mo-
mentum for non-singular bilinear games, i.e. quadratic
games satisfying eq. 8 with S1 = S2 = 0 and non-singular
Jacobian.

A key problem with those rates of convergence is that the
tightness of the upper bound is not established. Such infor-
mation is important since it may indicate that the algorithm
can be accelerated. Ideally, one would use the rate of conver-
gence of the hardest problem (i.e. slowest convergence) in
the class of problems, which would be a tight upper bound.
If one can only find a lower bound on the rate of conver-
gence of the hardest problem, then any upper bound on the
entire problem class must be greater than that lower bound
to avoid a contradiction. This is because the (upper bound
on the) rate of convergence for a class of problems must
apply to any problem in the class, and hence be greater than
any lower bound derived on any particular problem within
that class. Usually, it is not possible to find the problem
with the slowest convergence, so one may have to guess
a hard enough problem. If the lower bound on that prob-
lem matches the upper bound for the problem class, then
we have established that not only this problem is one of
the hardest problems in the class, but also that the upper
bound is tight. Therefore, it is important to remember that
the goal of lower bounds generally is not to apply to every
problem within the class, unlike upper bounds, but to help
estimate how much the upper bounds on the whole class
can be improved given the presence of hard problems in the
class.

Unlike upper bounds, relevant lower bounds for first-order
methods on saddle-point problems are scarcer in the litera-
ture. Nemirovsky (1992) gives a lower bound in O(1/t) for
a limited number of steps. Ouyang and Xu (2018) also lever-
age Krylov subspace techniques, and show lower bounds in
O(1/t) in the monotone case and O(1/t2) in the strongly
monotone case, assuming the number of iterations is less
than half the dimension of the parameters. Note that Ouyang
and Xu (2018) do not assume smoothness of the objective in
y. A key issue is that since these bounds are only valid for

a limited number of steps, they do not yield bounds that can
be compared with the upper bounds previously mentioned.
In contrast, the lower bounds presented in this work are
valid for any number of steps and are linear, and therefore
provide a direct limit to the acceleration of methods achiev-
ing linear convergence on two-player games. Additionally,
our lower bounds also yield condition numbers that give
intuition about the difficulty inherent to a problem, and can
be computed in a plug-and-play fashion using either bounds
on the spectrum of the full Jacobian, or on the spectra of its
blocks.

3.2. Lower bound techniques for convex optimisation
with bounded spectrum

In single-objective optimisation, i.e. a 1-player game, the
Jacobian in eq. 2 reduces to the Hessian of the objective,
denoted H(x). In that case, if there exists µ,L ∈ R++

such that for all x in the domain considered

µ �H(x) � L

the objective is µ-strongly convex and has L-Lipschitz gra-
dients, and the convergence rates (i.e. upper bounds) are
known to be linear in the number of iterations for several
classes of algorithms (Nemirovsky and Yudin, 1983; Nes-
terov, 2004). In the context of convex minimisation, various
lower bounds have been derived depending on whether the
objective is strongly convex and/or has Lipschitz gradients
(see (Bubeck et al., 2015) for an overview).

Nesterov’s lower bound In particular, Nesterov (2004)
gives an information-based complexity bound for µ-strongly
convex objectives with L-Lipschitz gradients, by showing
that there is a µ-strongly convex example in `2 → R with
L-Lipschitz gradients for which first-order black box meth-
ods, i.e. methods using only past iterates and gradients of
past iterates at every update, converge linearly at a rate at
least ρ = 1− 2√

κ+1
, where the condition number is given

by κ = L/µ. The proof relies on the fact that at iteration t,
only the t first components of the estimates xt have been
updated from their initial values, where x0 = 0. This is
then used to lower bound the distance to the optimum. Since
an infinite number of iterations is required to converge in `2
if the solution x∗ has an infinite number of nonzero compo-
nents, we obtain asymptotic rates. An important caveat is
that an infinite-dimensional example does not directly yield
a lower bound for finite-dimensional problems.

p-SCLI Arjevani et al. (2016) introduce the p-SCLI frame-
work to provide bounds for a large class of methods used for
optimising µ-strongly convex objectives with L-Lipschitz
gradients. Roughly speaking, an algorithm is p-SCLI if its
update rule on quadratics f(x) = x>Ax + x>b with A
symmetric is a linear combination of the p previous iterates
and b, where the coefficients are matrices that depend on
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A and are assumed to be simultaneously triangularisable.
The spectral properties of the update rule are used to de-
rive lower bounds on the rate of convergence of p-SCLI
algorithms. The lower bound on the rate of convergence of
p-SCLI methods is given by ρ = 1− 2

p
√
κ+1

for κ = L/µ.
This allows us to recover lower bounds for gradient descent
(p = 1) or Nesterov (1983)’s accelerated gradient descent
(p = 2) that match the upper bounds. A key advantage
is that these bounds are more refined than Nesterov’s by
introducing the dependence on p (for example, both GD
and Nesterov’s accelerated gradient descent are black box
first-order methods, but this bound is tighter for p = 1 meth-
ods such as GD), and do not rely on an infinite-dimensional
example, but rather on the spectral properties of the meth-
ods. Such bounds highlight how lower bounds can suggest
potential acceleration: in the example previously given, the
addition of momentum to gradient descent turns the method
from p = 1 to p = 2, thereby decreasing the lower bound
and allowing for potentially faster convergence. Finally,
the p-SCLI framework also yields upper bounds, and the
authors also show a general method to accelerate algorithms
on quadratics with the hope that the acceleration is relevant
to more general classes of objectives, albeit at a cost too
prohibitive to be practical.

Interestingly, both techniques produce a tight lower bound
from a quadratic objective, indicating that quadratics are
asymptotically as hard as any other strongly convex, smooth
problem in single-objective optimisation. This motivates the
use of quadratic games to derive the lower bounds presented
in this paper as we generalise those methods to the multi-
objective setting. When there are several players, however,
the Jacobian is no longer symmetric, and its spectrum will
generally be complex, and hence several of the arguments
used in single-objective optimisation fail to apply directly.

4. Parametric Lower Bounds from Nesterov’s
Domino Argument

In this section, we will only discuss min-max problems. The
class F of counterexamples considered is

min
x∈`2

max
y∈`2

f(x,y) = cx>My − d1x
>e1 + d2y

>e1

+
µ1

2
‖x‖2 − µ2

2
‖y‖2 (F)

where M is an infinite-dimensional bidiagonal matrix i.e.
∀i,Mii = a0 and Mi,i+1 = a1 with all other entries set
to 0, such that ca0a1 6= 0 and µ1, µ2 ∈ R++. Since these
problems are in P , the lower bounds of this section are in
particular bounds on the optimisation of min-max problems.

Definition 1 (Two-step linear span assumption). A first-
order black box method for 2-player games satisfies the
two-step linear span assumption on F if for problems in F

with JacobianA (cf eq. 5):

wt ∈ w0 + Span
(
w0, ...,wt−1,Aw0, ...,Awt−1,

A2w0, ...,A
2wt−1,b,Ab

)
(9)

Examples of such methods include simultaneous gradient
descent, negative momentum and extragradient. One way
to design challenging problems for these methods is to con-
struct problems with a dense solution (x∗,y∗) for which
only one new component of the iterates may change from
its initial value at every iteration (Nesterov, 2004), a phe-
nomenon we will refer to as the domino argument (see
Appendix B.1 for some intuition, where we show that the
argument also applies to cases where diagonal matrices are
used as coefficients in the span, and to alternating imple-
mentations of any algorithm satisfying the two-step linear
span assumption on F thanks to the properties of bidiagonal
Toeplitz matrices).

4.1. A first lower bound for games with block spectral
bounds µ1, µ2, L12

Proposition 2 (Naive bound). For any problem class con-
taining quadratic games, there exists a function f : `2 ×
`2 → R corresponding to a problem in P with block spec-
tral bounds µ1 = L1, µ2 = L2, L12 ∈ R++ as defined in
eq. 6, that has condition number κ = L12√

µ1µ2
such that for

any number of iterations t ≥ 1 and any procedure satisfy-
ing the two-step linear span assumption (see def. 1), the
following lower bound holds:

‖(xt,yt)− (x∗,y∗)‖ ≥
(

1− 2√
κ2 + 1 + 1

)t+1

· ‖(x0,y0)− (x∗,y∗)‖ (10)

We invite the reader to consult Appendix B.2 for the proof.
This lower bound on the distance to a solution also yields
a lower bound on the minimum number of steps necessary
for all subsequent iterates to be within a target distance
— typically referred to as iteration complexity. We may
interpret the proposition as being a bound for 2-player games
with block spectral bounds µ1, µ2, and L12 as the bound
provided holds for a problem sharing the same block spectral
bounds. Similarly, we also get a bound on problems with
block spectral bounds L1, L2 and L12 by replacing µi by
Li appropriately in κ.

We appear to obtain the same condition number as in the
upper bound literature. If we assume this bound and con-
dition number to be representative of a finite-dimensional
bound as was the case in convex optimisation, we easily see
an apparent contradiction from the upper bound on the rate
of convergence of alternating gradient descent with nega-
tive momentum for bilinear games given by (Gidel et al.,
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2019b). Indeed, if we let µ1, µ2 → 0, the rate of conver-
gence in Prop. 2 goes to 1, whereas the upper bound of
negative momentum is not affected and may indicate fast
convergence. This illustrates how the condition number of
the upper bounds is not general enough to be representative
of inherent difficulty: it can be shown that for the problem
used in the proof of the proposition, µ12 = 0. As such, it
is not surprising that the bound failed to hold against the
upper bound of negative momentum on bilinear games; they
were not comparable as by definition bilinear games have
µ12 > 0. This shows that µ12 encodes critical information
that this condition number was not able to capture. Never-
theless, an important point is that the bound itself is correct
and represents a problem with slow convergence; it just
fails to yield a condition number that accurately captures
difficulty as µ12 does not appear.

However, by refining our proof technique, we can derive a
bound which avoids this issue, and yields tighter bounds for
games for which we know µ12, L12, µ1, µ2.

4.2. Improved lower bound for games with block
spectral bounds µ1, µ2, µ12, L12

Theorem 3. For any problem class containing quadratic
games, there exists a function f : `2 × `2 → R corre-
sponding to a problem in P with block spectral bounds
µ1 = L1, µ2 = L2, L12 ∈ R++, µ12 ∈ R+ as defined in

eq. 6, that has condition number κ =
√

L2
12+µ1µ2

µ2
12+µ1µ2

, such
that for any number of iterations t ≥ 1 and any procedure
satisfying the two-step linear span assumption, the following
lower bound holds:

‖(xt,yt)− (x∗,y∗)‖ ≥
(

1− 2

κ+ 1

)t+1

· ‖(x0,y0)− (x∗,y∗)‖ (11)

The same result holds for any problem class containing
bilinear games, if one sets µ1 = L1 = µ2 = L2 = 0.

Corollary 4 (Iteration complexity bound). For the same
problem classes and under the same assumptions as
Theorem 3, the minimal number of steps t required
to reach a target distance ε from the solution, that is
‖(xt,yt)− (x∗,y∗)‖ < ε, is given by

t ≥ κ− 1

2
log

(
‖(x0,y0)− (x∗,y∗)‖

ε

)
− 1 (12)

This generalises Prop. 2. The proof can be found in Ap-
pendix B.3, where we also show how we used spectral prop-
erties of Toeplitz matrices in Banach algebras to create the
hard problems yielding the bound. The proof of the iteration
complexity bound can be found in Appendix D. As with
the lower bounds, note that the iteration complexity bound
does not necessarily hold for every problem in the class; the

idea is that to reach a target error ε we know that there is at
least one problem that requires at least the number of steps
indicated in the bound, and therefore that to optimise over a
problem class that satisfies the assumptions, we will need in
general at least the number of steps given in the bound, to
account for the hard problems.

It is important to emphasize that as is the case with Nes-
terov’s argument for single-objective optimisation, this
bound is still based on an infinite-dimensional problem,
and that upper bounds generally are proven for finite-
dimensional settings. We may hope that this bound also
holds in finite dimension, since we are not aware of upper
bounds contradicting it, and were not able to generate finite-
dimensional 2-player games for which the bound did not
hold empirically. The condition number appearing in Thm.
3 is more expressive than the one found in the upper bound
literature κ = L12/

√
µ1µ2, and is lower bounded by 1, in-

stead of 0. A limitation, however, is that this κ is not able to
dissociate L1 6= µ1, L2 6= µ2, which is a problem in terms
of expressivity of the condition number. It may also threaten
the tightness of the lower bound since intuition from convex
optimisation would suggest that objectives with matching
lower and upper bounds on the spectra are easier to optimise.
This stems from the fact that the closed form solution for
problems in P when Si is non-scalar, which we would need
for all block spectral bounds to appear in κ, is complicated
and the associated condition number is impractical. There-
fore, we leave the matter of deriving a practical bound based
on the domino argument involving all µi and Li as future
work.

Interestingly, the rate takes the same form as in strongly
convex smooth optimisation, suggesting that for general
n-player games, we may still get a lower bound of the form
ρ ≥ 1 − 2

κ+1 for some generalised condition number κ.
This intuition will be highlighted in the next section, by
deriving lower bounds from the spectral properties of the
update operators of a large class of optimisation methods
for n-player games. The results we are about to introduce
will also address the matter of Li 6= µi, and will be based
on finite-dimensional problems.

5. p-SCLI-n for n-player Games
5.1. Definitions and examples

Let Qd1,...,dn denote the set of n-player quadratic games,
i.e. games comprised of n quadratic objectives li : Rdi →
R, and fA,b(w) ∈ Qd1,...,dn be a game with vector field
Aw + b as indicated in eq. 5. The following definition is a
direct generalisation of the definition of p-SCLI algorithms
given by Arjevani et al. (2016) to n-player games.

Definition 5 (p-SCLI-n optimisation algorithms for
n-player games). Let A be an optimisation algorithm for
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n-player quadratic games. Then A is a p-stationary canon-
ical linear iterative method for n-player games (p-SCLI-n)
if there exist functions C0, ..., Cp−1, N from Rd×d to Rd×d-
valued random variables, such that the following conditions
are satisfied for all fA,b(w) ∈ Qd1,...,dn :

1. Given an initialisation w0, . . . ,wp−1 ∈ Rd, the up-
date rule at iteration t ≥ p is given by

wt =

p−1∑
i=0

Ci(A)wt−p+i +N(A)b (13)

2. C0(A), ..., Cp−1(A), N(A) are independent from pre-
vious iterations

3. ECi(A) are finite and simultaneously triangularisable

We will refer to the Ci as the coefficient matrices and N as
the inversion matrix.

An important fact is that if n = 1, this definition becomes
the same as the one given by Arjevani et al. (2016). A key
difference, however, is that the JacobianAwill generally not
be symmetric for n > 1; only the blocksM ii will be, and
hence we may not assume the spectrum σ(A) to be positive
since it will generally be complex. Fortunately, several
results from Arjevani et al. (2016) hold nevertheless, as
discussed in Appendix C.1. Before introducing the results,
let us give examples of algorithms used to optimise games
that are p-SCLI-n, as evidenced by their update rule on
quadratic games.

Simultaneous Gradient Descent (GD) The update rule is
given by wt

i = wt−1
i − ηi∇wi li(w

t−1), which can be
rewritten with η = Diag (η1, ..., ηn) as:

wt = wt−1 − η
(
Awt−1 + b

)
= (I − ηA)wt−1 − ηb (14)

This shows that simultaneous gradient descent is a 1-SCLI-n
algorithm.

Simultaneous Momentum GD The update rule is wt
i =

wt−1
i − ηi∇wi li(w

t−1) + βi(w
t−1
i − wt−2

i ) which can
rewritten with β = Diag (β1, ..., βn) and η as before:

wt = wt−1 − η
(
Awt−1 + b

)
+ β(wt−1 −wt−2)

= (I − ηA+ β)wt−1 − βwt−2 − ηb (15)

Therefore, simultaneous gradient descent with momentum
is a 2-SCLI-n, if we assume β to be scalar (since we need
the coefficient matrices Ci(A) to be simultaneously trian-
gularisable).

Extragradient (Korpelevich, 1976) The update rule is
wt
i = wt−1

i − ηi∇wi li(w
t−1 − ηv(wt−1)), which can

be rewritten as:

wt = wt−1 − η(A(wt−1 − η(Awt−1 + b)) + b)

= (I − ηA+ (ηA)
2
)wt−1 − (I − ηA)ηb (16)

This shows that extragradient is a 1-SCLI-n.

Simultaneous Stochastic Gradient Descent The reason-
ing is the same as the one presented by Arjevani et al. (2016):
we approximate ∇fA,b(w) = Aw + b with stochas-
tic gradients Gω(w) and denote the error by eω(w) =
Gω(w) − (Aw + b). Then the update rule for fixed η is
given by

wt = wt−1 − ηGωt−1(wt−1)

= (I − ηA)wt−1 − ηb− ηeωt−1
(wt−1) (17)

Under certain assumptions, e.g. if eω(w) = Aωw +Nωb
and EAω = ENω = 0, then the update rule becomes

wt = (I − η(A+Aωt−1
))wt−1 − η(I +Nωt−1

)b
(18)

and we get a 1-SCLI-n.

One last definition is required before we introduce the p-
SCLI lower bounds. Our definition generalises that of Arje-
vani et al. (2016).

Definition 6 (Consistency of p-SCLI-n optimisation al-
gorithms). Let Qd1,...,dnA ⊆ Qd1,...,dn denote the set of
quadratic n-player games with non-singular Jacobian A
(see eq. 5). ThenA is consistent with respect toA if for any
game fA,b ∈ Qd1,...,dnA and any initialisation, A converges
to a stationary point of fA,b or equivalently if the sequence
of iterates (wt) (see eq. 13) satisfies

wt → −A−1b (19)

Equivalently, as Arjevani et al. (2016) argue in their section
3.1, consistency with respect to some invertible JacobianA
is equivalent to having A converge on fA,b and

p−1∑
i=0

ECi(A) = Id + EN(A)A (20)

Note that all three examples of optimisation algorithms
discussed in this subsection satisfy eq. 20.

5.2. Parametric lower bound for p-SCLI-n with scalar
inversion matrix

We are now ready to introduce the lower bound for p-SCLI-
n methods with scalar inversion matrix.

Proposition 7. Let A be a p-SCLI-n algorithm with scalar
inversion matrix for optimising games over Rd1 × ...×Rdn .
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Then for quadratics fA,b ∈ Qd1,...,dn , if A is consistent
with respect to A and if 0 /∈ σ(A), we have the following
lower bound on the (linear) rate of convergence ρ:

ρ ≥
p
√
κ− 1

p
√
κ+ 1

= 1− 2
p
√
κ+ 1

(21)

where the condition number κ is defined as κ , max |σ(A)|
min |σ(A)|

where σ(A) is the spectrum ofA.

While this lower bound is valid for p-SCLI-n methods on
any single quadratic game where the assumptions apply,
it also gives us a more general result for problem classes
containing quadratics as an immediate corollary, similarly
to the lower bounds of the previous section.

Theorem 8. For any problem class containing quadratic
games, there exists a game such that the lower bound given
in eq. 21 holds for a p-SCLI-n method.

Corollary 9 (Iteration complexity bound). For the same
problem classes and under the same assumptions as
Theorem 8, the minimal number of steps t to satisfy
maxi=0,...,p−1

∥∥Ewt+i − Ew∗
∥∥ < ε is given by

t ≥
(

p
√
κ− 1

2

)
log

(
C

ε

)
(22)

for some strictly positive constant C.

See Appendix C.1 for the proof of Prop. 7, and Appendix
D for the iteration complexity bound’s proof. Interestingly,
by setting n = 1, this bound captures the 1-player case for
µ-strongly convex objectives with L-Lipschitz gradients,
where κ = maxσ(A)

minσ(A) = L/µ, verifying the intuition dis-
cussed at the end of the previous section, and showing that
this technique yields a tight lower bound for n = 1. More-
over, this form is valid for n-player games (and min-max
problems) in finite dimension, and κ arises naturally from
the spectral properties of the update rules of the p-SCLI-
n methods and is lower bounded by 1. Additionally, our
bounds are valid for some stochastic methods. In single-
objective optimisation (i.e. n = 1), while linear rates are not
achievable for general stochastic problems, for which the
worst-case bounds are sublinear, under certain conditions
linear rates are possible (Loizou and Richtárik, 2017). Con-
ditions of this type can be satisfied in over-parameterised
neural networks (Vaswani et al., 2019). Hence, our linear
lower bounds may be useful even for stochastic problems.

However, while the moduli in the n > 1 case allow us to
handle complex spectra and matches the classical definition
of condition number from linear algebra, several analyses
have shown that not only the modulus, but also the relative
size of the real and imaginary parts of elements of the spec-
trum matter (Mescheder et al., 2017; Gidel et al., 2019b).
Such an analysis may yield more expressive bounds, but

is out of the scope of this work. We will nevertheless give
a more explicit form of the bound for 2-player games for
which d1 = d2 that will make the µi and Li appear.

Some explicit bounds for p-SCLI-2 with d1 = d2 Prop. 7
may be used to derive lower bounds for 2-player games for
which d1 = d2. These bounds depend on the value of the
µi and Li defined as in eq. 6. Namely, let

∆µ = (µ1 + µ2)2 − 4(µ1µ2 + µ2
12)

= (µ1 − µ2)2 − 4µ2
12 (23)

∆L = (L1 + L2)2 − 4(L1L2 + L2
12)

= (L1 − L2)2 − 4L2
12 (24)

Table 1 gives lower bounds on the condition number that
may then be plugged into eq. 21 to get lower bounds on two-
players games corresponding to min-max problems (and are
therefore lower bounds for general 2-player games).

Table 1. Lower Bounds on the Condition Number
∆µ < 0 ∆µ ≥ 0

∆L < 0 κ =
√

L1L2+L2
12

µ1µ2+µ2
12

κ ≥ 2

√
L1L2+L2

12

µ1+µ2−
√

∆µ

∆L ≥ 0 κ ≥ 1
2
L1+L2+

√
∆L√

µ1µ2+µ2
12

κ ≥ L1+L2+
√

∆L

µ1+µ2−
√

∆µ

See Appendix C.2 for the counterexample in P leading to
these bounds. This result resolves the issues raised in the
discussion of the domino bounds as it uses all of the µi
and Li, and is proven from finite-dimensional problems.
In fact, if one sets µ1 = L1 and µ2 = L2 such that µ1

and µ2 are small (in particular, smaller than µ12) and L12

is large (in particular, larger than L1, L2), table 1 yields

κ =
√

µ1µ2+L2
12

µ1µ2+µ2
12

, which coincides with the κ from Thm. 3.
More generally, for p = 1, if both ∆L and ∆µ are negative,
we get a tighter bound from the p-SCLI-2 formalism for
1-SCLI-2 methods that also satisfy the two-step linear span
assumption than from Thm. 3. Finally, it provides the same
plug-and-play convenience as p-SCLI to derive bounds for a
large class of algorithms that may not satisfy the first-order
black box assumption. On the other hand, the bounds may
not be tight for p ≥ 3, as it was the case for single-objective
p-SCLI (Arjevani et al., 2016).

An interesting case is p = 2: for 2-SCLI-2 methods that
satisfy the two-step linear span assumption such as negative
momentum, the rate stemming from the p-SCLI-2 analy-
sis appears to be smaller than the rate from the improved
domino bound. This may be because the proof techniques
used in our generalisation of p-SCLI yield bounds that can
be improved for p > 1. In particular, a key difference be-
tween Thm. 3 and 8 is that as explained in the background
section, lower bounds generally need not apply to every
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single problem within a class. However, due to the proof
technique used, the bound given in Prop. 7 has to apply to
every single quadratic game where the assumptions hold.
Because some games might be inherently easier than others,
such games may bottleneck the bound in Prop. 7 and Thm.
8, and introduce looseness. Indeed, first, the number of
players does not appear in Prop. 7’s proof, meaning that
the proof yielded a bound that should hold for n = 1 which
might inherently have faster convergence than n > 1 due
to having to optimise only one objective over one set of
parameters. Second, in the proof, because we do not impose
a structure for the quadratic games, the bound has to hold
for purely cooperative games (that is, the objective of each
player does not depend on other players’ parameters), in
which case the situation is analogous to n single-objective
optimisation problems, where we may expect the conver-
gence to be faster than in games with interactions between
players. As such, it is worth considering whether fixing the
number of players and the structure of the games earlier in
the proof could improve the bound.

6. Conclusion
In this work, we provide linear lower bounds and condi-
tion numbers for any problem class containing quadratic
or bilinear games. We give a lower bound on the rate of
convergence of first-order black box methods for 2-player
games (which directly applies to min-max and saddle point
problems) satisfying the two-step linear span assumption by
generalising Nesterov’s lower bound for the optimisation
of strongly convex, smooth convex objectives to 2-player
games (R.Q. 1) and constructing a novel class of hard prob-
lems using spectral properties of a class of operators in
Banach algebras. Moreover, we generalise the framework
of p-SCLI, which requires symmetricity of the Hessian in
single-objective optimisation, to provide a bound for a large
class of optimisers for n-player games by extending the
results of p-SCLI to quadratic games with non-symmetric
Jacobian, which for n = 1 recovers (Arjevani et al., 2016)’s
tight bounds. We then give explicit bounds for 2-player
games, which apply to min-max and saddle point problems
(R.Q. 2). Finally, we derived formulations for the condition
number that matched (in the case of the first domino bound),
or were more general (in the case of the improved domino
bound, and p-SCLI-n and p-SCLI-2 bounds) than the exist-
ing ones in the upper bound literature (R.Q. 3). As in the
single-objective case, our bounds and condition numbers
suggest that optimisers may converge faster on games for
which the eigenvalues are at a similar, remote distance from
the origin (e.g. on a circle) than on games for which some
eigenvalues are close to and others are far from 0.

Following the initial release of this work, several other au-
thors have built upon the bounds presented in this paper.

The bound from Theorem 3 is tight on the class of smooth
strongly-convex-strongly-concave games, as it is matched
by the upper bound presented by Fallah et al. (2020), and
up to logarithmic factors, by the upper bound of Lin et al.
(2020). Additionally, this same lower bound was also shown
to be tight on the class of bilinear games with non-singular
Jacobian, which are merely convex-concave, by Prop. 4 of
Azizian et al. (2020). As a corollary, our results establish the
optimality of those methods on the aforementioned classes
of problems.

However, several directions remain to be explored. For
example, we raised the question of whether the p-SCLI-n
bound could be tightened for p > 1 by improving the proof
technique, especially given that we are not aware of faster
rates of convergence in the literature than those of p = 1 or
those of the improved domino bound. Moreover, we would
like to present a more exhaustive overview of the extension
of p-SCLI, and discuss the resulting upper and lower bounds
for various commonly used algorithms. In particular, we
would like to extend our lower bounds to p-SCLI-n with
diagonal inversion matrices, as Arjevani et al. (2016) did in
the p-SCLI framework, and provide bounds in the 2-player
case when d1 6= d2. Furthermore, we believe tighter bounds
may be derived, for example by adding constraints on the Ci
or by looking not only at the modulus of the eigenvalues but
also at their arguments, as done by Gidel et al. (2019b), since
we know that the relative size of the imaginary part and real
part (even at fixed modulus) affects the dynamics in games
(Mescheder et al., 2017). Finally, it would be important to
understand when and how linear convergence is possible in
non strongly-convex-strongly-concave settings. We plan on
exploring several of these directions in future work.
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A. n-player quadratic games
While our work focuses mostly on 2-player games, one of the main results, Prop. 7, is independent of the number of players,
and is proven for general n. Therefore, a short discussion of the form of quadratic n-player games is provided below.

For an n-player game, the general form of a quadratic is given by

li(w) =

n∑
j=1

n∑
k=1

w>j M ijkwk +

n∑
j=1

w>j bij + ci . (25)

Because the dynamics depend only on the ∇wi li(w), we will get equivalent dynamics by pruning the terms that do not
depend on wi and working directly with the simpler objectives

li(w) =
1

2
w>i M iiwi +

n∑
j 6=i

w>i M iijwj +

n∑
j 6=i

w>j M ijiwi + w>i bii

=
1

2
w>i M iiwi +

n∑
j 6=i

w>i M ijwj + w>i bi (26)

where we have let M ij , M iij +M>
iji,bi , bii , 1 ≤ i, j ≤ n. Note that we may assume the M ii to be symmetric,

since in general x>Ax = 1
2x
>(A+A>)x. Thus, we can write:

∇wi li(w) =
(
M i1 . . . M in

)
w + bi (27)

which yields the following equation for the vector field:

v(w) = Aw + b, A ,

 S1 . . . M1n

...
...

Mn1 . . . Sn

 , b ,

b1

...
bn

 (28)

whereA is the Jacobian of v and where we let Si ,M ii.
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B. Proofs of Nesterov’s bounds for games
The proofs in this section are based on min-max problems for a class of functions3 f : `2 × `2 → R such that

f(x,y) = cx>My − d1x
>e1 + d2y

>e1 +
µ1

2
‖x‖2 − µ2

2
‖y‖2 (29)

where e1 is a vector with a 1 in the first entry and 0 elsewhere, c, d1, d2 ∈ R, and µ1, µ2 ∈ R++, withM upper bidiagonal
matrix such that

M =


a0 a1 0 0 . . .
0 a0 a1 0 . . .
0 0 a0 a1 . . .
...

. . . . . .

 (30)

where a0, a1 6= 0.

As Nesterov (2004), we shall assume that x0,y0 are initialised at 0, as otherwise we may work with x− x0 and y − y0 in
the counterexample and perform the change of variable x← x− x0, y ← y − y0 (which would give us zero-initialisation)
and switch back at the end of the analysis.

B.1. On the domino argument

More about the domino argument can be found in Nesterov (2004); here, we shall give the intuition as to why it works. Let
us introduce the ingredients of the update rule under our assumptions.

A =

(
µ1 M

−M> µ2

)
A2 =

(
µ2

1 −MM> (µ1 + µ2)M

−(µ1 + µ2)M> µ2
2 −M

>M

)
b =

(
−d1e1

d2e2

)
(31)

Ab =

(
−µ1d1e1 + d2Me1

d1M
>e1 + µ2d2e1

)
Me1 =

(
a0 0 . . .

)>
M>e1 =

(
a0 a1 0 . . .

)>
(32)

Aw =

(
µ1x+My

−M>x+ µ2y

)
A2w =

(
(µ2

1 −MM>)x+ (µ1 + µ2)My

−(µ1 + µ2)M>x+ (µ2
2 −M

>M)y

)
(33)

B.1.1. ONE-STEP LINEAR SPAN ASSUMPTION

If the algorithm follows the one-step assumption (e.g. gradient descent), which we define as

wt ∈ w0 + Span
(
w0, ...,wt−1,Aw0, ...,Awt−1,b

)
(34)

note that the part of b contributing to the update rules of both x and y will have be a vector with a single non-zero entry as
its first entry, i.e. (∗, 0, ...). Therefore,

xt ∈ Span
(
(∗, 0, ...),x0, ...,xt−1,My0, ...,Myt−1

)
(35)

yt ∈ Span
(
(∗, 0, ...),y0, ...,yt−1,M

>x0, ...,M
>xt−1

)
(36)

Since (x0,y0) = 0 but (x∗,y∗) 6= 0, we want to see, at every iteration t, how many components of xt,yt have been
initialised, i.e. received information from (which components of) past iterations and therefore could have changed from
their initial values of zero. The dependence of the components of xt and yt on past iterates, based on the one-step linear
span assumption, is summarised below:

Comp. i = 1 of xt: comp. 1 from const. vector, i from x0, ...,xt−1, and i, i+ 1 from y0, ...,yt−1

Comp. i = 1 of yt: comp. 1 from const. vector, i from y0, ...,yt−1, and i from x0, ...,xt−1

Comp. i ≥ 2 of xt: comp. i from x0, ...,xt−1, and i, i+ 1 from y0, ...,yt−1

Comp. i ≥ 2 of yt: comp. i from y0, ...,yt−1, and i− 1, i from x0, ...,xt−1

3As evoked in the discussion of the improved bound, for these functions, a limitation is that µ1 = L1 and µ2 = L2, but we were not
able to find counterexamples with Li 6= µi for which the bound had simple enough closed form, even when choosing terms of the form
x>Mxx,y

>Myy with Mx,My bidiagonal or tridiagonal.
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Therefore, if (x0,y0) = 0, it is clear that the only terms in the update rule that may initialise any new component of
(x1,y1) are the constant vectors. Thus, in (x1,y1) only the first component will be initialised if we are using simultaneous
first-order black box methods satisfying the one-step linear span assumption, and additionally the second component of y1

if we extended the definition of the linear span assumption to use xt instead of xt−1 when computing yt.

We then move on to (x2,y2) and compute from the rules above which components, i.e. values of i, can be initialised given
the initialisation of the past iterates. For simultaneous methods, we see that we still cannot initialise the second component
of x2 since that would require the second component of x0 or x1, or the second or third components of either y0 or y1 to
have been initialised. Nevertheless, given that the second component of y2 depends on the first component of x0,x1, we
may initialise a second component in y2. However, a third component would require either the third component of y0,y1

or the second or third components of x0,x1 to be already initialised, which is not the case. Therefore, in simultaneous
one-step methods, only 1 component of x2 and 2 components of y2 will be initialised at most.

This logic is applied in table 2, which indicates the number of components in both sets of parameters that have been updated
from their initial value (e.g. that are nonzero if we initialise the parameters at 0) at each iteration.

Table 2. Number of components initialised in xt and yt at iteration t, for methods using wi,Awi,b

Iteration Simultaneous Alt. xt instead of xt−1 for yt Alt. yt instead of yt−1 for xt

t # dim xt # dim yt # dim xt # dim yt # dim xt # dim yt

0 0 0 0 0 0 0
1 1 1 1 2 1 1
2 1 2 2 3 2 2
3 2 2 3 4 3 3
4 2 3 4 5 4 4

A simple proof by induction can generalise that for both alternating or simultaneous updates, at most t+ 1 components
of xt,yt have been initialised. The consequence is that at iteration t we have xt(i) = x0(i),yt(i) = y0(i) for i > t+ 1,
where (x0,y0) = 0. Note that this still holds if we compute elements of the span with diagonal matrices as coefficients.
This can be summarised as the following.

Lemma 10 (One-step linear span domino argument). Suppose (x0,y0) = 0. Then for algorithms satisfying the one-step
linear span assumption (where elements of the span may be computed using diagonal matrices as coefficients), we have

xt(i) = 0
yt(i) = 0

for i > t+ 1 (37)

B.1.2. TWO-STEP LINEAR SPAN ASSUMPTION

For an algorithm satisfying the two-step assumption such as extragradient (see eq. 16 for the update rule), i.e. if we have

wt ∈ w0 + Span
(
w0, ...,wt−1,Aw0, ...,Awt−1,A

2w0, ...,A
2wt−1,b,Ab

)
(38)

the part of b andAb contributing to the update rule on x will be a vector of the form (∗, 0, ...) and the part contributing to
the update rule on y will have the form (∗, ∗, 0, ...). Therefore,

xt ∈ Span
(
(∗, 0, 0, ...),x0, ...,xt−1,My0, ...,Myt−1,MM>x0, ...,MM>xt−1

)
(39)

yt ∈ Span
(
(∗, ∗, 0, ...),y0, ...,yt−1,M

>x0, ...,M
>xt−1,M

>My0, ...,M
>Myt−1

)
(40)

We can see from eq. 56 (M>M yields the same matrix with a2
0 instead of a2

0 + a2
1 in the first entry) that the i-th component

ofMM>x depends on the i− 1, i, i+ 1-th components of x for i ≥ 2. Since only the number of initialised components
will interest us, we want to see, at every iteration t, how many components of xt,yt received information from past iterations
and therefore could have changed from their initial values of zero. The dependence of the components of xt and yt on past
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iterates, based on the two-step linear span assumption, is summarised below:

Comp. i = 1 of xt: comp. 1 from const., i, i+ 1 from x0, ...,xt−1, and i, i+ 1 from y0, ...,yt−1

Comp. i = 1 of yt: comp. 1 from const., i, i+ 1 from y0, ...,yt−1, and i from x0, ...,xt−1

Comp. i = 2 of xt: comp. i− 1, i, i+ 1 from x0, ...,xt−1, and i, i+ 1 from y0, ...,yt−1

Comp. i = 2 of yt: comp. 1 from const., i− 1, i, i+ 1 from y0, ...,yt−1, and i− 1, i

from x0, ...,xt−1

Comp. i > 2 of xt: comp. i− 1, i, i+ 1 from x0, ...,xt−1, and i, i+ 1 from y0, ...,yt−1

Comp. i > 2 of yt: comp. i− 1, i, i+ 1 from y0, ...,yt−1, and i− 1, i from x0, ...,xt−1

so for the first few iterations we get Table 3.

Table 3. Number of components initialised in xt and yt for methods using wi,Awi,A
2wi,b,Ab

Iteration Simultaneous Alt. xt instead of xt−1 for yt Alt. yt instead of yt−1 for xt

t # dim xt # dim yt # dim xt # dim yt # dim xt # dim yt

0 0 0 0 0 0 0
1 1 2 1 2 2 2
2 2 3 2 3 3 3
3 3 4 3 4 4 4
4 4 5 4 5 5 5

Hence, we can prove once again by induction that in any case at iteration t we have xt(i) = x0(i),yt(i) = y0(i) for
i > t+ 1 and (x0,y0) = 0 for methods also accessingA2wi,Ab. Here again, this still holds if we multiply the entries in
our span by diagonal matrices. We can once again summarise this as a lemma.

Lemma 11 (Two-step linear span domino argument). Suppose (x0,y0) = 0. Then for algorithms satisfying the two-step
linear span assumption (where elements of the span may be computed using diagonal matrices as coefficients), we have

xt(i) = 0
yt(i) = 0

for i > t+ 1 (41)

B.2. Proof of Prop. 2

We look for stationary points (x∗,y∗):

∇xf(x∗,y∗) = cMy∗ − d1e1 + µ1x
∗ = 0 (42)

∇yf(x∗,y∗) = cM>x∗ + d2e1 − µ2y
∗ = 0 (43)

Therefore, denoting xi = x∗(i), yi = y∗(i), the components of stationary points satisfy the recurrence:

x1 : a0cy1 + a1cy2−d1 + µ1x1 = 0 (44)
y1 : a0cx1 +d2 − µ2y1 = 0 (45)

and for n ≥ 2:

xn : a0cyn + a1cyn+1 + µ1xn = 0 (46)
yn : a1cxn−1 + a0cxn − µ2yn = 0 (47)

We can rewrite the above as

xn = −a0
c

µ1
yn − a1

c

µ1
yn+1 (48)

yn = a1
c

µ2
xn−1 + a0

c

µ2
xn (49)
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and using eq. 49 to substitute yn in eq. 46 we get a recurrence on x only:

a0a1
c2

µ2
xn−1 + a2

0

c2

µ2
xn + a2

1

c2

µ2
xn + a0a1

c2

µ2
xn+1 + µ1xn = 0 (50)

which can be rewritten as

a0a1xn+1 +
(µ1µ2

c2
+ a2

0 + a2
1

)
xn + a0a1xn−1 = 0 (51)

The roots of the characteristic polynomial of the above linear recurrence are given by

χ± =
−
(
µ1µ2

c2 + a2
0 + a2

1

)
±
√(

µ1µ2

c2 + a2
0 + a2

1

)2 − 4a2
0a

2
1

2a0a1
(52)

and the solution to the linear recurrence is given by xn = C1χ
n
+ + C2χ

n
− (see (Brassard and Bratley, 1996) for a reference

on solving linear recurrences). Note that

χ± + 1 =
−
(
µ1µ2

c2 + a2
0 + a2

1

)
±
√(

µ1µ2

c2 + a2
0 + a2

1

)2 − 4a2
0a

2
1 + 2a0a1

2a0a1

=
−
(
µ1µ2

c2 + (a0 − a1)2
)
±
√(

µ1µ2

c2 + a2
0 + a2

1

)2 − 4a2
0a

2
1

2a0a1
(53)

Suppose a0a1 > 0. As µ1µ2

c2 > 0, we have χ− + 1 < 0 i.e. |χ−| > 1. Similarly, if we had a0a1 < 0 instead, we would
have χ− − 1 > 0 which also yields |χ−| > 1. Therefore, χ− is not a solution as it will not yield a x in `2. However, note
that χ+χ− = 1 which implies that we always have |χ+| < 1. Hence, we are only concerned with χ , χ+. Moreover, note
that the square root always exist as we can rewrite the content of the square root to show that it is always positive:

χ =
−
(
µ1µ2

c2 + a2
0 + a2

1

)
+

√(
µ1µ2

c2 + a2
0 + a2

1

)2 − 4a2
0a

2
1

2a0a1

=
−
(
µ1µ2

c2 + a2
0 + a2

1

)
+

√(
µ1µ2

c2

)2
+ 2µ1µ2

c2 (a2
0 + a2

1) + (a2
0 + a2

1)
2 − 4a2

0a
2
1

2a0a1

=
−
(
µ1µ2

c2 + a2
0 + a2

1

)
+

√(
µ1µ2

c2

)2
+ 2µ1µ2

c2 (a2
0 + a2

1) + (a2
0 − a2

1)
2

2a0a1
(54)

In order to simplify the results, we let a0 = −a1 = 1 and we get:

χ =
(µ1µ2

2c2
+ 1
)
−
√(µ1µ2

2c2

)2

+
µ1µ2

c2
(55)

One may note that L12 = c
√
ρ(MM>). As we have

MM> =


a2

0 + a2
1 a0a1 0 0 . . .

a0a1 a2
0 + a2

1 a0a1 0 . . .
0 a0a1 a2

0 + a2
1 a0a1 . . .

...
. . . . . . . . .

 =


2 −1 0 0 . . .
−1 2 −1 0 . . .
0 −1 2 −1 . . .
...

. . . . . . . . .

 (56)

we note thatMM> is a tridiagonal Toeplitz matrix, for which the upper end of the spectrum is given by (see Theorem 7.20
of Douglas (2012))

sup |σ(MM>)| = ess sup
θ∈[0,2π)

(a0a1e
−iθ + (a2

0 + a2
1) + a0a1e

iθ)

= ess sup
θ∈[0,2π)

(2a0a1 cos θ + (a2
0 + a2

1)) = 4 (57)
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and therefore L12 = 2c. Defining the condition number as

κ =
L12√
µ1µ2

(58)

to retrieve the condition number from the upper bound literature, we get that

χ =

(
2

κ2
+ 1

)
−
√

4

κ4
+

4

κ2

=

(
2

κ2
+ 1

)
− 2

κ2

√
κ2 + 1

= 1− 2

√
κ2 + 1− 1

(κ2 + 1)− 1

= 1− 2√
κ2 + 1 + 1

(59)

Going back to the recurrence, and given that the recurrence on yn can be shown to be the same as eq. 51, we get that if
(x∗,y∗) is a stationary point of f in `2 × `2, then

x∗(i) = xi = c1χ
i (60)

y∗(i) = yi = c2χ
i (61)

where c1, c2 can be determined from the initial conditions given in eq. 44 and 45. Using the domino argument, which yields
that ∀i > t+ 1,xt(i) = 0, we get that the distance to the optimum of x is given by

‖xt − x∗‖2 =

t+1∑
i=1

(xt(i)− x∗(i))2 +

∞∑
i=t+2

(xt(i)− x∗(i))2 ≥
∞∑

i=t+2

(x∗(i))
2

= c21

∞∑
i=t+2

χ2i

= c21

∞∑
i=1

χ2(i+t+1)

= χ2(t+1) ‖x∗‖2 (62)

Similarly, we can show that ‖yt − y∗‖
2 ≥ χ2(t+1) ‖y∗‖2.

Changing back our variables to x→ x− x0, y → y − y0 yields the bound for arbitrary initialisation.

B.3. Proof of Thm. 3

If one computes µ12 for the function used in the previous bound, it becomes clear that µ12 = 0. As such, it is not surprising
that the bound failed to hold vs the upper bound of negative momentum on bilinear games with µ12 > 0: the previous bound
failed to be general enough because the example has the worst possible value of µ12. An important note, however, is that the
previous bound may still hold in finite dimensions if we only used it to lower bound the rate of convergence of games with
µ12 = 0, but it can easily be checked that the rate in the improved bound with µ12 = 0 reduces to the first bound.

In order to address this, we will pick values of a0 and a1 that allow the counterexample to handle any value of µ12. The
proof of the improved domino bound follows the same line of argumentation as the proof of the first bound. We resume from
eq. 57, and set c = 1, and suppose that a1 < 0, a0 > 0 such that |a1| ≤ a0. Theorem 7.20 of Douglas (2012) yields that:

maxσ(MM>) = a2
0 + a2

1 − 2a0a1 = (a0 − a1)2 (63)

minσ(MM>) = a2
0 + a2

1 + 2a0a1 = (a0 + a1)2 (64)
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Thus, we have µ2
12 = (a0 + a1)2, L2

12 = (a0 − a1)2 and since we assumed |a1| ≤ a0, we get that µ12 = a0 + a1, L12 =
a0 − a1 which allows us to choose a0, a1 to make µ12, L12 appear in the bound:

a0 =
L12 + µ12

2
(65)

a1 =
µ12 − L12

2
(66)

Noting further that a2
0 + a2

1 =
L2

12+µ2
12

2 , a2
0 − a2

1 = µ12L12, we have that

χ =
−
(
µ1µ2

c2 + a2
0 + a2

1

)
+

√(
µ1µ2

c2

)2
+ 2µ1µ2

c2 (a2
0 + a2

1) + (a2
0 − a2

1)
2

2a0a1

=

−
(
µ1µ2 +

L2
12+µ2

12

2

)
+

√
(µ1µ2)

2
+ 2µ1µ2

(
L2

12+µ2
12

2

)
+ (µ12L12)

2

µ2
12−L2

12

2

=
−
(
2µ1µ2 + L2

12 + µ2
12

)
+ 2
√

(µ1µ2)
2

+ µ1µ2 (L2
12 + µ2

12) + (µ12L12)
2

µ2
12 − L2

12 + µ1µ2 − µ1µ2
(67)

Letting dµ = µ1µ2 + µ2
12, dL = µ1µ2 + L2

12,

χ =
− (dµ + dL) + 2

√
µ1µ2 (µ1µ2 + L2

12) + µ2
12 (µ1µ2 + L2

12)

dµ − dL

=
(dµ + dL)− 2

√
dµdL

dL − dµ

=

(√
dL −

√
dµ
)2

√
dL

2 −
√
dµ

2

=

√
dL −

√
dµ√

dL +
√
dµ

= 1− 2√
dL
dµ

+ 1
(68)

Letting κ = dL
dµ

=
L2

12+µ1µ2

µ2
12+µ1µ2

and proceeding as in the proof of the previous bound with the new value of χ yields Thm. 3.
Note that as promised, this rate reduces to that of the first bound if µ12 = 0:

1− 2√
dL
dµ

+ 1
= 1− 2√

L2
12+µ1µ2

µ1µ2
+ 1

= 1− 2√
κ2
old + 1 + 1

(69)

(70)

where κold is the condition number of eq. 58.
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C. Proofs of p-SCLI-n
C.1. Proof of Prop. 7

In this section, we follow Arjevani et al. (2016) to derive results for the p-SCLI-n methods. First, we reproduce several
definitions and theorems that are proven in Arjevani et al. (2016) and that apply directly to the generalisation. Here,A will
denote the Jacobian of some quadratic game with fA,b ∈ Qd1,...,dn such that 0 is not in the spectrum ofA.

Definition 12 (Characteristic polynomial of a p-SCLI-n). Let A be a p-SCLI-n optimisation algorithm with coefficient
matrices Ci as defined in def. 5. Then forX ∈ Rd×d, the characteristic polynomial of A is given by

L(λ,X) , Idλ
p −

p−1∑
i=0

ECi(X)λi (71)

and its root radius is

ρλ(L(λ,X)) = ρ(detL(λ,X)) = max {|λ| | detL(λ,X) = 0}

Theorem 13 (Consistency - characteristic polynomial (Based on Theorem 5 of Arjevani et al. (2016))). A p-SCLI-n
algorithm A with characteristic polynomial L(λ,X) and inversion matrix N(X) is consistent with respect toA if and only
if the following two conditions hold:

1. L(1,A) = −EN(A)A (72)
2. ρλ(L(λ,A)) < 1 (73)

We may rephrase theorem 13 of Arjevani et al. (2016) (and lower bound tm−1 by 1 since m ∈ N) as the following to use the
root radius of the characteristic polynomial to show linear rates:

Theorem 14 (Based on Theorem 13 of Arjevani et al. (2016)). If A is the Jacobian of a quadratic game and A is a
p-SCLI-n, there exists an initialisation point w0 ∈ Rd such that

max
i=0,...,p−1

∥∥Ewt+i − Ew∗
∥∥ ∈ Ω(ρλ(L(λ,A))t) (74)

In other words, this means that A cannot converge on fA,b with linear rate faster than ρλ(L(λ,A)), up to a constant. As
Arjevani et al. (2016) argue, in both deterministic and stochastic settings, a lower bound on ‖E [wt −w∗]‖2 implies4 a
lower bound on E ‖wt −w∗‖2, since

E
[∥∥wt −w∗

∥∥2
]

= E
[∥∥wt − Ewt

∥∥2
]

+
∥∥E [wt −w∗

]∥∥2
(75)

We can now focus on finding a lower bound on ρλ(L(λ,A)).

Proposition 15. Let A be a p-SCLI-n optimisation algorithm with inversion matrix N(X) that is consistent with respect to
A. Then,

ρλ(L(λ,A)) ≥ max
j=1,...,d

| p
√
|σj(−E[N(A)]A)| − 1| (76)

where the σj(−E[N(A)]A) are elements of the spectrum (eigenvalues) of −E[N(A)]A.

C.1.1. PROOF OF PROP. 15

Our proof starts exactly as the one presented by Arjevani et al. (2016) for the n = 1 particular case, where the authors
assume thatA is symmetric with strictly positive spectrum. However, we will generalise the proof to cover non-symmetric
matrices and matrices that may not have strictly positive spectrum, since the Jacobian of a quadratic n-player game generally
does not have these properties.

4Note that since we only use in this paper a lower bound on the second term of the right hand-side of the equation to bound the left
hand-side, one may derive in stochastic settings tighter lower bounds than the ones presented in this paper by factoring in the first term of
the right hand-side. We leave this as future work.
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Let A be a deterministic p-SCLI-n optimisation algorithm with characteristic polynomial L(λ,X) and inversion matrix
N(X), and fA,b(w) ∈ Qd1,...,dn represent a quadratic n-player game. Since A is p-SCLI-n, its (expected) coefficient
matrices ECi evaluated onA are simultaneously triangularisable, so ∃Q ∈ Rd×d such that for i = 0, ..., p− 1, we have

T i , Q
−1ECi(A)Q (77)

where T i is triangular. Thus,

detL(λ,A) = det
(
Q−1L(λ,A)Q

)
= det

(
Idλ

p −
p−1∑
i=0

T iλ
i

)
(78)

Since Idλp −
∑p−1
i=0 T iλ

i is a upper triangular matrix, its determinant is given by

detL(λ,A) =

d∏
j=1

`j(λ) (79)

where

`j(λ) = λp −
p−1∑
i=0

σijλ
i (80)

and where σi1, . . . , σ
i
d, i = 0, . . . , p− 1 denote the elements on the diagonal of T i, which are just the eigenvalues of ECi

ordered according toQ. Hence, the root radius of the characteristic polynomial of A is

ρλ(L(λ,A)) = max {|λ| | `j(λ) = 0 for some j = 1, ..., d} (81)

On the other hand, by consistency condition (72) we get that for all j = 1, ..., d

`j(1) = σj (L(1,A)) = σj (−E[N(A)]A) (82)

In the case of p-SCLI-1, the authors prove their Corollary 7 (i.e. our prop. 15 without taking the modulus of the eigenvalues)
by using a lemma (see Lemma 6 in Arjevani et al. (2016)) that gives a lower bound on each ρ(`j(λ)) by using the sign of
`j(1) = σj (−E[N(A)]A). Lemma 6 of Arjevani et al. (2016) is proven using the following lemma, which we can in fact
use to handle arbitrary eigenvalues (e.g. complex or negative).

Lemma 16 (Lemma 15 of Arjevani et al. (2016)). Let q∗r (z) , (z − (1− p
√
r))

p where r is some non-negative constant.
Suppose q(z) is a monic polynomial of degree p with complex coefficients. Then,

ρ(q(z)) ≤ | p
√
|q(1)| − 1| ⇐⇒ q(z) = q∗|q(1)|(z)

The proof of the lemma can be found in Arjevani et al. (2016). Here, we can use the lemma directly on each `j with q = `j
and r = |q(1)| = |`j(1)| = |σj (−E[N(A)]A) |. Indeed, since r ≥ 0,

• if q(z) = q∗r (z) = (z − (1− p
√
r))p then clearly ρ(q(z)) = |1− p

√
r|

• if q(z) 6= q∗r (z), then we have ρ(q(z)) > | p
√
|q(1)| − 1|

Which implies that for any j we have ρ(`j(λ)) ≥ | p
√
|`j(1)|−1| = | p

√
|σj (−E[N(A)]A) |−1|. Using this in eq. 81 yields

ρλ(L(λ,A)) ≥ max
j=1,...,d

| p
√
|σj(−E[N(A)]A)| − 1| (83)
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C.1.2. DERIVING THE OPTIMAL ρ FOR SCALAR INVERSION MATRICES

We are now ready to obtain the general lower bound. Consider fA,b ∈ Qd1,...,dn with 0 6∈ σ(A) and a consistent p-SCLI-n
algorithm A. Let µ = min |σ(A)|, L = max |σ(A)| where σ(A) is the spectrum of A. For a scalar inversion matrix i.e.
E[N(A)] = ν we have from eq. 83:

ρλ(L(λ,A)) ≥ max
j=1,...,d

| p
√
|σj(−E[N(A)]A)| − 1| = max

j=1,...,d
| p
√
|νσj(A)| − 1|

= max
{
| p
√
|ν|µ− 1|, | p

√
|ν|L− 1|

}
(84)

Note that consistency (eq. 73) constrains ν ∈
(−2p

L , 2p

L

)
\ {0}. We proceed as Arjevani et al. (2016) in the p-SCLI-1 case,

and study the ranges of |ν| by using max(a, b) = a+b+|a−b|
2 to obtain table 4.

Table 4. Lower bound for ρ by subranges of |ν| and minimiser |ν∗|
p
√
|ν|µ− 1 < 0 p

√
|ν|µ− 1 ≥ 0

Range Minimiser Bound Range Minimiser Bound
p
√
|ν|L− 1 ≤ 0 (0, 1/L] 1/L 1− p

√
µ
L N/A

p
√
|ν|L− 1 > 0 (1/L, 1/µ)

(
2

p√
L+ p
√
µ

)p p
√
L/µ−1

p
√
L/µ+1

[1/µ, 2p/L) 1/µ p

√
L
µ − 1

Note that case 3 requires p > log2 L/µ. Hence,

ρ ≥ min

{
1− p

√
µ

L
,
p
√
L/µ− 1

p
√
L/µ+ 1

, p

√
L

µ
− 1

}
=

p
√
L/µ− 1

p
√
L/µ+ 1

(85)

where µ = min |σ(A)|, L = max |σ(A)|.

C.2. Finding a suitably hard example for 2-player with d1 = d2

We now only need to find a hard counterexample. We present the argument for d1 = d2 = 2, which can easily be generalised
for arbitrary d. Consider the matrix

A =


µ1 0 µ12 0
0 L1 0 L12

−µ12 0 µ2 0
0 −L12 0 L2

 (86)

corresponding to the Jacobian of a quadratic game in Qd1,d2 .

First we compute the characteristic polynomial of A, using the formula for the determinant of a block matrix (see Zhang
(2005, Section 0.3) for instance):

det(XI −A) = det


X − µ1 0 −µ12 0

0 X − L1 0 −L12

µ12 0 X − µ2 0
0 L12 0 X − L2

 (87)

= det

((
(X − µ1)(X − µ2) 0

0 (X − L1)(X − L2)

)
+

(
µ2

12 0
0 L2

12

))
(88)

= (X2 − (µ1 + µ2)X + µ1µ2 + µ2
12)(X2 − (L1 + L2)X + L1L2 + L2

12) (89)

The discriminants of these two quadratic equations are, respectively:

∆µ = (µ1 + µ2)2 − 4(µ1µ2 + µ2
12) = (µ1 − µ2)2 − 4µ2

12 (90)

∆L = (L1 + L2)2 − 4(L1L2 + L2
12) = (L1 − L2)2 − 4L2

12 (91)
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which yields the following eigenvalues:

λµ± =
µ1 + µ2

2
±

√(
µ1 − µ2

2

)2

− µ2
12

λL± =
L1 + L2

2
±

√(
L1 − L2

2

)2

− L2
12 (92)

We distinguish four cases, which are presented in the following table:

Table 5. Lower bounds on the condition number
∆µ < 0 ∆µ ≥ 0

∆L < 0 κ =
√

L1L2+L2
12

µ1µ2+µ2
12

κ ≥ 2

√
L1L2+L2

12

µ1+µ2−
√

∆µ

∆L ≥ 0 κ ≥ 1
2
L1+L2+

√
∆L√

µ1µ2+µ2
12

κ ≥ L1+L2+
√

∆L

µ1+µ2−
√

∆µ

where we used that κ = max |σ(A)|
min |σ(A)| .

We now discuss these four cases:

• If ∆µ < 0 and ∆L < 0, we have that

|λµ±| =

∣∣∣∣∣∣µ1 + µ2

2
± i

√
µ2

12 −
(
µ1 − µ2

2

)2
∣∣∣∣∣∣

=
√
µ1µ2 + µ2

12 (93)

Similarly we get

|λL±| =
√
L1L2 + L2

12 (94)

Clearly then min |σ(A)| = |λµ±| and max |σ(A)| = |λL±|, which yields κ =
√

L1L2+L2
12

µ1µ2+µ2
12

.

• If ∆µ ≥ 0 and ∆L ≥ 0, λL+, λL−, λµ+ and λµ− are all real. We have that,

λµ− ≥ min |σ(A)| , and λL+ ≤ max |σ(A)| , (95)

which yields the result.

• If ∆µ < 0 and ∆L ≥ 0, it holds that,

|λµ±| = min |σ(A)| , and λL+ ≤ max |σ(A)| , (96)

from which we obtain the result.

• Similarly, if ∆µ ≥ 0 and ∆L < 0, it holds that,

λµ− ≥ min |σ(A)| , and |λL±| = max |σ(A)| . (97)

One could wonder whether our lower bounds on κ when at least one of the discriminant is non-negative are actually
equalities. We provide an example showing that it is not the case when ∆L ≥ 0 and ∆µ ≥ 0. A similar one can be found
when ∆L < 0 and ∆µ ≥ 0.
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Take µ12 = 0 and L12 = |L1−L2|
2 . Then ∆L ≥ 0 and ∆µ ≥ 0. Then,

λµ+ =
µ1 + µ2

2
+

√(
µ1 − µ2

2

)2

− µ2
12 = max(µ1, µ2)

λL± =
L1 + L2

2
±

√(
L1 − L2

2

)2

− L2
12 =

L1 + L2

2
. (98)

Choose µ1 = L1, µ2 = L2 and L1 6= L2. Then λµ+ > λL±. However we have λµ− = min |σ(A)| and so in this case
κ = λµ+/λµ−.
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D. Lower bounds on the iteration complexity
The lower bounds on the distance of the iterates to a minimiser also yield lower bounds on the number of iterations required
to reach a maximum error ε on the iterates (iteration complexity).

p-SCLI-n case: For the p-SCLI-n bound, suppose maxi=0,...,p−1

∥∥Ewt+i − Ew∗
∥∥ < ε. Then from Theorem 14, we know

that for some strictly positive real C,

Cρλ(L(λ,A))t ≤ ε =⇒ ρλ(L(λ,A))t ≤ ε

C

=⇒ t log (ρλ(L(λ,A))) ≤ log
( ε
C

)
=⇒ t log

(
1

ρλ(L(λ,A))

)
≥ log

(
C

ε

)
(99)

Noting that log(x) ≤ x− 1 for x > 0, we get that log
(

1
ρλ(L(λ,A))

)
≤ 1−ρλ(L(λ,A))

ρλ(L(λ,A)) and hence,

t
1− ρλ(L(λ,A))

ρλ(L(λ,A))
≥ t log

(
1

ρλ(L(λ,A))

)
≥ log

(
C

ε

)
(100)

Therefore, we get that

t ≥ ρλ(L(λ,A))

1− ρλ(L(λ,A))
log

(
C

ε

)
(101)

where one may use Prop. 7 to get

t ≥
(

p
√
κ− 1

2

)
log

(
C

ε

)
(102)

where κ is given as in Prop. C.1. One may also use in the 2-player case the κ given in Table 1.

2-player domino bound: For the two player bound stemming from the domino argument, it is equally straightforward to
establish from Thm. 3 that given an upper bound ε on ‖(xt,yt)− (x∗,y∗)‖, then using that 1− 2

κ+1 ≥ exp
(
− 2
κ−1

)
,

exp

(
− 2

κ− 1

)t+1

· ‖(x0,y0)− (x∗,y∗)‖ ≤ ε =⇒ t ≥ κ− 1

2
log

(
‖(x0,y0)− (x∗,y∗)‖

ε

)
− 1 (103)

where κ is defined as in Thm. 3.


