
Semi-Supervised Learning with Normalizing Flows

Pavel Izmailov * 1 Polina Kirichenko * 1 Marc Finzi * 1 Andrew Gordon Wilson 1

Abstract
Normalizing flows transform a latent distribution
through an invertible neural network for a flexi-
ble and pleasingly simple approach to generative
modelling, while preserving an exact likelihood.
We propose FlowGMM, an end-to-end approach
to generative semi-supervised learning with nor-
malizing flows, using a latent Gaussian mixture
model. FlowGMM is distinct in its simplicity, uni-
fied treatment of labeled and unlabeled data with
an exact likelihood, interpretability, and broad ap-
plicability beyond image data. We show promis-
ing results on a wide range of applications, in-
cluding AG-News and Yahoo Answers text data,
tabular data, and semi-supervised image classi-
fication. We also show that FlowGMM can dis-
cover interpretable structure, provide real-time
optimization-free feature visualizations, and spec-
ify well calibrated predictive distributions.

1. Introduction
The discriminative approach to classification models the
probability of a class label given an input p(y|x) directly.
The generative approach, by contrast, models the class con-
ditional density for the data p(x|y), and then uses Bayes
rule to find p(y|x). In principle, generative modelling has
long been more alluring, for the effort is focused on creating
an interpretable object of interest, and “what I cannot create,
I do not understand”. In practice, discriminative approaches
typically outperform generative methods, and thus are far
more widely used.

The challenge in generative modelling is that standard ap-
proaches to density estimation are often poor descriptions of
high-dimensional natural signals. For example, a Gaussian
mixture directly over images, while highly flexible for esti-
mating densities, would specify similarities between images
as related to Euclidean distances of pixel intensities, which

*Equal contribution 1New York University. Correspondence
to: Pavel Izmailov <pi390@nyu.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

would be a poor inductive bias for handling translations or
representing other salient statistical properties. Recently,
generative adversarial networks (Goodfellow et al., 2014),
variational autoencoders (Kingma & Welling, 2013), and
normalizing flows (Dinh et al., 2014), have led to great ad-
vances in unsupervised generative modelling, by leveraging
the inductive biases of deep convolutional neural networks.

Normalizing flows are a pleasingly simple approach to gen-
erative modelling, which work by transforming a distribu-
tion through an invertible neural network. Since the trans-
formation is invertible, it is possible to exactly express the
likelihood over the observed data, to train the neural net-
work mapping. The network provides both useful inductive
biases, and a flexible approach to density estimation. Nor-
malizing flows also admit controllable latent representations
and can be sampled efficiently, unlike auto-regressive mod-
els (Papamakarios et al., 2017; Oord et al., 2016). More-
over, recent work (Dinh et al., 2016; Kingma & Dhariwal,
2018; Behrmann et al., 2018; Chen et al., 2019; Song et al.,
2019) demonstrated that normalizing flows can produce
high-fidelity samples for natural image datasets.

Advances in unsupervised generative modelling, such as
normalizing flows, are particularly compelling for semi-
supervised learning, where we wish to share structure over
labeled and unlabeled data, to make better predictions of
class labels on unseen data. In this paper, we introduce an ap-
proach to semi-supervised learning with normalizing flows,
by modelling the density in the latent space as a Gaussian
mixture, with each mixture component corresponding to a
class represented in the labeled data. This Flow Gaussian
Mixture Model (FlowGMM) is to the best of our knowledge
the first approach to semi-supervised learning with normal-
izing flows that provides an exact joint likelihood over both
labeled and unlabeled data, for end-to-end training.∗

We illustrate FlowGMM with a simple example in Figure 1.
We are solving a binary semi-supervised classification prob-
lem on the dataset shown in panel (a): the labeled data are
shown with triangles colored according to their class, and
unlabeled data are shown with blue circles. We introduce
∗A short version of this work first appeared at the ICML 2019

Normalizing Flows Workshop (Izmailov et al., 2019). At the same
workshop, Atanov et al. (2019) proposed a different approach that
uses a class-conditional normalizing flow as the latent distribution.



Semi-Supervised Learning with Normalizing Flows

f f−1

X , Data Z , Latent Z , Latent X , Data

(a) (b) (c) (d)

Figure 1. Illustration of semi-supervised learning with FlowGMM on a binary classification problem. Colors represent the two classes or
the corresponding Gaussian mixture components. Labeled data are shown with triangles, colored by the corresponding class label, and
blue dots represent unlabeled data. (a): Data distribution and the classifier decision boundary. (b): The learned mapping of the data to the
latent space. (c): Samples from the Gaussian mixture in the latent space. (d): Samples from the model in the data space.

a Gaussian mixture with two components corresponding to
each of the classes, shown in panel (c) in the latent space Z
and an invertible transformation f . The transformation f is
then trained to map the data distribution in the data space
X to the latent Gaussian mixture in the Z space, mapping
the labeled data to the corresponding mixture component.
We visualize the learned transformation in panel (b), show-
ing the positions of the images f(x) for all of the training
data points. The inverse f−1 of this mapping serves as
a class-conditional generative model, that we visualize in
panel (d). To classify a data point x in the input space we
compute its image f(x) in the latent space, and pick the
class corresponding to the Gaussian that is closest to f(x).
We visualize the decision boundary of the learned classifier
with a dashed line in panel (a).

FlowGMM naturally encodes the clustering principle: the
decision boundary between classes must lie in the low-
density region in the data space. Indeed, in the latent space
the decision boundary between two classes coincides with
the hyperplane perpendicular to the line segment connecting
means of the corresponding mixture components and pass-
ing through the midpoint of this line segment (assuming the
components are normal distributions with identity covari-
ance matrices); in panel (b) of Figure 1 we show the decision
boundary in the latent space with a dashed line. The density
of the latent distribution near the decision boundary is low.
As the flow is trained to represent data as a transformation of
this latent distribution, the density near the decision bound-
ary should also be low. In panel (a) of Figure 1 the decision
boundary indeed lies in the low-density region.

The contributions of this work include:

• We propose FlowGMM, a new probabilistic classifi-
cation model based on normalizing flows that can be
naturally applied to semi-supervised learning.

• We show that FlowGMM has good performance on a
broad range of semi-supervised tasks, including image,
text and tabular data classification.

• We propose a new type of probabilistic consistency
regularization that significantly improves FlowGMM
on image classification problems.

• To demonstrate the interpretability of FlowGMM, we
visualize the learned latent space representations for
the proposed semi-supervised model and show that in-
terpolations between data points from different classes
pass through low-density regions. We also show how
FlowGMM can be used for feature visualization in
real-time, without requiring gradients.

• We show that the predictive uncertainties of FlowGMM
can be naturally calibrated by scaling the variances of
mixture components.

We also provide code at https://github.com/
izmailovpavel/flowgmm.

2. Related Work
Kingma et al. (2014) represents one of the earliest works
on semi-supervised deep generative modelling, demon-
strating how the likelihood model of a variational autoen-
coder (Kingma & Welling, 2013) could be used for semi-
supervised image classification. Xu et al. (2017) later ex-
tended this framework to semi-supervised text classification.

Many generative models for classification (Salimans et al.,
2016; Nalisnick et al., 2019; Chen et al., 2019) have relied
upon multitask learning, where a shared latent representa-
tion is learned for the generative model and the classifier.
With the method of Chen et al. (2019), hybrid modeling
is observed to reduce performance for both tasks in the

https://github.com/izmailovpavel/flowgmm
https://github.com/izmailovpavel/flowgmm


Semi-Supervised Learning with Normalizing Flows

supervised case. While GANs have achieved promising
performance on semi-supervised tasks, Dai et al. (2017)
showed that classification performance and generative per-
formance are in direct conflict: a perfect generator provides
no benefit to classification performance.

Some works on normalizing flows, such as RealNVP (Dinh
et al., 2016), have used class-conditional sampling, where
the transformation is conditioned on the class label. These
approaches pass the class label as an input to coupling layers,
conditioning the output of the flow on the class.

Deep Invertible Generalized Linear Model (DIGLM, Nalis-
nick et al., 2019), most closely related to our work, trains
a classifier on the latent representation of a normalizing
flow to perform supervised or semi-supervised image clas-
sification. Our approach is principally different, as we use
a mixture of Gaussians in the latent space Z and perform
classification based on class-conditional likelihoods (see
(5)), rather than training a separate classifier. One of the
key advantages of our approach is the explicit encoding
of clustering principle in the method and a more natural
probabilistic interpretation.

Indeed, many approaches to semi-supervised learn from the
labeled and unlabeled data using different (and possibly mis-
aligned) objectives, often also involving two step procedures
where the unsupervised model is used as pre-processing for
a supervised approach (e.g. Nalisnick et al., 2019; Kingma
et al., 2014). In general, FlowGMM is distinct in that the
generative model is used directly as a Bayes classifier, and
in the limit of a perfect generative model the Bayes classi-
fier achieves a provably optimal misclassification rate (see
e.g. Mohri et al., 2018). Moreover, approaches to semi-
supervised classification, such as consistency regulariza-
tion (Laine & Aila, 2016; Miyato et al., 2018; Tarvainen &
Valpola, 2017; Athiwaratkun et al., 2019; Verma et al., 2019;
Berthelot et al., 2019), typically focus on image modelling.
We instead focus on showcasing the broad applicability of
FlowGMM on text, tabular, and image data, as well as the
ability to conveniently discover interpretable structure.

3. Background: Normalizing Flows
The normalizing flow (Dinh et al., 2016) is an unsupervised
model for density estimation defined as an invertible map-
ping f : X → Z from the data space X to the latent space
Z . We can model the data distribution as a transformation
f−1 : Z → X applied to a random variable from the latent
distribution z ∼ pZ , which is often chosen to be Gaussian.
The density of the transformed random variable x = f−1(z)
is given by the change of variables formula

pX (x) = pZ(f(x)) ·
∣∣∣∣det

(
∂f

∂x

)∣∣∣∣ . (1)

The mapping f is implemented as a sequence of invertible
functions, parametrized by a neural network with architec-
ture that is designed to ensure invertibility and efficient
computation of log-determinants, and a set of parameters θ
that can be optimized. The model can be trained by max-
imizing the likelihood in Equation (1) of the training data
with respect to the parameters θ.

4. Flow Gaussian Mixture Model
We introduce the Flow Gaussian Mixture Model
(FlowGMM), a probabilistic generative model for semi-
supervised learning with normalizing flows. In FlowGMM,
we introduce a discrete latent variable y for the class label,
y ∈ {1 . . . C}. Our latent space distribution, conditioned on
a label k, is Gaussian with mean µk and covariance Σk:

pZ(z|y = k) = N (z|µk,Σk). (2)

The marginal distribution of z is then a Gaussian mixture.
When the classes are balanced, this distribution is

pZ(z) =
1

C

C∑
k=1

N (z|µk,Σk). (3)

Combining equations (2) and (1), the likelihood for labeled
data is

pX (x|y = k) = N (f(x)|µk,Σk) ·
∣∣∣∣det

(
∂f

∂x

)∣∣∣∣ ,
and the likelihood for data with unknown label is pX (x) =∑
k pX (x|y = k)p(y = k). If we have access to both a

labeled dataset D` and an unlabeled dataset Du, then we
can train our model in a semi-supervised way to maximize
the joint likelihood of the labeled and unlabeled data

pX (D`,Du|θ) =
∏

(xi,yi)∈D`

pX (xi, yi)
∏

xj∈Du

pX (xj), (4)

over the parameters θ of the bijective function f , which
learns a density model for a Bayes classifier. In particular,
given a test point x, the model predictive distribution is
given by

pX (y|x) =
pX (x|y)p(y)

p(x)

=
N (f(x)|µy,Σy)∑C
k=1N (f(x)|µk,Σk)

. (5)

We can then make predictions for a test point x with the
Bayes decision rule

y = arg max
i∈{1,...,C}

pX (y = i|x).

As an alternative to direct likelihood maximization, we can
adapt the Expectation Maximization algorithm for model
training as discussed in Appendix A.



Semi-Supervised Learning with Normalizing Flows

(a) Labeled + Unlabeled (b) Labeled Only (c) Labeled + Unlabeled (d) Labeled Only

Figure 2. Illustration of FlowGMM performance on synthetic datasets. Labeled data are shown with colored triangles, and unlabeled data
are shown with blue circles. Colors represent different classes. We compare the classifier decision boundaries when only using labeled
data (panels b, d) and when using both labeled and unlabeled data (panels a, c) on two circles (panels a, b) and pinwheel (panels c, d)
datasets. FlowGMM leverages unlabeled data to push the decision boundary to low-density regions of the space.

4.1. Consistency Regularization

Most of the existing state-of-the-art approaches to semi-
supervised learning on image data are based on consistency
regularization (Laine & Aila, 2016; Miyato et al., 2018; Tar-
vainen & Valpola, 2017; Athiwaratkun et al., 2019; Verma
et al., 2019; Xie et al., 2020; Berthelot et al., 2020). These
methods penalize changes in network predictions with re-
spect to input perturbations, such as random translations
and horizontal flips, with an additional loss term that can be
computed on unlabeled data,

`cons(x) = ‖g(x′)− g(x′′)‖2, (6)

where x′, x′′ are random perturbations of x, and g is the
vector of probabilities over the classes.

Motivated by these methods, we introduce a new consis-
tency regularization term for FlowGMM. Let y′′ be the
label predicted on image x′′ by FlowGMM according to
(5). We then define our consistency loss as the negative log
likelihood of the input x′ given the label y′′:

Lcons(x
′, x′′) = − log p(x′|y′′) =

− logN (f(x′)|µy′′ ,Σy′′)− log

∣∣∣∣det

(
∂f

∂x′

)∣∣∣∣ . (7)

This loss term encourages the model to map small perturba-
tions of the same unlabeled inputs to the same components
of the Gaussian mixture distribution in the latent space. Un-
like the standard consistency loss of (6), the proposed loss in
(7) takes values on the same scale as the data log likelihood
(4), and indeed we find it to work better in practice. We refer
to FlowGMM with the consistency term as FlowGMM-cons.
The final loss for FlowGMM-cons is then the weighted sum
of the consistency loss (7) and the negative log likelihood
of both labeled and unlabeled data (4).

5. Experiments
We evaluate FlowGMM on a wide range of datasets across
different application domains including low-dimensional
synthetic data (Section 5.1), text and tabular data (Section
5.2), and image data (Sections 5.3, 5.4). In Appendix K we
evaluate FlowGMM under class imbalance. We show that
FlowGMM outperforms the baselines on tabular and text
data. FlowGMM is also state-of-the-art as an end-to-end
generative approach to semi-supervised image classifica-
tion, conditioned on architecture. However, FlowGMM is
constrained by the RealNVP architecture, and thus does not
outperform the most powerful approaches in this setting,
which involve discriminative classifiers.

In all experiments, we use the RealNVP normalizing flow
architecture. Throughout training, Gaussian mixture param-
eters are fixed: the means are initialized randomly from
the standard normal distribution and the covariances are
set to I . See Appendix B for further discussion on GMM
initialization and training.

5.1. Synthetic Data

We first apply FlowGMM to a range of two-dimensional
synthetic datasets, in order to gain a better visual intuition
for the method. We use the RealNVP architecture with 5
coupling layers, defined by fully-connected shift and scale
networks, each with 1 hidden layer of size 512. In ad-
dition to the semi-supervised setting, we also trained the
method only using the labeled data. In Figure 2 we visualize
the decision boundaries of the classifier corresponding to
FlowGMM for both of these settings on the two circles and
pinwheel datasets. On both datasets, FlowGMM is able to
benefit from the unlabeled data to push the decision bound-
ary to a low-density region, as expected. On the two circles
problem the method is unable to fit the data perfectly as
flows are homeomorphisms, and the disk is topologically
distinct from an annulus. However, FlowGMM still pro-



Semi-Supervised Learning with Normalizing Flows

Table 1. Accuracy on BERT embedded text classification datasets and UCI datasets with a small number of labeled examples. The kNN
baseline, logistic regression, and the 3-Layer NN + Dropout were trained on the labeled data only. Numbers reported for each method are
the median of 4 runs ± the median average deviation. nl and nu are the number of labeled and unlabeled data points.

Dataset (nl / nu, classes)

Method AG-News Yahoo Answers Hepmass Miniboone
(200 / 200k, 4) (800 / 50k, 10) (20 / 140k, 2) (20 / 65k, 2)

kNN 41.6 19.8 81.2 75.3
Logistic Regression 77.5 54.9 81.2 79.0
3-Layer NN + Dropout 77.5± 0.3 55.7± 0.3 82.2± 0.1 80.4± 0.4

RBF Label Spreading 36.1 36.4 84.9 79.3
Π-model 80.2± 0.3 56.3± 0.04 87.9± 0.2 80.8± 0.01
FlowGMM 82.1± 1.0 57.9± 0.2 88.5± 0.2 81.9± 0.7

Table 2. Accuracy on semi-supervised classification on CIFAR-10 dataset with features extracted from EfficientNet model pre-trained on
ImageNet. We report mean and standard deviation over 3 runs with different labeled data. The kNN baseline and logistic regression were
trained on the labeled data only.

Method nl = 250 nl = 1000 nl = 4000

kNN 84.81± 0.17 87.99± 0.15 90.41± 0.29
Logistic Regression 88.13± 0.41 90.40± 0.1 92.42± 0.17

RBF Label Spreading 88.64± 0.67 90.24± 0.19 90.99± 0.15
kNN Label Spreading 87.20± 1.10 89.13± 0.15 90.45± 0.38
Π-model 89.84± 0.25 91.54± 0.05 92.75 ±0.12
FlowGMM 90.26 ±0.45 91.82 ±0.09 92.78 ±0.03

duces a reasonable decision boundary and improves over
the case when only labeled data are available. We provide
additional visualizations in Appendix C, Figure 4.

5.2. Text and Tabular Data

FlowGMM can be especially useful for semi-supervised
learning on tabular data. Consistency-based semi-
supervised methods have mostly been developed for im-
age classification, where the predictions of the method are
regularized to be invariant to random flips and translations
of the image. On tabular data, desirable invariances are
less obvious, finding suitable transformations to apply for
consistency-based methods is not trivial. Similarly, ap-
proaches based on GANs have mostly been developed for
images. We evaluate FlowGMM on the Hepmass and Mini-
boone UCI classification datasets (previously used in Papa-
makarios et al. (2017) for density estimation).

Along with standard tabular UCI datasets, we also consider
text classification on AG-News and Yahoo Answers datasets.
Using the recent advances in transfer learning for NLP, we
construct embeddings for input texts using the BERT trans-
former model (Devlin et al., 2018) trained on a corpus of
Wikipedia articles, and then train FlowGMM and other base-
lines on the embeddings.

We compare FlowGMM to the graph based label spreading
method from Zhou et al. (2004), a Π-Model (Laine & Aila,
2016) that uses dropout perturbations, as well as supervised
logistic regression, k-nearest neighbors, and a neural net-
work trained on the labeled data only. We report the results
in Table 1, where FlowGMM outperforms the alternative
semi-supervised learning methods on each of the consid-
ered datasets. Implementation details for FlowGMM, the
baselines, and data preprocessing details are in Appendix D.

5.3. Transfer Learning on Image Data.

Transfer learning makes use of models pre-trained on large
datasets to improve performance on downstream tasks with
limited annotated datasets. In practice, models pre-trained
on ImageNet (Russakovsky et al., 2015) are often used as
feature extractors for computer vision problems. We eval-
uate FlowGMM in transfer learning setting on CIFAR-10
semi-supervised image classification. We extract image rep-
resentations for CIFAR-10 using an EfficientNet model (Tan
& Le, 2019) pre-trained on ImageNet, and train FlowGMM
and baseline models on these features. We report the results
in Table 2. In this setting, FlowGMM outperforms Π-Model
for 250 and 1k labeled examples, and achieves similar per-
formance with 4k labels. The implementation details are
presented in Appendix E.



Semi-Supervised Learning with Normalizing Flows

Table 3. Accuracy of the FlowGMM, VAE model (M1+M2 VAE, Kingma et al., 2014), DIGLM (Nalisnick et al., 2019) in supervised
and semi-supervised settings on MNIST, SVHN, and CIFAR-10. FlowGMM Sup (All labels) as well as DIGLM Sup (All labels) were
trained on full train datasets with all labels to demonstrate general capacity of these models. FlowGMM Sup (nl labels) was trained on nl

labeled examples (and no unlabeled data). For reference, at the bottom we list the performance of the Π-Model (Laine & Aila, 2016) and
BadGAN (Dai et al., 2017) as representative consistency-based and GAN-based state-of-the-art methods. Both of these methods use
non-invertible architectures with substantially higher base performance and, thus, are not directly comparable.

Dataset (nl / nu)

Method MNIST SVHN CIFAR-10
(1k/59k) (1k/72k) (4k/46k)

DIGLM Sup (All labels) 99.27 95.74 -
FlowGMM Sup (All labels) 99.63 95.81 88.44

M1+M2 VAE SSL 97.60 63.98 -
DIGLM SSL 99.0 - -
FlowGMM Sup (nl labels) 97.36 78.26 73.13
FlowGMM 98.94 82.42 78.24
FlowGMM-cons 99.0 86.44 80.9

BadGAN - 95.75 85.59
Π-Model - 94.57 87.64

Table 4. Semi-supervised classification accuracy for FlowGMM-cons and VAE M1 + M2 model (Kingma et al., 2014) on MNIST for
different number of labeled data points nl.

Method nl = 100 nl = 600 nl = 1000 nl = 3000

M1+M2 VAE SSL (nl labels) 96.67 97.41± 0.05 97.60± 0.02 97.82± 0.04
FlowGMM-cons (nl labels) 98.2 98.7 99 99.2

5.4. Image Classification

We next evaluate the proposed method on semi-supervised
image classification benchmarks on CIFAR-10, MNIST and
SVHN datasets. For all the datasets, we use the RealNVP
(Dinh et al., 2016) architecture. Exact implementation de-
tails are listed in the Appendix F. The supervised model is
trained using the same loss (4), where all the data points are
labeled (nu = 0).

We present the results for FlowGMM and FlowGMM-cons
in Table 3. We also report results from DIGLM (Nalisnick
et al., 2019), supervised only performance on MNIST and
SVHN, and the M1+M2 VAE model (Kingma et al., 2014).
FlowGMM outperforms the M1+M2 model and performs
better or on par with DIGLM. Furthermore, FlowGMM-
cons improves over FlowGMM on all three datasets, sug-
gesting that our proposed consistency regularization is help-
ful for performance.

Following Oliver et al. (2018), we evaluate FlowGMM-
cons varying the number of labeled data points. Specif-
ically, we follow the setup of Kingma et al. (2014) and
train FlowGMM-cons on MNIST with 100, 600, 1000 and
3000 labeled data points. We present the results in Table 4.
FlowGMM-cons outperforms the M1+M2 model of Kingma

et al. (2014) in all the considered settings.†

We note that the results presented in this Section are not
directly comparable with the state-of-the-art methods us-
ing GANs or consistency regularization (see e.g. Laine &
Aila, 2016; Dai et al., 2017; Athiwaratkun et al., 2019;
Berthelot et al., 2019), as the architecture we employ is
much less powerful for classification than the ConvNet and
ResNet architectures that have been designed for classifi-
cation without the constraint of invertibility. We believe
that invertible architectures with better inductive biases for
classification may help bridge this gap; invertible residual
networks (Behrmann et al., 2018; Chen et al., 2019) and
invertible CNNs (Finzi et al., 2019) are some of the early
examples of this class of architectures.

In general, it is difficult to directly compare FlowGMM with
most existing approaches, because the types of architectures
available for fully generative normalizing flows are very
different than what is available to (partially) discriminative
approaches or even other generative methods like VAEs.
This difference is due to the invertibility requirement for
normalizing flows.

†The M1+M2 model has been improved in subsequent work.
E.g., ADGM (Maaløe et al., 2016) achieves 99.04% accuracy on
MNIST with 100 labels, outperforming FlowGMM-cons.



Semi-Supervised Learning with Normalizing Flows

Table 5. Negative log-likelihood and Expected Calibration Error for supervised FlowGMM trained on MNIST (1k train, 1k validation,
10k test) and CIFAR-10 (50k train, 1k validation, 9k test). FlowGMM-temp stands for tempered FlowGMM where a single scalar
parameter σ2 was learned on a validation set for variances in all components.

MNIST (test acc. 97.3%) CIFAR-10 (test acc. 89.3%)

FlowGMM FlowGMM-temp FlowGMM FlowGMM-temp

NLL ↓ 0.295 0.094 2.98 0.444
ECE ↓ 0.024 0.004 0.108 0.038

6. Model Analysis
We empirically analyze different aspects of FlowGMM and
highlight some useful features of this model. In Section
6.1 we discuss the calibration of predictive uncertainties
produced by the model. In Section 6.2, we study the latent
representations learned by FlowGMM. Finally, in Section
6.3, we discuss a feature visualization technique that can be
used to interpret the features learned by FlowGMM.

6.1. Uncertainty and Calibration

In many applications, particularly where decision making is
involved, it is crucial to have reliable confidences associated
with predictions. In classification problems, well-calibrated
models are expected to output accurate probabilities of be-
longing to a particular class. Reliable uncertainty estimation
is especially relevant in semi-supervised learning since label
information is limited during training. Guo et al. (2017),
showed that modern deep learning models are highly over-
confident, but could be easily recalibrated with temperature
scaling. In this Section, we analyze the predictive uncertain-
ties produced by FlowGMM. In Appendix Section G, we
also consider out-of-domain data detection.

When using FlowGMM for classification, the class predic-
tive probabilities are

p(y|x) =
N (f(x)|µy,Σy)∑C
k=1N (f(x)|µk,Σk)

.

Since we initialize Gaussian mixture means randomly from
the standard normal distribution and do not train them along
with the flow parameters (see Appendix B), FlowGMM
predictions become inherently overconfident due to the
curse of dimensionality. For example, consider two Gaus-
sians with means sampled independently from the stan-
dard normal µ1, µ2 ∼ N (0, I) in D-dimensional space.
If s1 ∼ N (µ1, I) is a sample from the first Gaussian, then
its expected squared distances to both mixture means are
E
[
‖s1 − µ1‖2

]
= D and E

[
‖s1 − µ2‖2

]
= 3D (for a

detailed derivation see Appendix Section H). In high dimen-
sional spaces, such logits would lead to hard label assign-
ment in FlowGMM (p(y|x) ≈ 1 for exactly one class). In
fact, in the experiments we observe that FlowGMM is over-

confident and performs hard label assignment: predicted
class probabilities are all close to either 1 or 0.

We address this problem by learning a single scalar parame-
ter σ2 for all components in the Gaussian mixture (the com-
ponent k will be N (µk, σ

2I)) by minimizing the negative
log likelihood on a validation set. This way we can naturally
re-calibrate the variance of the latent GMM. This proce-
dure is also equivalent to applying temperature scaling (Guo
et al., 2017) to logits logN (x|µk,Σk). We test FlowGMM
calibration on MNIST and CIFAR datasets in the supervised
setting. On MNIST we restricted the training set size to
1000 objects, since on the full dataset the model makes too
few mistakes which makes evaluating calibration harder. In
Table 5, we report negative log likelihood and expected cali-
bration error (ECE, see Guo et al. (2017) for a description
of this metric). We can see that re-calibrating variances of
the Gaussians in the mixture significantly improves both
metrics and mitigates overconfidence. The effectiveness
of this simple rescaling procedure suggests that the latent
space distances learned by the flow model are correlated
with the probabilities of belonging to a particular class: the
closer a datapoint is to the mean of a Gaussian in the latent
space, the more likely it belongs to the corresponding class.

In Appendix J we discuss using mixtures of non-Gaussian
latent distributions with heavy tails to address the over-
confidence of FlowGMM.

6.2. Learned Latent Representations

We next analyze the latent representation space learned
by FlowGMM. We examine latent interpolations between
members of the same class in Figure 3(a) and between
different classes in Figure 3(b) for our MNIST FlowGMM-
cons model trained with n` = 1k labels. As expected, inter-
class interpolations pass through regions of low-density,
leading to low quality samples but intra-class interpolations
do not. These observations suggest that, as expected, the
model learns to put the decision boundary in the low-density
region of the data space.

In Appendix section I, we present images corresponding to
the means of the Gaussian mixture and class-conditional
samples from FlowGMM.



Semi-Supervised Learning with Normalizing Flows

(a) (b) (c) (d)

Figure 3. Visualizations of the latent space representations learned by supervised FlowGMM on MNIST. (a): Latent space interpolations
between test images from the same class and (b): from different classes. Observe that interpolations between objects from different
classes pass through low-density regions. (c): Histogram of distances from unlabeled data to the decision boundary for FlowGMM-cons
trained on 1k labeled and 59k unlabeled data and FlowGMM Sup trained on 1k labeled data only. FlowGMM-cons is able to push the
decision boundary away from the data distribution using unlabeled data. (d): Feature visualization for CIFAR-10: four test reconstructions
are shown as an intermediate feature is perturbed. The value of the perturbation α is shown in red vs the distribution of the channel
activations. Observe that the channel visualized activates on zeroed out pixels to the left of the image mimicking the random translations
applied to the training data.

Distance to Decision Boundary To explicitly test this
conclusion, we compute the distribution of distances from
unlabeled data to the decision boundary for FlowGMM-cons
and FlowGMM Sup trained on labeled data only. In order
to compute this distance exactly for an image x, we find
the two closest means µ′, µ′′ to the corresponding latent
variable z = f(x), and evaluate the expression

d(x) =

∣∣‖µ′ − f(x)‖2 − ‖µ′′ − f(x)‖2
∣∣

2‖µ′ − µ′′‖
.

We visualize the distributions of the distances for the super-
vised and semi-supervised method in Figure 3(c). While
most of the unlabeled data are far from the decision bound-
ary for both methods, the supervised method puts a sub-
stantially larger fraction of data close to the decision bound-
ary. For example, the distance to the decision boundary is
smaller than 5 for 1089 unlabeled data points with super-
vised model, but only 143 data points with FlowGMM-cons.
This increased separation suggests that FlowGMM-cons
indeed pushes the decision boundary away from the data
distribution as would be desired from the clustering princi-
ple.

6.3. Feature Visualization

Feature visualization has become an important tool for in-
creasing the interpretability of neural networks in supervised
learning. The majority of methods rely on maximizing
the activations of a given neuron, channel, or layer over
a parametrization of an input image with different kinds
of image regularization (Szegedy et al., 2013; Olah et al.,
2017; Mahendran & Vedaldi, 2015). These methods, while
effective, require iterative optimization too costly for real
time interactive exploration. In this Section we discuss

a simple and efficient feature visualization technique that
leverages the invertibility of FlowGMM. This technique can
be used with any invertible model but is especially relevant
for FlowGMM, where we can use feature visualization to
gain insights into the classification decisions made by the
model.

Since our classification model uses a flow which is a se-
quence of invertible transformations

f(x) = f:L(x) := fL ◦ fL−1 ◦ · · · ◦ f1(x),

intermediate activations can be inverted directly. This means
that we can combine the methods of feature inversion and
feature maximization directly by feeding in a set of input
images, modifying intermediate activations arbitrarily, and
inverting the representation. Given a set of activations in the
`th layer a`[c, i, j] = f:`(x)cij with channels c and spatial
extent i, j, we may perturb a single neuron with

x(α) = f−1:` (f:`(x) + ασcδc),

where δc is a one hot vector at channel c; and σc is the
standard deviation of the activations in channel c over the
the training set and spatial locations. This procedure can
be performed at real-time rates to explore the activation
parametrized by α and the location (c, i, j) without any
optimization or hyper-parameters. We show the feature vi-
sualization for intermediate layers on CIFAR-10 test images
in Figure 3(d). The channel being visualized appears to
activate on the zeroed pixels from random translations as
well as the green channel. Analyzing the features learned
by FlowGMM we can gain insight into the workings of the
model.



Semi-Supervised Learning with Normalizing Flows

7. Discussion
We proposed a simple and interpretable approach for end-to-
end generative semi-supervised prediction with normalizing
flows. While FlowGMM does not yet outperform the most
powerful discriminative approaches for semi-supervised im-
age classification (Athiwaratkun et al., 2019; Verma et al.,
2019), we believe it is a promising step towards making fully
generative approaches more practical for semi-supervised
tasks. As we develop improved invertible architectures, the
performance of FlowGMM will also continue to improve.

Moreover, FlowGMM does outperform graph-based and
consistency-based baselines on tabular data including semi-
supervised text classification with BERT embeddings. We
believe that the results show promise for generative semi-
supervised learning based on normalizing flows, especially
for tabular tasks where consistency-based methods struggle.

We view interpretability and broad applicability as a strong
advantage of FlowGMM. The access to latent space repre-
sentations and the feature visualization technique discussed
in Section 6 as well as the ability to sample from the model
can be used to obtain insights into the performance of the
model in practical applications.

Acknowledgements

This research is supported by an Amazon Research Award,
Facebook Research, Amazon Machine Learning Research
Award, NSF I-DISRE 193471, NIH R01 DA048764-01A1,
NSF IIS-1910266, and NSF 1922658 NRT-HDR: FUTURE
Foundations, Translation, and Responsibility for Data Sci-
ence.

References
Atanov, A., Volokhova, A., Ashukha, A., Sosnovik, I., and

Vetrov, D. Semi-conditional normalizing flows for semi-
supervised learning. arXiv preprint arXiv:1905.00505,
2019.

Athiwaratkun, B., Finzi, M., Izmailov, P., and Wilson, A. G.
There are many consistent explanations of unlabeled data:
Why you should average. In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=rkgKBhA5Y7.

Behrmann, J., Duvenaud, D., and Jacobsen, J.-H. Invert-
ible residual networks. arXiv preprint arXiv:1811.00995,
2018.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N.,
Oliver, A., and Raffel, C. MixMatch: A holistic ap-
proach to semi-supervised learning. arXiv preprint
arXiv:1905.02249, 2019.

Berthelot, D., Carlini, N., Cubuk, E. D., Kurakin, A.,
Sohn, K., Zhang, H., and Raffel, C. Remixmatch:
Semi-supervised learning with distribution matching and
augmentation anchoring. In International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=HklkeR4KPB.

Chen, R. T., Behrmann, J., Duvenaud, D., and Jacobsen,
J.-H. Residual flows for invertible generative modeling.
arXiv preprint arXiv:1906.02735, 2019.

Dai, Z., Yang, Z., Yang, F., Cohen, W. W., and Salakhutdi-
nov, R. R. Good semi-supervised learning that requires a
bad GAN. In Advances in Neural Information Processing
Systems 30, pp. 6510–6520, 2017.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-linear
independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estima-
tion using Real NVP. arXiv preprint arXiv:1605.08803,
2016.

Finzi, M., Izmailov, P., Maddox, W., Kirichenko, P., and
Wilson, A. G. Invertible convolutional networks. In
Workshop on Invertible Neural Nets and Normalizing
Flows, International Conference on Machine Learning,
2019.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q.
On calibration of modern neural networks. CoRR,
abs/1706.04599, 2017. URL http://arxiv.org/
abs/1706.04599.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1×1 convolutions. In Advances in Neural
Information Processing Systems, pp. 10215–10224, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. arXiv preprint arXiv:1312.6114, 2013.

Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling,
M. Semi-supervised learning with deep generative mod-
els. In Advances in neural information processing sys-
tems, pp. 3581–3589, 2014.

https://openreview.net/forum?id=rkgKBhA5Y7
https://openreview.net/forum?id=rkgKBhA5Y7
https://openreview.net/forum?id=HklkeR4KPB
https://openreview.net/forum?id=HklkeR4KPB
http://arxiv.org/abs/1706.04599
http://arxiv.org/abs/1706.04599


Semi-Supervised Learning with Normalizing Flows

Laine, S. and Aila, T. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242,
2016.

Maaløe, L., Sønderby, C. K., Sønderby, S. K., and Winther,
O. Auxiliary deep generative models. arXiv preprint
arXiv:1602.05473, 2016.

Mahendran, A. and Vedaldi, A. Understanding deep im-
age representations by inverting them. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 5188–5196, 2015.

Miyato, T., Maeda, S.-i., Ishii, S., and Koyama, M. Virtual
adversarial training: a regularization method for super-
vised and semi-supervised learning. IEEE transactions
on pattern analysis and machine intelligence, 2018.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of machine learning. MIT press, 2018.

Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., and
Lakshminarayanan, B. Do deep generative models know
what they don’t know? arXiv preprint arXiv:1810.09136,
2018.

Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., and
Lakshminarayanan, B. Hybrid models with deep and
invertible features. arXiv preprint arXiv:1902.02767,
2019.

Olah, C., Mordvintsev, A., and Schubert, L. Feature vi-
sualization. Distill, 2017. doi: 10.23915/distill.00007.
https://distill.pub/2017/feature-visualization.

Oliver, A., Odena, A., Raffel, C. A., Cubuk, E. D., and Good-
fellow, I. Realistic evaluation of deep semi-supervised
learning algorithms. In Advances in Neural Information
Processing Systems, pp. 3235–3246, 2018.

Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu,
K. Pixel recurrent neural networks. arXiv preprint
arXiv:1601.06759, 2016.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. In Advances in
Neural Information Processing Systems, pp. 2338–2347,
2017.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-
lenge. International journal of computer vision, 115(3):
211–252, 2015.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Rad-
ford, A., and Chen, X. Improved techniques for training
GANs. In Advances in neural information processing
systems, pp. 2234–2242, 2016.

Song, Y., Meng, C., and Ermon, S. Mintnet: Building
invertible neural networks with masked convolutions. In
Advances in Neural Information Processing Systems, pp.
11002–11012, 2019.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Tan, M. and Le, Q. V. Efficientnet: Rethinking model
scaling for convolutional neural networks. arXiv preprint
arXiv:1905.11946, 2019.

Tarvainen, A. and Valpola, H. Mean teachers are better role
models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Advances in
neural information processing systems, pp. 1195–1204,
2017.

Verma, V., Lamb, A., Kannala, J., Bengio, Y., and Lopez-
Paz, D. Interpolation consistency training for semi-
supervised learning. arXiv preprint arXiv:1903.03825,
2019.

Xie, Q., Dai, Z., Hovy, E., Luong, M.-T., and Le, Q. V.
Unsupervised data augmentation for consistency training,
2020. URL https://openreview.net/forum?
id=ByeL1R4FvS.

Xu, W., Sun, H., Deng, C., and Tan, Y. Variational autoen-
coder for semi-supervised text classification. In Thirty-
First AAAI Conference on Artificial Intelligence, 2017.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and
Schölkopf, B. Learning with local and global consistency.
In Advances in neural information processing systems,
pp. 321–328, 2004.

https://openreview.net/forum?id=ByeL1R4FvS
https://openreview.net/forum?id=ByeL1R4FvS


Semi-Supervised Learning with Normalizing Flows

A. Expectation Maximization
As an alternative to direct optimization of the likelihood (4),
we consider Expectation-Maximization algorithm (EM).
EM is a popular approach for finding maximum likelihood
estimates in mixture models. Suppose X = {xi}ni=1 is
the observed dataset, T = {ti}ni=1 are corresponding un-
observed latent variables (often denoting the component
in mixture model) and θ is a vector of model parameters.
EM algorithm consists of the two alternating steps: on
E-step, we compute posterior probabilities of latent vari-
ables for each data point q(ti|xi) = P (ti|xi, θ); and on
M-step, we fix q and maximize the expected log likeli-
hood of the data and latent variables with respect to θ:
Eq logP (X,T |θ) → maxθ . The algorithm can be easily
adapted to the semi-supervised setting where a subset of data
is labeled with {yli}

nl
i=1: then, on E-step we have hard assign-

ment to the true mixture component q(ti|xi) = I[ti = yli]
for labeled data points.

EM is applicable to fitting the transformed mixture of Gaus-
sians. We can perform the exact E-step for unlabeled data
in the model since

q(t|x) =
p(x|t, θ)
p(x|θ)

=
N (f(x)|µt,Σt) ·

∣∣∣det
(
∂f
∂x

)∣∣∣∑C
k=1N (f(x)|µk,Σk) ·

∣∣∣det
(
∂f
∂x

)∣∣∣
=

N (f(x)|µt,Σt)∑C
k=1N (f(x)|µk,Σk)

which coincides with the E-step of EM algorithm on Gaus-
sian mixture model. On M-step, the objective has the fol-
lowing form:

nl∑
i=1

log

[
N (fθ(x

l
i)|µyli ,Σyli)

∣∣∣∣∂fθ∂xli

∣∣∣∣]+

nu∑
i=1

Eq(ti|xu
i ,θ)

log

[
N (fθ(x

u
i )|µti ,Σti)

∣∣∣∣ ∂fθ∂xui

∣∣∣∣] .
Since the exact solution is not tractable due to complexity
of the flow model, we perform a stochastic gradient step to
optimize the expected log likelihood with respect to flow
parameters θ.

Note that unlike regular EM algorithm for mixture models,
we have Gaussian mixture parameters {(µk,Σk)}Ck=1 fixed
in our experiments, and on M-step the update of θ induces
the change of zi = fθ(xi) latent space representations.

Using EM algorithm for optimization in the semi-supervised
setting on MNIST dataset with 1000 labeled images, we
obtain 98.97% accuracy which is comparable to the result
for FlowGMM with regular SGD training. However, in
our experiments, we observed that on E-step, hard label
assignment happens for unlabeled points (q(t|x) ≈ 1 for

one of the classes) because of the high dimensionality of the
problem (see section 6.1) which affects the M-step objective
and hinders training.

B. Latent Distribution Mean and Covariance
Choices

Initialization In our experiments, we draw the mean vec-
tors µi of Gaussian mixture model randomly from the stan-
dard normal distribution µi ∼ N (0, I), and set the covari-
ance matrices to identity Σi = I for all classes; we fixed
GMM parameters throughout training. However, one could
potentially benefit from data-dependent placing of means
in the latent space. We experimented with different initial-
ization methods, in particular, initializing means using the
mean point of latent representations of labeled data in each
class: µi = (1/nil)

∑ni
l
m=1 f(xim) where xim represents la-

beled data points from class i and nil is the total number of
labeled points in that class. In addition, we can scale all
means by a scalar value µ̂i = rµi to increase or decrease
distances between them. We observed that such initializa-
tion leads to much faster convergence of FlowGMM on
semi-supervised classification on MNIST dataset, however,
the final performance of the model was worse compared to
the one with random mean placing. We hypothesize that it
becomes easier for the flow model to warm up faster with
data-dependent initialization because Gaussian means are
closer to the initial latent representations, but afterwards the
model gets stuck in a suboptimal solution.

GMM training FlowGMM would become even more
flexible and expressive if we could learn Gaussian mixture
parameters in a principled way. In the current setup where
means are sampled from the standard normal distribution,
the distances between mixture components are about

√
2D

where D is the dimensionality of the data (see Appendix H).
Thus, classes are quite far apart from each other in the latent
space, which, as observed in Section 6.1, leads to model mis-
calibration. Training GMM parameters can further increase
interpretability of the learned latent space representations:
we can imagine a scenario in which some of the classes
are very similar or even intersecting, and it would be useful
to represent it in the latent space. We could train GMM
by directly optimizing likelihood (4), or using expectation
maximization (see Section A), either jointly with the flow
parameters or iteratively switching between training flow
parameters with the fixed GMM and training GMM with
the fixed flow. In our initial experiments on semi-supervised
classification on MNIST, training GMM jointly with the
flow parameters did not improve performance or lead to
substantial change of the latent representations. Further im-
provements require careful hyper-parameter choice which
we leave for future work.



Semi-Supervised Learning with Normalizing Flows

Table 6. Tuned learning rates for 3-Layer NN + Dropout, Π-model and method on text and tabular tasks. For kNN we report the number
of neighbours. All hyper-parameters were tuned via cross-validation.

Method AG-News Yahoo Answers Hepmass Miniboone

3-Layer NN + Dropout 3e-4 3e-4 3e-4 3e-4
Π-model 1e-3 1e-4 3e-3 1e-4
FlowGMM 3e-4 3e-4 3e-3 3e-4

kNN k = 5 k = 19 k = 9 k = 3

C. Synthetic Experiments
In Figure 4 we visualize the classification decision bound-
aries of FlowGMM as well as the learned mapping to the
latent space and generated samples for three different syn-
thetic datasets.

In Table 7 we compare FlowGMM and SCNF of Atanov
et al. (2019) on two synthetic datasets. For the experiments
we use 1000 data points with 5 labeled examples per class
which we select randomly. To get the error bars we run the
experiment 5 times with different labeled data.

D. Tabular data preparation and
hyperparameters

The AG-News and Yahoo Answers were constructed by
applying BERT embeddings to the text input, yielding a
768 dimensional vector for each data point. AG-News has
4 classes while Yahoo Answers has 10. The UCI datasets
Hepmass and Miniboone were constructed using the data
preprocessing from Papamakarios et al. (2017), but with the
inclusion of the removed background process class so that
the two problems can be used for binary classification. We
then subsample the fraction of background class examples
so that the dataset is balanced. For each of the datasets,
a separate validation set of size 5k was used to tune hy-
perparameters. All neural network models use the ADAM
optimizer (Kingma & Ba, 2014).

k-Nearest Neighbors: We tested both using L2 distance
and L2 with inputs normalized to unit norm, (sin2 distance),
and the latter performed the best. The value k chosen in
the method was found in the range from 1 to 20, and the
optimal values for each of the datasets are shown in Table 6.

3 Layer NN + Dropout: The 3-Layer NN + Dropout base-
line network has three fully connected hidden layers with
inner dimension k = 512, ReLU nonlinearities, and dropout
with p = 0.5. We use the learning rate 3e−4 for training
the supervised baseline across all datasets.

Π-Model: The Π-Model uses the same network architec-
ture, and dropout for the perturbations. The first loss term is
the standard cross-entropy for labeled data. The additional

consistency loss per unlabeled data point is computed as
LCons = ||g(z′)− g(z′′)||2, where g is the the softmax func-
tion, and z′ and z′′ are logit vectors after two evaluations of
dropout neural network. We chose the consistency weight
λ = 30 which worked the best across the datasets. The
model was trained for 50 epochs with labeled and unlabeled
batch size n` for AG-News and Yahoo Answers, and la-
beled and unlabeled batch sizes n` and 2000 for Hepmass
and Miniboone.

Label Spreading: We use the local and global consistency
method from Zhou et al. (2004), Y ∗ = (I − αS)−1Y
where in our case Y is the matrix of labels for the la-
beled, unlabeled, and test data but filled with zeros for un-
labeled and test. S = D−1/2WD−1/2 computed from
the affinity matrix Wij = exp (−γ sin2(xi, xj)) where
sin2(xi, xj) := 1 − 〈xi,xj〉

‖xi‖‖xj‖ . This is equivalent to L2
distance on the inputs normalized to unit magnitude. Be-
cause the algorithm scales poorly with number of unlabeled
points for dense affinity matrices, O(n3u), we subsampled
the number of unlabeled data points to 10k and test data
points to 5k for this graph method. However, we also evalu-
ate the label spreading algorithm with a sparse kNN affinity
matrix on using a larger subset 20k of unlabeled data. The
two hyperparameters for label spreading (γ/k and α) were
tuned by separate grid search for each of the datasets. In
both cases, we use the inductive variant of the algorithm
where the test data is not included in the unlabeled data.

FlowGMM: We train our FlowGMM model with a Real-
NVP normalizing flow, similar to the architectures used in
Papamakarios et al. (2017). Specifically, the model uses 7
coupling layers, with 1 hidden layer each and 256 hidden
units for the UCI datasets but 1024 for text classification.
UCI models were trained for 50 epochs of unlabeled data
and the text datasets were trained for 200 epochs of unla-
beled data. The labeled and unlabeled batch sizes are the
same as in the Π-Model.

The tuned learning rates for each of the models that we used
for these experiments are shown in Table 6.



Semi-Supervised Learning with Normalizing Flows
Tw

o
C

ir
cl

es
8

G
au

ss
ia

ns
Pi

nw
he

el

f

f

f

f−1

f−1

f−1

X , Data Z , Latent Z , Latent X , Data

(a) (b) (c) (d)

Figure 4. Illustration of FlowGMM on synthetic datasets: two circles (top row), eight Gaussians (middle row) and pinwheel (bottom row).
(a): Data distribution and classification decision boundaries. Unlabeled data are shown with blue circles and labeled data are shown with
colored triangles, where color represents the class. Background color visualizes the classification decision boundaries of FlowGMM.
(b): Mapping of the data to the latent space. (c): Gaussian mixture in the latent space. (d): Samples from the learned generative model
corresponding to different classes, as shown by their color.



Semi-Supervised Learning with Normalizing Flows

Table 7. Comparison of FlowGMM and SCNF Glow+Glow of Atanov et al. (2019) on synthetic data. For both datasets we use 1000 data
points with 5 labeled examples per class. We report mean and standard deviation over 5 runs with different labeled data. FlowGMM
achieves similar accuracy and better NLL compared to SCNF.

FlowGMM SCNF Glow+Glow

Data NLL Acc (%) NLL Acc (%)

Moons 0.82± 0.68 99.4± 1.1 1.11± 0.02 99.7± 0.2
Circles 0.83± 0.04 97.52± 0.5 1.68± 0.13 95± 1.9

Figure 5. Left: Log likelihoods on in- and out-of-domain data for our model trained on MNIST. Center: Log likelihoods on in- and
out-of-domain data for our model trained on FashionMNIST. Right: MNIST digits get mapped onto the sandal mode of the FashionMNIST
model 75% of the time, often being assigned higher likelihood than elements of the original sandal class. Representative elements are
shown above.

E. Transfer learning
We extracted CIFAR-10 features from EfficientNet (Tan &
Le, 2019) pre-trained on ImageNet dataset, which yields
1792 dimensional representations for each image. We test
the performance of FlowGMM and baseline models in semi-
supervised classification using 250, 1000 and 4000 labeled
examples. The results are presented in Table 2. We report
mean and standard deviation of 3 runs with different splits
on labeled and unlabeled data.

The kNN and logistic regression baselines were trained us-
ing labeled data only. For each number of labeled examples
for all models, hyperparameters were chosen on a validation
data split. In most experiments, we use a setup similar to
the experiments on tabular data (see section D).

k-Nearest Neighbours: We tested kNN with L2 distance
using unnormalized and normalized features with the value
k ranging from 1 to 20.

Π-Model: For the Π-Model, we used a fully-connected neu-
ral network with the inner dimension k = 512 and dropout
with p = 0.5. The consistency loss was computed for both
labeled and unlabeled data. We perform grid search for the
number of hidden layers, learning rate and consistency term
weight. We train the model for 30 epochs with the batch
size 50 (with 25 labeled and 25 unlabeled examples in each
batch).

FlowGMM: We train our FlowGMM model with RealNVP

normalizing flow with fully-connected neural networks with
1 hidden layer in coupling layers. We perform the grid
search for the number of coupling layers, the number of
hidden units in fully-connected networks, and learning rate.
The model was trained for 800 epochs of unlabelled data
with batch size 50 (25 labeled and 25 unlabeled examples
in each batch).

F. Image data preparation and
hyperparameters

We use the RealNVP multi-scale architecture with 2 scales,
each containing 3 coupling layers defined by 8 residual
blocks with 64 feature maps. We use Adam optimizer
(Kingma & Ba, 2014) with learning rate 10−3 for CIFAR-10
and SVHN and 10−4 for MNIST. We train the supervised
model for 100 epochs, and semi-supervised models for 1000
passes through the labeled data for CIFAR-10 and SVHN
and 3000 passes for MNIST. We use a batch size of 64
and sample 32 labeled and 32 unlabeled data points in each
mini-batch. For the consistency loss term (7), we linearly
increase the weight from 0 to 1 for the first 100 epochs
following Athiwaratkun et al. (2019). For FlowGMM and
FlowGMM-cons, we re-weight the loss on labeled data by
λ = 3 (value tuned on validation in Kingma et al. (2014)
on CIFAR-10), as otherwise, we observed that the method
underfits the labeled data.



Semi-Supervised Learning with Normalizing Flows

G. Out-of-domain data detection
Density models have held promise for being able to de-
tect out-of-domain data, an especially important task for
robust machine learning systems (Nalisnick et al., 2019).
Recently, it has been shown that existing flow and autore-
gressive density models are not as apt at this task as previ-
ously thought, yielding high likelihood on images coming
from other (simpler) distributions. The conclusion put for-
ward is that datasets like SVHN are encompassed by, or
have roughly the same mean but lower variance than more
complex datasets like CIFAR-10 (Nalisnick et al., 2018).
We examine this hypothesis in the context of our flow model
which has a multi-modal latent space distribution unlike
methods considered in Nalisnick et al. (2018).

Using a fully supervised model trained on MNIST, we eval-
uate the log likelihood for data points coming from the
NotMNIST dataset, consisting of letters instead of digits,
and the FashionMNIST dataset. We then train a supervised
model on the more complex dataset FashionMNIST and
evaluate on MNIST and NotMNIST. The distribution of the
log likelihood log pX (·) = log pZ(f(·)) + log

∣∣∣det
(
∂f
∂x

)∣∣∣
on these datasets is shown in Figure 5. For the model trained
on MNIST we see that the data from Fashion MNIST and
NotMNIST is assigned lower likelihood, as expected. How-
ever, the model trained on FashionMNIST predicts higher
likelihoods for MNIST images. The majority (≈ 75%) of
the MNIST data points get mapped into the mode of the
FashionMNIST model corresponding to sandals, which is
the class with the largest fraction of pixels that are zero.
Similarly, for the model trained on MNIST the image of all
zeros has very high likelihood and gets mapped to the mode
corresponding to the digit 1 which has the largest fraction
of empty space.

H. Expected Distances between Gaussian
Samples

Consider two Gaussians with means sampled indepen-
dently from the standard normal µ1, µ2 ∼ N (0, I) in D-
dimensional space. If s1 ∼ N (µ1, I) is a sample from the
first Gaussian, then its expected squared distances to both
mixture means are:

E
[
‖s1 − µ1‖2

]
= E

[
E
[
‖s1 − µ1‖2|µ1

]]
= E

[
D∑
i=1

E
[
(s1,i − µ1,i)

2|µ1,i

]]

= E

[
D∑
i=1

(
E[s21,i]− 2µ2

1,i + µ2
1,i

)]

= E

[
D∑
i=1

(
1 + µ2

1,i − µ2
1,i

)]
= D

E
[
‖s1 − µ2‖2

]
= E

[
E
[
‖s1 − µ2‖2|µ1, µ2

]]
= E

[
D∑
i=1

E
[
(s1,i − µ2,i)

2|µ1,i, µ2,i

]]

= E

[
D∑
i=1

(
1 + µ2

1,i − 2µ1,iµ2,i + µ2
2,i

)]
= 3D

For high-dimensional Gaussians the random variables ‖s1−
µ1‖2 and ‖s1 − µ2‖2 will be concentrated around their
expectations. Since the function exp(−x) decreases rapidly
to zero for positive x, the probability of s1 belonging to the
first Gaussian

exp(−‖s1 − µ1‖2)

exp(−‖s1 − µ1‖2) + exp(−‖s1 − µ2‖2)
≈

≈ exp(−D)

exp(−D) + exp(−3D)
=

1

1 + exp(−2D)

saturates at 1 with the growth of dimensionality D.

I. FlowGMM as generative model

(a) (b)

Figure 6. Visualizations of the latent space representations learned
by supervised FlowGMM on MNIST. (a): Images corresponding
to means of the Gaussians corresponding to different classes. (b):
Class-conditional samples from the model at a reduced temperature
T = 0.25.

In Figure 6a we show the images f−1(µi) corresponding
to the means of the Gaussians representing each class. We
see that the flow correctly learns to map the means to sam-
ples from the corresponding classes. Next, in Figure 6b we
show class-conditional samples from the model. To produce
a sample from class i, we first generate z ∼ N (µi, T I),
where T is a temperature parameter that controls trade-off
between sample quality and diversity; we then compute the
samples as f−1(z). We set T = 0.252 to produce sam-
ples in Figure 6b. As we can see, FlowGMM can produce
reasonable class-conditional samples simultaneously with
achieving a high classification accuracy (99.63%) on the
MNIST dataset.



Semi-Supervised Learning with Normalizing Flows

J. Non-Gaussian Latent Distributions
In Section 6.1 we showed that FlowGMM is over-confident:
it assigns class probabilities very close to 0 or 1 for all pre-
dictions. We showed that the model is over-confident due to
the properties of Gaussian distributions in high dimensions
(see Appendix H). In this section, we replace the Gaussian
base distributions in FlowGMM with a more heavy-tailed
Student-t distributions.

We train the model on MNIST with 1000 labeled data points
and reuse the hyper-parameters reported in Appendix F. We
use a mixture of Student-t distributions with iid components
and set the number of degrees of freedom in each component
to 5 and the scale to 1. The means are sampled randomly in
the same way as in the Gaussian case.

Of the 10000 test images, FlowGMM with Student-t based
distributions only assigned confidence less than 0.99 to 24
data points. While the confidences are less extreme com-
pared to FlowGMM with a Gaussian mixture, the model is
still severely over-confident. So, unlike temperature scaling,
replacing the Gaussian mixture with a mixture of heavier-
tailed Student-t distributions does not resolve the issue of
over-confidence.

K. FlowGMM under Class Imbalance
In practice, often the classes in the data are not balanced:
some classes contain more examples than others. In semi-
supervised setting, we may have the same number of labeled
examples per class, but the unlabeled data can be unevenly
distributed between classes. In this section we evaluate
FlowGMM in this setting.

We use the MNIST dataset and drop a subset of data from
some of the classes. For the classes 0− 2 we keep all data,
for classes 3− 5 we keep 75% of the data, for classes 6− 8
we keep 50% of the data, and in class 9 we only keep 25% of
the data. For all classes we use 100 labeled data points per
class. We add the class probabilities pk to the FlowGMM
model:

pZ(z) =

C∑
k=1

pk · N (z|µk,Σk). (8)

We then train FlowGMM as usual, but also op-
timizing for the class probabilities pk. The
model learned the following class probabilities:
[0.12, 0.13, 0.12, 0.1, 0.1, 0.1, 0.9, 0.9, 0.8, 0.7]. These
probabilities do not exactly reflect the proportions of the
data: FlowGMM overestimates the probability of the
class 9 that is least represented in the data. However, the
probabilities learned by FlowGMM are correlated with
the data proportions: the classes that have more unlabeled
datapoints get assigned higher probability.


