Supplementary Material for Implicit Regularization of Random Feature Models

We organize the Supplementary Material (Supp. Mat.) as follows:

- In Section A, we present the details for the numerical results presented in the main text (and in the Supp. Mat.).
- In Section B, we present additional experiments and some discussions.
- In Section C, we present the proofs of the mathematical results presented in the main text.

A. Experimental Details

The experimental setting consists of N training and N_{tst} test datapoints $\{(x_i, y_i)\}_{i=1}^{N+N_{tst}} \in \mathbb{R}^d \times \mathbb{R}$. We sample P Gaussian features $f^{(1)}, \ldots, f^{(P)}$ of $N + N_{tst}$ dimension with zero mean and covariance matrix entries thereof $C_{i,j} = K(x_i, x_j)$ where $K(x, x') = \exp(-||x - x'||^2/\ell)$ is a Radial Basis Function (RBF) Kernel with lengthscale ℓ . The extended data matrix $\overline{F} = \frac{1}{\sqrt{P}}[f^{(1)}, \ldots, f^{(P)}]$ of size $(N + N_{tst}) \times P$ is decomposed into two matrices: the (training) data matrix $F = \overline{F}_{[:N,:]}$ of size $N \times P$, and a test data matrix $F_{tst} = \overline{F}_{[N:,:]}$ of size $N_{tst} \times P$ so that $\overline{F} = [F; F_{tst}]$. For a given ridge λ , we compute the optimal solution using the data matrix F, i.e. $\hat{\theta} = F^T (FF^T + \lambda I_N)^{-1} y$ and obtain the predictions on the test datapoints $\hat{y}_{tst} = F_{tst}F^T (FF^T + \lambda I_N)^{-1} y$.

Using the procedure above, we performed the following experiments:

A.1. Experiments with Sinusoidal data

We consider a dataset of N = 4 training datapoints $(x_i, \sin(x_i)) \in [0, 2\pi) \times [-1, 1]$ and $N_{tst} = 100$ equally spaced test data points in the interval $[0, 2\pi)$. In this experiment, the lengthscale of the RBF Kernel is $\ell = 2$. We compute the average and standard deviation the λ -RF predictor using 500 samplings of \overline{F} (see Figure 1 in the main text and Figure 1 in the Supp. Mat.).

A.2. MNIST experiments

We sample N = 100 and $N_{tst} = 100$ images of digits 7 and 9 from the MNIST dataset (image size $d = 24 \times 24$, edge pixels cropped, all pixels rescaled down to [0, 1] and recentered around the mean value) and label each of them with +1 and -1 labels, respectively. In this experiment, the lengthscale of the RBF Kernel is $\ell = d\ell_0$ where $\ell_0 = 0.2$. We approximate the expected λ -RF predictor on the test datapoints using the average of \hat{y}_{tst} over 50 instances of \bar{F} and compute the MSE (see Figures 2, 3 in the main text; in the ridgeless case $-\lambda = 10^{-4}$ in our experiments– when P is close to N, the average is over 500 instances). In Figure 4 of the main text, using $N_{tst} = 100$ test points, we compare two predictors trained over N = 100 and N = 1000 training datapoints.

A.3. Random Fourier Features

We sample random Fourier Features corresponding to the RBF Kernel with lengthscale $\ell = d\ell_0$ where $\ell_0 = 0.2$ (same as above) and consider the same dataset as in the MNIST experiment. The extended data matrix \bar{F} for Fourier features is obtained as follows: we sample *d*-dimensional i.i.d. centered Gaussians $w^{(1)}, \ldots, w^{(P)}$ with standard deviation $\sqrt{2/\ell}$, sample $b^{(1)}, \ldots, b^{(P)}$ uniformly in $[0, 2\pi)$, and define $\bar{F}_{i,j} = \sqrt{\frac{2}{P}} \cos(x_i^T w^{(j)} + b^{(j)})$. We approximate the expected Fourier Features predictor on the test datapoints using the average of \hat{y}_{tst} over 50 instances of \bar{F} (see Figure 5).

B. Additional Experiments

We present the following complementary simulations:

- In Section B.1, we present the distribution of the λ -RF predictor for the selected P and λ .
- In Section B.2, we present the evolution of $\tilde{\lambda}$ and its derivative $\partial_{\lambda} \tilde{\lambda}$ for different eigenvalue spectra.
- In Section B.3, we show the evolution of the eigenvalue spectrum of $\mathbb{E}[A_{\lambda}]$.
- In Section B.4, we present numerical experiments on MNIST using random Fourier features.

B.1. Distribution of the RF predictor

Figure 1. Distribution of the RF predictor. Red dots represent a sinusoidal dataset $y_i = \sin(x_i)$ for N = 4 points x_i in $[0, 2\pi)$. For $P \in \{2, 4, 10, 100\}$ and $\lambda \in \{0, 10^{-4}, 10^{-1}, 1\}$, we sample ten RF predictors (blue dashed lines) and compute empirically the average RF predictor (black lines) with ± 2 standard deviations intervals (shaded regions).

B.2. Evolution of the Effective Ridge $\tilde{\lambda}$

In Figure 2, we show how the effective ridge $\tilde{\lambda}$ and its derivative $\partial_{\lambda} \tilde{\lambda}$ evolve for the selected eigenvalue spectra with various decays (exponential or polynomial) as a function of γ and λ . In Figure 3, we compare the evolution of $\tilde{\lambda}$ for various N.

Figure 2. Evolution of the effective ridge $\tilde{\lambda}$ and its derivative $\partial_{\lambda} \tilde{\lambda}$ for various levels of ridge λ (or γ) and for N = 20. We consider two different decays for d_1, \ldots, d_N : (i) exponential decay in *i* (i.e. $d_i = e^{-\frac{(i-1)}{2}}$, top plots) and (ii) polynomial decay in *i* (i.e. $d_i = \frac{1}{i}$, bottom plots).

Figure 3. Evolution of effective ridge $\tilde{\lambda}$ as a function of γ for two ridges (a) $\lambda = 10^{-4}$ and (b) $\lambda = 0.5$ and for various N. We consider an exponential decay for d_1, \ldots, d_N , i.e. $d_i = e^{-\frac{(i-1)}{2}}$.

B.3. Eigenvalues of A_{λ}

The (random) prediction \hat{y} on the training data is given by $\hat{y} = A_{\lambda}y$ where $A_{\lambda} = F(F^T F + \lambda I)^{-1}F^T$. The average λ -RF predictor is $\mathbb{E}[\hat{f}_{\lambda}^{(RF)}(x)] = K(x, X)K(X, X)^{-1}\mathbb{E}[A_{\lambda}]y$. We denote by $\tilde{d}_1, \ldots, \tilde{d}_N$ the eigenvalues of $\mathbb{E}[A_{\lambda}]$. By Proposition C.7, the \tilde{d}_i 's converge to the eigenvalues $\frac{d_1}{d_1+\tilde{\lambda}}, \ldots, \frac{d_N}{d_N+\tilde{\lambda}}$ of $K(K+\tilde{\lambda}I_N)^{-1}$ as P goes to infinity. We illustrate the evolution of \tilde{d}_i and their convergence to $\frac{d_i}{d_i+\tilde{\lambda}}$ for two different eigenvalue spectrums d_1, \ldots, d_N .

Figure 4. Eigenvalues $\tilde{d}_1, \ldots, \tilde{d}_N$ (red dots) vs. eigenvalues $\frac{d_1}{d_1 + \tilde{\lambda}}, \ldots, \frac{d_N}{d_N + \tilde{\lambda}}$ (blue dots) for N = 10. We consider various values of P and two different decays for d_1, \ldots, d_N : (i) exponential decay in i, i.e. $d_i = e^{-\frac{(i-1)}{2}}$ (right plots) and (ii) polynomial decay in i, i.e. $d_i = \frac{1}{i}$ (left plots).

B.4. Average Fourier Features Predictor

The Fourier Features predictor λ -FF is $\hat{f}^{(FF)}(x) = \frac{1}{\sqrt{P}} \sum_{j=1}^{P} \hat{\theta}_j \phi^{(j)}(x)$ where $\phi^{(j)}(x) = \cos(x^T w^{(j)} + b^{(j)})$ and $\hat{\theta} = F^T \left(FF^T + \lambda I_N\right)^{-1} y$ with the data matrix F as described in Section A.3.

We investigate how close the average λ -FF predictor is to the $\tilde{\lambda}$ -KRR predictor and we observe the following:

- 1. The difference of the test errors of the two predictors decreases as γ increases.
- 2. In the overparameterized regime, i.e. $P \ge N$, the test error of the $\tilde{\lambda}$ -KRR predictor matches with the test error of the λ -FF predictor.
- 3. For N = 1000, strong agreement between the two test errors is observed already for $\gamma > 0.1$. We also observe that Gaussian features achieve lower (or equal) test error than the Fourier features for all γ in our experiments.

Figure 5. Comparison of the test errors of the average λ -FF predictor and the $\tilde{\lambda}$ -KRR predictor. In (**a**) and (**c**), the test errors of the average λ -FF predictor and of the $\tilde{\lambda}$ -KRR predictor are reported for various ridge for N = 100 and N = 1000 MNIST data points (top and bottom rows). In (**b**) and (**d**), the average test error of the λ -FF predictor and the test error of its average are reported.

C. Proofs

C.1. Gaussian Random Features

Proposition C.1. Let $\hat{f}_{\lambda}^{(RF)}$ be the λ -RF predictor and let $\hat{y} = F\hat{\theta}$ be the prediction vector on training data, i.e. $\hat{y}_i = \hat{f}_{\lambda}^{(RF)}(x_i)$. The process $\hat{f}_{\lambda}^{(RF)}$ is a mixture of Gaussians: conditioned on F, we have that $\hat{f}_{\lambda}^{(RF)}$ is a Gaussian process. The mean and covariance of $\hat{f}_{\lambda}^{(RF)}$ conditioned on F are given by

$$\mathbb{E}[\hat{f}_{\lambda}^{(RF)}(x)|F] = K(x,X)K(X,X)^{-1}\hat{y},\tag{1}$$

$$\operatorname{Cov}[\hat{f}_{\lambda}^{(RF)}(x), \hat{f}_{\lambda}^{(RF)}(x')|F] = \frac{\|\hat{\theta}\|^2}{P} \tilde{K}(x, x')$$
(2)

where $\tilde{K}(x, x') = K(x, x') - K(x, X)K(X, X)^{-1}K(X, x')$ denotes the posterior covariance kernel.

Proof. Let $F = (\frac{1}{\sqrt{P}}f^{(j)}(x_i))_{i,j}$ be the $N \times P$ matrix of values of the random features on the training set. By definition, $\hat{f}_{\lambda}^{(RF)} = \frac{1}{\sqrt{P}} \sum_{p=1}^{P} \hat{\theta}_p f^{(p)}$. Conditioned on the matrix F, the optimal parameters $(\hat{\theta}_p)_p$ are not random and $(f^{(p)})_p$ is still Gaussian, hence, conditioned on the matrix F, the process $\hat{f}_{\lambda}^{(RF)}$ is a mixture of Gaussians. Moreover, conditioned on the matrix F, for any $p, p', f^{(p)}$ and $f^{(p')}$ remain independent, hence

$$\mathbb{E}\left[\hat{f}_{\lambda}^{(RF)}(x) \mid F\right] = \frac{1}{\sqrt{P}} \sum_{p=1}^{P} \hat{\theta}_{p} \mathbb{E}\left[f^{(p)}(x) \mid f_{N}^{(p)}\right]$$
$$Cov\left[\hat{f}_{\lambda}^{(RF)}(x), \hat{f}_{\lambda}^{(RF)}(x') \mid F\right] = \frac{1}{P} \sum_{p=1}^{P} \hat{\theta}_{p}^{2} Cov\left[f^{(p)}(x), f^{(p)}(x') \mid f_{N}^{(p)}\right].$$

where we have set $f_N^{(p)} = (f^{(p)}(x_i))_i \in \mathbb{R}^N$. The value of $\mathbb{E}\left[f^{(p)}(x) \mid f_N^{(p)}\right]$ and $\operatorname{Cov}\left[f^{(p)}(x), f^{(p)}(x') \mid f_N^{(p)}\right]$ are obtained from classical results on Gaussian conditional distributions (Eaton, 2007):

$$\mathbb{E}\left[f^{(p)}(x) \mid f_{N}^{(p)}\right] = K(x, X)K(X, X)^{-1}f_{N}^{(p)}$$
$$Cov\left[f^{(p)}(x), f^{(p)}(x') \mid f_{N}^{(p)}\right] = \tilde{K}(x, x'),$$

where $\tilde{K}(x, x') = K(x, x') - K(x, X)K(X, X)^{-1}K(X, x')$. Thus, conditioned on F, the predictor $\hat{f}_{\lambda}^{(RF)}$ has expectation:

$$\mathbb{E}\left[\hat{f}_{\lambda}^{(RF)}(x) \mid F\right] = K(x, X)K(X, X)^{-1}\frac{1}{\sqrt{P}}\sum_{p=1}^{P}\hat{\theta}_{p}f_{N}^{(p)} = K(x, X)K(X, X)^{-1}\hat{y}$$

and covariance:

$$\operatorname{Cov}\left[\hat{f}_{\lambda}^{(RF)}(x), \hat{f}_{\lambda}^{(RF)}(x') \mid F\right] = \frac{1}{P} \sum_{p=1}^{P} \hat{\theta}_{p}^{2} \tilde{K}(x, x') = \frac{\|\hat{\theta}\|^{2}}{P} \tilde{K}(x, x').$$

C.2. Generalized Wishart Matrix

Setup. In this section, we consider a fixed deterministic matrix K of size $N \times N$ which is diagonal positive semi-definite, with eigenvalues d_1, \ldots, d_N . We also consider a $P \times N$ random matrix W with i.i.d. standard Gaussian entries.

The key object of study is the $P \times P$ generalized Wishart random matrix $F^T F = \frac{1}{P} W K W^T$ and in particular its Stieltjes transform defined on $z \in \mathbb{C} \setminus \mathbb{R}^+$, where $\mathbb{R}^+ = [0, +\infty[$:

$$m_P(z) = \frac{1}{P} \operatorname{Tr}\left[\left(F^T F - z \mathbf{I}_P \right)^{-1} \right] = \frac{1}{P} \operatorname{Tr}\left[\left(\frac{1}{P} W K W^T - z \mathbf{I}_P \right)^{-1} \right],$$

where K is a fixed positive semi-definite matrix.

Since $F^T F$ has positive real eigenvalues $\lambda_1, \ldots, \lambda_P \in \mathbb{R}_+$, and

$$m_P(z) = \frac{1}{P} \sum_{p=1}^{P} \frac{1}{\lambda_p - z},$$

we have that for any $z \in \mathbb{C} \setminus \mathbb{R}^+$,

$$|m_P(z)| \le \frac{1}{d(z, \mathbb{R}_+)},$$

where $d(z, \mathbb{R}_+) = \inf \{|z - y|, y \in \mathbb{R}^+\}$ is the distance of z to the positive real line. More precisely, $m_P(z)$ lies in the convex hull $\Omega_z = \operatorname{Conv}\left(\left\{\frac{1}{d-z} : d \in \mathbb{R}_+\right\}\right)$. As a consequence, the argument $\arg(m_P(z)) \in (-\pi, \pi)$ lies between 0 and $\arg\left(-\frac{1}{z}\right)$, i.e. $m_P(z)$ lies in the cone spanned by 1 and $-\frac{1}{z}$.

Our first lemma implies that the Stieljes transform concentrates around its mean as N and P go to infinity with $\gamma = \frac{P}{N}$ fixed. Lemma C.2. For any integer $m \in \mathbb{N}$ and any $z \in \mathbb{C} \setminus \mathbb{R}^+$, we have

$$\mathbb{E}\left[\left|m_P(z) - \mathbb{E}\left[m_P(z)\right]\right|^m\right] \le \mathbf{c}P^{-\frac{m}{2}},$$

where c depends on z, γ , and m only.

Proof. The proof follows Step 1 of (Bai & Wang, 2008). Let $w_1, ..., w_N$ be the columns of W from left to right. Let us introduce the $P \times P$ matrices $B(z) = \frac{1}{P}WKW^T - zI_P$ and $B_{(i)}(z) = \frac{1}{P}W_{(i)}K_{(i)}W_{(i)}^T - zI_P$ where $W_{(i)}$ is the $P \times (N-1)$ submatrix of W obtained by removing its *i*-th column w_i , and $K_{(i)}$ is the $(N-1) \times (N-1)$ submatrix of K obtained by removing both its *i*-th column and *i*-th row. Since the eigenvalues of WKW^T and $W_{(i)}K_{(i)}W_{(i)}^T$ are all real and positive, B(z) and $B_{(i)}(z)$ are invertible matrices for $z \notin \mathbb{R}^+$.

Noticing that

$$B(z) = \frac{1}{P}WKW^{T} - zI_{P} = \frac{1}{P}W_{(i)}K_{(i)}W_{(i)}^{T} - zI_{P} + \frac{d_{i}}{P}w_{i}w_{i}^{T}$$

is a rank one perturbation of the matrix $B_{(i)}(z)$, by the Sherman–Morrison's formula, the inverse of B(z) is given by:

$$B(z)^{-1} = \left(B_{(i)}(z)\right)^{-1} - \frac{d_i}{P} \frac{1}{1 + \frac{d_i}{P} w_i^T \left(B_{(i)}(z)\right)^{-1} w_i} \left(B_{(i)}(z)\right)^{-1} w_i w_i^T \left(B_{(i)}(z)\right)^{-1}.$$

We denote \mathbb{E}_i the conditional expectation given $w_{i+1}, ..., w_N$. We have $\mathbb{E}_0[m_P(z)] = m_P(z)$ and $\mathbb{E}_N[m_P(z)] = \mathbb{E}[m_P(z)]$. As a consequence, we get:

$$m_P(z) - \mathbb{E}[m_P(z)] = \sum_{i=1}^N \left(\mathbb{E}_{i-1}[m_P(z)] - \mathbb{E}_i[m_P(z)] \right)$$

= $\frac{1}{P} \sum_{i=1}^N \left(\mathbb{E}_{i-1} - \mathbb{E}_i \right) \left[\operatorname{Tr} \left(B(z)^{-1} \right) \right]$
= $\frac{1}{P} \sum_{i=1}^N \left(\mathbb{E}_{i-1} - \mathbb{E}_i \right) \left[\operatorname{Tr} \left(B(z)^{-1} \right) - \operatorname{Tr} \left(B_{(i)}(z)^{-1} \right) \right]$

The last equality comes from the fact that $Tr(B_{(i)}(z)^{-1})$ does not depend on w_i , hence

$$\mathbb{E}_{i-1}\left[\operatorname{Tr}\left(B_{(i)}(z)^{-1}\right)\right] = \mathbb{E}_i\left[\operatorname{Tr}\left(B_{(i)}(z)^{-1}\right)\right].$$

Let $g_i : \mathbb{C} \setminus \mathbb{R}^+ \to \mathbb{C}$ be the holomorphic function given by $g_i(z) := \frac{1}{P} w_i^T \left(B_{(i)}(z) \right)^{-1} w_i$. Its derivative is given by $g'_i(z) = \frac{1}{P} w_i^T \left(B_{(i)}(z) \right)^{-2} w_i$. Hence

$$\operatorname{Tr}(B(z)^{-1}) - \operatorname{Tr}(B_{(i)}(z)^{-1}) = -\frac{\frac{d_i}{P}\operatorname{Tr}\left(\left(B_{(i)}(z)\right)^{-1}w_iw_i^T\left(B_{(i)}(z)\right)^{-1}\right)}{1 + d_ig_i(z)}$$
$$= -\frac{d_ig'_i(z)}{1 + d_ig_i(z)},$$

where we used the cyclic property of the trace. We can now bound this difference:

$$\begin{aligned} \left| \operatorname{Tr} \left(B(z)^{-1} \right) - \operatorname{Tr} \left(B_{(i)}(z)^{-1} \right) \right| &= \left| \frac{d_i g_i'(z)}{1 + d_i g_i(z)} \right| \\ &\leq \left| \frac{w_i^T \left(B_{(i)}(z) \right)^{-2} w_i}{w_i^T \left(B_{(i)}(z) \right)^{-1} w_i} \right| \\ &\leq \max_w \left| \frac{w^T \left(B_{(i)}(z) \right)^{-2} w}{w^T \left(B_{(i)}(z) \right)^{-1} w} \right| \\ &\leq \| \left(B_{(i)}(z) \right)^{-1} \|_{op} = \max_j |\frac{1}{\nu_j - z}| \leq \frac{1}{d(z, \mathbb{R}^+)}, \end{aligned}$$

where ν_j are the eigenvalues of $\frac{1}{P}W_{(i)}K_{(i)}W_{(i)}^T$.

The sequence

$$\left(\left(\mathbb{E}_{N-i} - \mathbb{E}_{N-i+1}\right) \left[\operatorname{Tr}\left(B(z)^{-1}\right) - \operatorname{Tr}\left(B_{(N-i+1)}(z)^{-1}\right)\right]\right)_{i=1,\dots,N}$$

is a martingale difference sequence. Hence, by Burkholder's inequality, there exists a positive constant K_m such that

$$\mathbb{E}\left[\left|m_{P}(z) - \mathbb{E}\left[m_{P}(z)\right]\right|^{m}\right] \leq K_{m} \frac{1}{P^{m}} \mathbb{E}\left[\left(\sum_{i=1}^{N}\left|\left[\mathbb{E}_{i-1} - \mathbb{E}_{i}\right]\left(\operatorname{Tr}\left(B(z)^{-1}\right) - \operatorname{Tr}\left(B_{(i)}(z)^{-1}\right)\right)\right|^{2}\right)^{\frac{m}{2}}\right]$$
$$\leq K_{m} \frac{1}{P^{m}} \left(N\left(\frac{2}{d(z,\mathbb{R}_{+})}\right)^{2}\right)^{\frac{m}{2}}$$
$$\leq K_{m} \gamma^{-\frac{m}{2}} \left(\frac{2}{d(z,\mathbb{R}_{+})}\right)^{m} P^{-\frac{m}{2}},$$

hence the desired result with $\mathbf{c} = K_m \gamma^{-\frac{m}{2}} \left(\frac{2}{d(z,\mathbb{R}_+)}\right)^m$.

The following lemma, which is reminiscent of Lemma 4.5 in (Au et al., 2018), is a consequence of Wick's formula for Gaussian random variables and is key to prove Lemma C.4.

Lemma C.3. If $A^{(1)}, \ldots, A^{(k)}$ are k square random matrices of size P independent from a standard Gaussian vector w of size P,

$$\mathbb{E}\left[w^{T}A^{(1)}ww^{T}A^{(2)}w\dots w^{T}A^{(k)}w\right] = \sum_{\substack{p \in \mathbf{P}_{2}(2k) \ i_{1},\dots,i_{2k} \in \{1,\dots,P\}\\p \leq \operatorname{Ker}(i_{1},\dots,i_{2k})}} \mathbb{E}\left[A^{(1)}_{i_{1}i_{2}}\dots A^{(k)}_{i_{2k-1}i_{2k}}\right],$$
(3)

where $P_2(2k)$ is the set of pair partitions of $\{1, \ldots, 2k\}$, \leq is the coarser (i.e. $p \leq q$ if q is coarser than p), and for any i_1, \ldots, i_{2k} in $\{1, \ldots, P\}$, $\text{Ker}(i_1, \ldots, i_{2k})$ is the partition of $\{1, \ldots, 2k\}$ such that two elements u and v in $\{1, \ldots, 2k\}$ are in the same block (i.e. pair) of $\text{Ker}(i_1, \ldots, i_{2k})$ if and only if $i_u = i_v$.

Furthermore,

$$\mathbb{E}\left[\left(w^{T}A^{(1)}w - \operatorname{Tr}\left(A^{(1)}\right)\right)\left(w^{T}A^{(2)}w - \operatorname{Tr}\left(A^{(2)}\right)\right) \dots \left(w^{T}A^{(k)}w - \operatorname{Tr}\left(A^{(k)}\right)\right)\right] \\ = \sum_{p \in : \boldsymbol{P}_{2}(2k): i_{1}, \dots, i_{2k} \in \{1, \dots, P\}} \sum_{p \leq \operatorname{Ker}(i_{1}, \dots, i_{2k})} \mathbb{E}\left[A^{(1)}_{i_{1}i_{2}} \dots A^{(k)}_{i_{2k-1}i_{2k}}\right],$$
(4)

where : $P_2(2k)$: is the subset of partitions p in $P_2(2k)$ for which $\{2j - 1, 2j\}$ is not a block of p for any $j \in \{1, \ldots, k\}$.

Proof. Expanding the left-hand side of Equation (3), we obtain:

Г

$$\mathbb{E}\left[\sum_{i_1,\dots,i_{2k}\in\{1,\dots,P\}} w_{i_1} A_{i_1 i_2}^{(1)} w_{i_2} w_{i_3} A_{i_3 i_4}^{(2)} w_{i_4} \dots w_{i_{2k-1}} A_{i_{2k-1} i_{2k}}^{(k)} w_{i_{2k}}\right]$$

Using Wick's formula, we get:

$$\sum_{\substack{i_1,\ldots,i_{2k}\in\{1,\ldots,P\}\\p\leq \operatorname{Ker}(i_1,\ldots,i_{2k})}} \mathbb{E}\left[A_{i_1i_2}^{(1)}A_{i_3i_4}^{(2)}\ldots A_{i_{2k-1}i_{2k}}^{(k)}\right],$$

hence, interchanging the order of summation, we recover the left-hand side of Equation (3):

$$\sum_{\substack{p \in \mathbf{P}_2(2k) \ i_1, \dots, i_{2k} \in \{1, \dots, P\} \\ p \leq \operatorname{Ker}(i_1, \dots, i_{2k})}} \mathbb{E}\left[A_{i_1 i_2}^{(1)} \dots A_{i_{2k-1} i_{2k}}^{(k)}\right]$$

We now prove Equation (4). Expanding the product, the left-hand side is equal to:

$$\sum_{I \subset \{1,\dots,k\}} (-1)^{k-\#I} \mathbb{E} \left[\prod_{i \in I} w^T A^{(i)} w \prod_{i \notin I} \operatorname{Tr}(A^{(i)}) \right].$$

Expanding the product and the trace, and using Wick's equation, we obtain: a

$$\sum_{I \subset \{1,\dots,k\}} (-1)^{k-\#I} \sum_{\substack{i_1,\dots,i_{2k} \in \{1,\dots,P\} \\ p \leq \operatorname{Ker}(i_1,\dots,i_{2k})}} \sum_{\substack{p \in \mathcal{P}_2(2k), p \leq p_I \\ p \leq \operatorname{Ker}(i_1,\dots,i_{2k})}} \mathbb{E} \left[A_{i_1 i_2}^{(1)} \dots A_{i_{2k-1} i_{2k}}^{(k)} \right].$$

where p_I is the partition composed of blocks of size 2 given by $\{2l, 2l+1\}$ with $l \notin I$ and the rest of the indices contained in a single block. Interchanging the order of summation, we get:

$$\sum_{i_1,\ldots,i_{2k}\in\{1,\ldots,P\}}\sum_{\substack{p\in \mathcal{P}_2(2k),\\p\leq \operatorname{Ker}(i_1,\ldots,i_{2k})}} \mathbb{E}\left[A_{i_1i_2}^{(1)}\ldots A_{i_{2k-1}i_{2k}}^{(k)}\right] \left[\sum_{\substack{I\subset\{1,\ldots,k\},\\p\leq p_I}} (-1)^{k-\#I}\right].$$

Since $\left[\sum_{I \subset \{1,...,k\}} \sum_{p \leq p_I} (-1)^{\#I}\right] = \delta_{\{I \subset [k], p \leq p_I\}} = \{\{1,...,k\}\}$ and $\{I \subset [k], p \leq p_I\} = \{\{1,...,k\}\}$ if and only if $p \in \mathcal{P}_2(2k)$, interchanging a last time the order of summation, we recover the left-hand side of Equation (4):

$$\sum_{p \in : \mathbf{P}_2(2k): i_1, \dots, i_{2k} \in \{1, \dots, P\} \atop p \leq \operatorname{Ker}(i_1, \dots, i_{2k})} \mathbb{E} \left[A_{i_1 i_2}^{(1)} \dots A_{i_{2k-1} i_{2k}}^{(k)} \right].$$

For any $z \in \mathbb{C} \setminus \mathbb{R}^+$, we define the holomorphic function $g_i : \mathbb{C} \setminus \mathbb{R}^+ \to \mathbb{C}$ by

$$g_i(z) = \frac{1}{P} w_i^T \left(\frac{1}{P} W_{(i)} K_{(i)} W_{(i)}^T - z I_P \right)^{-1} w_i,$$

where $W_{(i)}$ is the $P \times (N-1)$ submatrix of W obtained by removing its *i*-th column w_i , and $K_{(i)}$ is the $(N-1) \times (N-1)$ submatrix of K obtained by removing both its *i*-th column and *i*-th row. In the following lemma, we bound the distance of $g_i(z)$ to its mean. Then we prove that $\mathbb{E}[g_i(z)]$ is close to the expected Stieljes transform of K.

Lemma C.4. The random function $g_i(z)$ satisfies:

$$\begin{aligned} |\mathbb{E} \left[g_i(z) \right] - \mathbb{E} \left[m_P(z) \right] | &\leq \frac{\mathbf{c_0}}{P}, \\ \operatorname{Var} \left(g_i(z) \right) &\leq \frac{\mathbf{c_1}}{P}, \\ \mathbb{E} \left[\left(g_i(z) - \mathbb{E} \left[g_i(z) \right] \right)^4 \right] &\leq \frac{\mathbf{c_2}}{P^2}, \\ \mathbb{E} \left[\left(g_i(z) - \mathbb{E} \left[g_i(z) \right] \right)^8 \right] &\leq \frac{\mathbf{c_3}}{P^4}, \end{aligned}$$

where c_0 , c_1 , c_2 , and c_3 depend on γ and z only.

Proof. The random variable w_i is independent from $B_{(i)}(z) = \frac{1}{P}W_{(i)}K_{(i)}W_{(i)}^T - zI_P$ since the *i*-th column of W does not appear in the definition of $B_{(i)}(z)$. Using Lemma C.3, since there exists a unique pair partition $p \in P_2(2)$, namely $\{\{1,2\}\}$, the expectation of $g_i(z)$ is given by

$$\mathbb{E}[g_i(z)] = \frac{1}{P} \mathbb{E}\left[\operatorname{Tr}\left[B_{(i)}(z)^{-1} \right] \right].$$

Recall that $\mathbb{E}[m_P(z)] = \frac{1}{P}\mathbb{E}\left[\operatorname{Tr}\left[B(z)^{-1}\right]\right]$ and $\left|\operatorname{Tr}\left(B(z)^{-1}\right) - \operatorname{Tr}\left(B_{(i)}(z)^{-1}\right)\right| \leq \frac{1}{d(z,\mathbb{R}_+)}$ (from the proof of Lemma C.2). Hence

$$\left|\mathbb{E}\left[g_{i}(z)\right] - \mathbb{E}\left[m_{P}(z)\right]\right| \leq \frac{1}{P}\mathbb{E}\left[\left|\operatorname{Tr}\left(B(z)^{-1}\right) - \operatorname{Tr}\left(B_{(i)}(z)^{-1}\right)\right|\right] \leq \frac{1}{P}\frac{1}{d(z,\mathbb{R}_{+})}.$$

which proves the first assertion with $\mathbf{c_0} = \frac{1}{d(z,\mathbb{R}_+)}$.

Now, let us consider the variance of $g_i(z)$. Using our previous computation of $\mathbb{E}[g_i(z)]$, we have

$$\operatorname{Var}(g_{i}(z)) = \mathbb{E}\left[w_{i}^{T} \frac{(B_{(i)}(z))^{-1}}{P} w_{i} w_{i}^{T} \frac{(B_{(i)}(z))^{-1}}{P} w_{i}\right] - \mathbb{E}\left[\frac{1}{P} \operatorname{Tr}\left[B_{(i)}(z)^{-1}\right]\right]^{2}.$$

The first term can be computed using the first assertion of Lemma C.3: there are 2 matrices involved, thus we have to sum over 3 pair partitions. A simplification arises since $\frac{(B_{(i)}(z))^{-1}}{P}$ is symmetric: the partition $\{\{1,2\},\{3,4\}\}$ yields $\mathbb{E}\left[\left(\operatorname{Tr}\left[\frac{(B_{(i)}(z))^{-1}}{P}\right]\right)^2\right]$ whereas both $\{\{1,3\},\{2,4\}\}$ and $\{\{1,4\},\{2,4\}\}$ yield $\mathbb{E}\left(\operatorname{Tr}\left[\frac{(B_{(i)}(z))^{-2}}{P^2}\right]\right)$.

Thus, the variance of $g_i(z)$ is given by:

$$\operatorname{Var}(g_i(z)) = 2\mathbb{E}\left(\operatorname{Tr}\left[\frac{\left(B_{(i)}(z)\right)^{-2}}{P^2}\right]\right) + \mathbb{E}\left[\left(\frac{1}{P}\operatorname{Tr}\left[\left(B_{(i)}(z)\right)^{-1}\right]\right)^2\right] - \mathbb{E}\left[\frac{1}{P}\operatorname{Tr}\left[\left(B_{(i)}(z)\right)^{-1}\right]\right]^2$$

hence is given by a sum of two terms:

$$\operatorname{Var}(g_i(z)) = \frac{2}{P} \mathbb{E}\left(\frac{1}{P} \operatorname{Tr}\left[\left(B_{(i)}(z)\right)^{-2}\right]\right) + \operatorname{Var}\left(\frac{1}{P} \operatorname{Tr}\left[\left(B_{(i)}(z)\right)^{-1}\right]\right)$$

Using the same arguments as those explained for the bound on the Stieltjes transform, the first term is bounded by $\frac{2}{Pd(z,\mathbb{R}_+)^2}$. In order to bound the second term, we apply Lemma C.2 for $W_{(i)}$ and $K_{(i)}$ in place of W and K. The second term is bounded by $\frac{c}{P}$, hence the bound $\operatorname{Var}(g_i(z)) \leq \frac{c_1}{P}$. Finally, we prove the bound on the fourth moment of $g_i(z) - \mathbb{E}[g_i(z)]$. We denote $m_{(i)}(z) = \frac{1}{P} \operatorname{Tr}\left[\left(B_{(i)}(z)\right)^{-1}\right]$. Recall that $\mathbb{E}[g_i(z)] = \mathbb{E}\left[m_{(i)}(z)\right]$. Using the convexity of $t \mapsto t^4$, we have

$$\mathbb{E}\left[\left(g_i(z) - \mathbb{E}[g_i(z)]\right)^4\right] = \mathbb{E}\left[\left(g_i(z) - m_{(i)}(z) + m_{(i)}(z) - \mathbb{E}\left[m_{(i)}(z)\right]\right)^4\right]$$
$$\leq 8\mathbb{E}\left[\left(g_i(z) - m_{(i)}(z)\right)^4\right] + 8\mathbb{E}\left[\left(m_{(i)}(z) - \mathbb{E}\left[m_{(i)}(z)\right]\right)^4\right]$$

We bound the second term using the concentration of the Stieljes transform (Lemma C.2): it is bounded by $\frac{8c}{P^2}$. The first term is bounded using the second assertion of Lemma C.3. Using the symmetry of $B_{(i)}(z)$, the partitions in : $P_2(4)$: yield two different terms, namely:

1.
$$\frac{1}{P^2} \mathbb{E}\left[\left(\frac{1}{P} \operatorname{Tr}\left[\left(B_{(i)}(z)\right)^{-2}\right]\right)^2\right]$$
, for example if $p = \{\{1,3\}, \{2,4\}, \{5,7\}, \{6,8\}\}$
2. $\frac{1}{P^3} \mathbb{E}\left[\frac{1}{P} \operatorname{Tr}\left[\left(B_{(i)}(z)\right)^{-4}\right]\right]$, for example if $p = \{\{2,3\}, \{4,5\}, \{6,7\}, \{8,1\}\}$.

We bound the two terms using the same arguments as those explained for the bound on the Stieljes transform at the beginning of the section. The first term is bounded by $\frac{d(z,\mathbb{R}^+)^{-4}}{P^2}$ and the second term by $\frac{d(z,\mathbb{R}^+)^{-4}}{P^3}$ hence the bound $\mathbb{E}\left[\left(g_i(z) - \mathbb{E}\left[g_i(z)\right]\right)^4\right] \leq \frac{\mathbf{c}_2}{P^2}$.

The bound $\mathbb{E}[(g_i(z) - \mathbb{E}[g_i(z)])^8] \leq \frac{c_3}{P^4}$ is obtained in a similar way, using the second assertion of Lemma C.3 and simple bounds on the Stieljes transform.

In the next proposition we show that the Stieltjes transform $m_P(z)$ is close in expectation to the solution of a fixed point equation.

Proposition C.5. *For any* $z \in \mathbb{H}_{<0} = \{z : \operatorname{Re}(z) < 0\}$,

$$|\mathbb{E}[m_P(z)] - \tilde{m}(z)| \le \frac{\mathbf{e}}{P},$$

where \mathbf{e} depends on z, γ , and $\frac{1}{N} \operatorname{Tr}(K)$ only and where $\tilde{m}(z)$ is the unique solution in the cone $C_z := \{u - \frac{1}{z}v : u, v \in \mathbb{R}_+\}$ spanned by 1 and $-\frac{1}{z}$ of the equation

$$\gamma = \frac{1}{N} \sum_{i=1}^{N} \frac{d_i \tilde{m}(z)}{1 + d_i \tilde{m}(z)} - \gamma z \tilde{m}(z).$$

Proof. We use the same notation as in the previous proofs, namely $B(z) = \frac{1}{P}WKW^T - zI_P$, $B_{(i)}(z) = \frac{1}{P}W_{(i)}K_{(i)}W_{(i)}^T - zI_P$ and $g_i(z) = \frac{1}{P}w_i^T (B_{(i)}(z))^{-1}w_i$. Let $\nu_j \ge 0$, j = 1, ..., P be the spectrum of the positive semi-definite matrix $\frac{1}{P}W_{(i)}K_{(i)}W_{(i)}^T$. After diagonalization, we have

$$B_{(i)}(z)^{-1} = O^T \operatorname{diag}(\frac{1}{\nu_1 - z}, \dots, \frac{1}{\nu_P - z})O,$$

with O an orthogonal matrix. Then

$$g_i(z) = \frac{1}{P} \operatorname{Tr}\left(\left(B_{(i)}(z)\right)^{-1} w_i w_i^T\right) = \frac{1}{P} \sum_{j=1}^{P} \frac{\left((Ow_i)_{jj}\right)^2}{\nu_j - z}.$$
(5)

Since $z \in \mathbb{H}_{<0}$, we conclude that $\Re[g_i(z)] \ge 0$ for all $i = 1, \dots, P$.

In order to prove the proposition, the key remark is that, since $\operatorname{Tr}\left(\left(\frac{1}{P}WKW^T - zI_P\right)(B(z))^{-1}\right) = P$, the Stieltjes transform $m_P(z)$ satisfies the following equation:

$$P = \operatorname{Tr}\left(\frac{1}{P}KW^{T}B(z)^{-1}W\right) - zPm_{P}(z).$$

From the proof of Lemma C.2, recall that $B^{-1}(z) = B_{(i)}^{-1}(z) - \frac{d_i}{P} \frac{1}{1 + \frac{d_i}{P} w_i^T B_{(i)}^{-1}(z) w_i} B_{(i)}^{-1}(z) w_i w_i^T B_{(i)}^{-1}(z)$, hence:

$$\frac{1}{P}w_i^T B^{-1}(z)w_i = g_i(z) - \frac{d_i g_i(z)^2}{1 + d_i g_i(z)} = \frac{g_i(z)}{1 + d_i g_i(z)}.$$
(6)

Expanding the trace,

$$\operatorname{Tr}\left(\frac{1}{P}KW^{T}B(z)^{-1}W\right) = \sum_{i=1}^{N} d_{i}\frac{1}{P}w_{i}^{T}B^{-1}(z)w_{i} = \sum_{i=1}^{N}\frac{d_{i}g_{i}(z)}{1+d_{i}g_{i}(z)}$$

Thus, the Stieljes transform $m_P(z)$ satisfies the following equation $P = \sum_{i=1}^{N} \frac{d_i g_i(z)}{1+d_i g_i(z)} - z P m_P(z)$, or equivalently

$$\gamma = \frac{1}{N} \sum_{i=1}^{N} \frac{d_i g_i(z)}{1 + d_i g_i(z)} - z \gamma m_P(z).$$

Recall that $\gamma > 0$ and $\operatorname{Re}(z) < 0$. The Stieljes transform $m_P(z)$ can be written as a function of $g_i(z)$ for $i = 1, \ldots, n$: $m_P(z) = f(g_1(z), \ldots, g_N(z))$ where

$$f(g_1, \dots, g_N) = \frac{1}{\gamma z N} \sum_{i=1}^N \frac{d_i g_i}{1 + d_i g_i} - \frac{1}{z} = -\frac{1}{z} \left(1 - \frac{1}{\gamma} + \frac{1}{\gamma} \frac{1}{N} \sum_{i=1}^N \frac{1}{1 + d_i g_i} \right).$$

From Lemma C.6, the map f(m) = f(m, ..., m) has a unique non-degenerate fixed point $\tilde{m}(z)$ in the cone C_z . We will show that $\mathbb{E}[m_P(z)]$ is close to $\tilde{m}(z)$ using the following two steps: we show a non-tight bound $|\mathbb{E}[m_P(z)] - \tilde{m}(z)| \le \frac{\mathbf{e}'}{\sqrt{P}}$ and use it to obtain the tighter bound $|\mathbb{E}[m_P(z)] - \tilde{m}(z)| \le \frac{\mathbf{e}}{P}$.

Let us prove the $\frac{\mathbf{e}'}{\sqrt{P}}$ bound. From Lemma C.6, the distance between $m_P(z)$ and the fixed point $\tilde{m}(z)$ of f is bounded by the distance between $f(m_P(z), \ldots, m_P(z))$ and $m_P(z)$. Using the fact that $m_P(z) = f(g_1(z), \ldots, g_N(z))$, we obtain

$$|\mathbb{E}[m_P(z)] - \tilde{m}(z)| \le \mathbb{E}[|m_P(z) - \tilde{m}(z)|] \le \mathbb{E}[|f(m_P(z), \dots, m_P(z)) - f(g_1(z), \dots, g_N(z))|].$$

Recall that for any $z \in \mathbb{H}_{<0}$, $\Re(g_i(z)) \ge 0$: we need to study the function f on $\mathbb{H}_{\ge 0}^N$ where $\mathbb{H}_{\ge 0} = \{z \in \mathbb{C} | \Re(z) \ge 0\}$. On $\mathbb{H}_{\ge 0}^N$, the function f is Lipschitz:

$$\left|\partial_{g_i} f(g_1, ..., g_N)\right| = \left|\frac{1}{\gamma z N} \frac{d_i}{(1 + d_i g_i)^2}\right| \le \frac{d_i}{\gamma |z| N}$$

Thus,

$$\mathbb{E}\left[\left|f\left(m_{P}(z),...,m_{P}(z)\right) - f\left(g_{1}(z),...,g_{N}(z)\right)\right|\right] \leq \sum_{i=1}^{N} \frac{d_{i}}{\gamma |z| N} \mathbb{E}\left[\left|m_{P}(z) - g_{i}(z)\right|\right]$$

Since

$$\mathbb{E}\left[\left|m_P(z) - g_i(z)\right|\right] \le \mathbb{E}\left[\left|m_P(z) - \mathbb{E}\left[m_P(z)\right]\right|\right] + \left|\mathbb{E}\left[m_P(z)\right] - \mathbb{E}\left[g_i(z)\right]\right| + \mathbb{E}\left[\left|g_i(z) - \mathbb{E}\left[g_i(z)\right]\right|\right],$$

using Lemmas C.2 and C.4, we get that $\mathbb{E}\left[|m_P(z) - g_i(z)|\right] \leq \frac{d}{\sqrt{P}}$, where d depends on γ and z only. This implies that

$$\mathbb{E}\left[\left|f\left(m_{P}(z),...,m_{P}(z)\right)-f\left(g_{1}(z),...,g_{N}(z)\right)\right|\right] \leq \frac{1}{\sqrt{P}}\frac{\mathbf{d}}{N}\mathrm{Tr}\left(K\right)$$

which allows to conclude that $|\mathbb{E}[m_P(z)] - \tilde{m}(z)| \leq \frac{\mathbf{e}'}{\sqrt{P}}$ where \mathbf{e}' depends on γ , z and $\frac{1}{N} \operatorname{Tr}(K)$ only.

We strengthen this inequality and show the $\frac{e}{P}$ bound. Using again Lemma C.6, we bound the distance between $\mathbb{E}[m_P(z)]$ and the fixed point $\tilde{m}(z)$ by

$$|\mathbb{E}[m_P(z)] - \tilde{m}(z)| \le |\mathbb{E}[f(g_1(z), \dots, g_N(z))] - f(\mathbb{E}[m_P(z)], \dots, \mathbb{E}[m_P(z)])|$$

and study the r.h.s. using a Taylor approximation of f near $\mathbb{E}[m_P(z)]$. For i = 1, ..., N and $m_0 \in \mathbb{H}_{\geq 0}$, let $T_{m_0}h_i$ be the first order Taylor approximation of the map $h_i : m \mapsto \frac{1}{1+d_im}$ at a point m_0 . The error of the first order Taylor approximation is given by

$$h_i(m) - \mathcal{T}_{m_0}h_i(m) = \frac{1}{1 + d_i m} - \left(\frac{1}{1 + d_i m_0} - \frac{d_i(m - m_0)}{(1 + d_i m_0)^2}\right) = \frac{d_i^2 (m_0 - m)^2}{(1 + d_i m) (1 + d_i m_0)^2},$$

which, for $m \in \mathbb{H}_{\geq 0}$ can be upper bounded by a quadratic term:

$$|h_i(m) - \mathcal{T}_{m_0}h_i(m)| = \left|\frac{d_i^2}{\left(1 + d_im\right)\left(1 + d_im_0\right)^2}\right| |m_0 - m|^2 \le \frac{1}{|m_0|^2} |m_0 - m|^2.$$
(7)

The first order Taylor approximation Tf of f at the N-tuple $(\mathbb{E}[m_P(z)], ..., \mathbb{E}[m_P(z)])$ is

$$Tf(g_1, ..., g_N) = -\frac{1}{z} \left(1 - \frac{1}{\gamma} + \frac{1}{\gamma} \frac{1}{N} \sum_{i=1}^N T_{\mathbb{E}[m_P(z)]} h_i(g_i) \right).$$

Using this Taylor approximation, $\mathbb{E}[f(g_1(z), \dots, g_N(z))] - f(\mathbb{E}[m_P(z)], \dots, \mathbb{E}[m_P(z)])$ is equal to:

$$\mathbb{E}\left[\mathrm{T}f(g_{1}(z),..,g_{N}(z))\right] - f(\mathbb{E}[m_{P}(z)],...,\mathbb{E}[m_{P}(z)]) + \mathbb{E}\left[f(g_{1}(z),...,g_{N}(z)) - \mathrm{T}f(g_{1}(z),...,g_{N}(z))\right].$$

Using Lemma C.4, we get

$$|\mathbb{E}\left[f(g_{1}(z),...,g_{N}(z)) - \mathrm{T}f(g_{1}(z),..,g_{N}(z))\right]| \leq \frac{1}{|z|\gamma} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{|\mathbb{E}[m_{P}(z)]|^{2}} \mathbb{E}\left[|g_{i}(z) - \mathbb{E}\left[m_{P}(z)\right]|^{2}\right]$$
$$\leq \frac{1}{P} \frac{\alpha}{|\mathbb{E}[m_{P}(z)]|^{2}}$$

and

$$\begin{aligned} \left| \mathbb{E} \left[\mathrm{T}f(g_1(z), ..., g_N(z)) \right] - f(\mathbb{E} \left[m_P(z) \right], ..., \mathbb{E} \left[m_P(z) \right] \right) \right| &\leq \frac{1}{|z| \gamma} \frac{1}{N} \sum_{i=1}^N \frac{d_i \left| \mathbb{E} \left[g_i \right] - \mathbb{E} \left[m_P(z) \right] \right]}{\left| 1 + d_i \mathbb{E} \left[m_P(z) \right] \right|^2} \\ &\leq \frac{\beta \left(\frac{1}{N} \mathrm{Tr}K \right)}{P} \end{aligned}$$

where α and β depends on z and γ only. From the bounds $|\mathbb{E}[m_P(z)] - \tilde{m}(z)| \leq \frac{\mathbf{e}'}{\sqrt{P}}$ and $|\tilde{m}(z)| \geq (|z| + \frac{1}{N\gamma} \operatorname{Tr}(K))^{-1}$ (Lemma C.6), the bound $\frac{1}{P} \frac{\alpha}{|\mathbb{E}[m_P(z)]|^2}$ yields a $\frac{\tilde{\alpha}}{P}$ bound. This implies that $|\mathbb{E}[m_P(z)] - f(\mathbb{E}[m_P(z)], \dots, \mathbb{E}[m_P(z)])| \leq \frac{\mathbf{e}}{P}$, hence the desired inequality $|\mathbb{E}[m_P(z)] - \tilde{m}(z)| \leq \frac{\mathbf{e}}{P}$. \Box

For the proof of Proposition C.5, we have used the fact that the map f_z introduced therein has a unique non-degenerate fixed point in the cone $C_z := \{u - \frac{1}{z}v : u, v \in \mathbb{R}_+\}$. We now proceed with proving this statement.

Lemma C.6. Let $d_1, \ldots, d_n \ge 0$ and let $\gamma \ge 0$. For any fixed $z \in \mathbb{H}_{<0}$, let $f_z : \mathbb{H}_{\ge 0} \to \mathbb{C}$ be the function $t \mapsto f_z(t) = -\frac{1}{z} \left(1 - \frac{1}{\gamma} \frac{1}{N} \sum_{i=1}^{N} \frac{d_i t}{1 + d_i t}\right)$. Let $\mathcal{C}_z := \{u - \frac{1}{z}v : u, v \in \mathbb{R}_+\}$ be the convex region spanned by the half-lines \mathbb{R}_+ and $-\frac{1}{z}\mathbb{R}_+$. Then for every $z \in \mathbb{H}_{<0}$ there exists a unique fixed point $\tilde{t}(z) \in \mathcal{C}_z$ such that $\tilde{t}(z) = f_z(\tilde{t}(z))$. The map $\tilde{t} : z \mapsto \tilde{t}(z)$ is holomorphic in $\mathbb{H}_{<0}$ and

$$|\tilde{t}(z)| \ge \left(|z| + \frac{\sum_i d_i}{\gamma N}\right)^{-1}.$$

Furthermore for every $z \in \mathbb{H}_{<0}$ *and any* $t \in \mathbb{H}_{>0}$ *, one has*

$$|t - \tilde{t}(z)| \le |t - f_z(t)|.$$

Proof. By means of Schwarz reflection principle, we can assume that $\Im(z) \ge 0$. Let $z \in \mathbb{H}_{<0}$ and let $\Pi_z := \{-\frac{w}{z} : \Im(w) \le 0\}$ and let \mathcal{C}_z be the wedged region $\mathcal{C}_z := \Pi_z \cap \{w \in \mathbb{C} : \Im(w) \ge 0\}$. To show the existence of a fixed point in \mathcal{C}_z we show that 0 is in the image of the function $\psi : t \mapsto f_z(t) - t$. Note that since $d_i \ge 0$, the eventual poles of f_z are all strictly negative real numbers, hence $\psi : \mathcal{C}_z \to \mathbb{C}$ is an holomorphic function.

To prove that $0 \in \psi(\mathcal{C}_z)$ we proceed with a geometrical reasoning: the image $\psi(\mathcal{C}_z)$ is (one of) the region of the plane confined by $\psi(\partial \mathcal{C}_z)$, so we only need to "draw" $\psi(\partial \mathcal{C}_z)$ and show that 0 belongs to the "good" connected component confined by it.

The boundary of C_z is made up of two half-lines \mathbb{R}_+ and $-\frac{1}{z}\mathbb{R}_+$. Under the map f_z , 0 is mapped to $-\frac{1}{z}$ and ∞ is mapped to $-\frac{1-\frac{1}{\gamma}}{z}$, the two half-lines are hence mapped to paths from $-\frac{1}{z}$ to $-\frac{1-\frac{1}{\gamma}}{z}$. Now under ψ the half-lines will be mapped to paths going $-\frac{1}{z}$ to ∞ because by our assumption $-\frac{1}{z}$ lies in the upper right quadrant, we will show that the image of \mathbb{R}_+ under ϕ goes 'above' the origin while the image of $-\frac{1}{z}\mathbb{R}_+$ goes 'under' the origin:

- \mathbb{R}_+ is mapped under f_z to the segment $-\frac{1}{z}[1,1-\frac{1}{\gamma}]$, as a result, its map under ψ lies in the Minkowski sum $-\frac{1}{z}[1,1-\frac{1}{\gamma}] + (-\mathbb{R}_+)$ which is contained in $\mathbb{C} \setminus \Pi_z$.
- For any $t \in -\frac{1}{z}\mathbb{R}_+$ we have for all d_i

$$\Im\left(\frac{d_i t}{1+d_i t}\right) = \Im\left(1-\frac{1}{1+d_i t}\right) = \Im\left(\frac{1}{1+d_i t}\right) \le 0.$$

since $\Im(t) \ge 0$. As a result the image of $-\frac{1}{z}\mathbb{R}_+$ under f_z lies in Π_z and its image under ψ lies in the Minkovski sum $\Pi_z + (-\frac{1}{z}\mathbb{R}_+) = \Pi_z$.

Thus we can conclude that $0 \in \psi(\mathcal{C}_z)$, which shows that there exists at least a fixed point \tilde{m} in \mathcal{C}_z .

We observe that, for every $t \in C_z$, the derivative of f has negative real part:

$$\begin{aligned} \operatorname{Re}\left(f_{z}'(t)\right) &= \frac{1}{\gamma} \frac{1}{N} \sum_{i=1}^{N} \operatorname{Re}\left(\frac{d_{i}}{z\left(1+d_{i}t\right)^{2}}\right) \\ &= \frac{1}{\gamma} \frac{1}{N} \sum_{i=1}^{N} \frac{d_{i}\left[\Re(z) + 2d_{i}\Re(z)\Re(t) - 2d_{i}\Im(z)\Im(t) + d_{i}^{2}\Re(zt^{2})\right]}{|z|^{2}\left|1+d_{i}t\right|^{4}} \leq 0, \end{aligned}$$

where we concluded the last inequality by using that $\Re(z) \leq 0$, $\Re(t) \geq 0$, $\Re(z)\Im(t) \geq 0$ and $\Re(zt^2) \leq 0$. Thus, since for no point $t \in C_z$ has $f'_z(t) = 1$, any fixed point of f_z is a simple fixed point.

We now proceed to show the uniqueness of the fixed point in the region C_z . Suppose there are two fixed points t_1 and t_2 , then

$$t_1 - t_2 = f_z(t_1) - f_z(t_2)$$

= $(t_1 - t_2) \frac{1}{z} \frac{1}{\gamma N} \sum_{i=1}^N \frac{d_i}{(1 + d_i t_1)(1 + d_i t_2)}.$

Again, since $\Re(z) \leq 0$, $\Re(t_1), \Re(t_2) \geq 0$, $\Im(z)\Im(t_1), \Im(z)\Im(t_2), \geq 0$ and $\Re(zt_1t_2) \leq 0$, the factor $\frac{1}{z}\frac{1}{N}\sum_{i=1}^{N}\frac{d_i}{(1+d_it_1)(1+d_it_2)}$ has negative real part, and thus the identity is possible only if $t_1 = t_2$. Let's then $\tilde{t}(z)$ be the only fixed point in C_z .

We proceed now to show that $|t - f_z(t)| \ge |t - \tilde{t}(z)|$, i.e. if t and its image are close, then t is not too far from being a fixed point, and so it is close to $\tilde{t}(z)$.

For any $t \in C_z$, we have

$$\begin{aligned} |t - f_z(t)| &= |t - \tilde{t}(z) + f_z(\tilde{t}(z)) - \tilde{f}_z(t)| \\ &= \left| (t - \tilde{t}(z)) - (t - \tilde{t}(z)) \left(\frac{1}{z} \frac{1}{\gamma N} \sum_{i=1}^N \frac{d_i}{(1 + d_i t)(1 + d_i \tilde{t}(z))} \right) \right| \\ &= |t - \tilde{t}(z)| \left| 1 - \frac{1}{z} \frac{1}{\gamma N} \sum_{i=1}^N \frac{d_i}{(1 + d_i t)(1 + d_i \tilde{t}(z))} \right| \\ &\geq |t - \tilde{t}(z)| \end{aligned}$$

where we have used again that $\frac{1}{z} \frac{1}{N} \sum_{i=1}^{N} \frac{d_i}{(1+d_it)(1+d_i\tilde{t}(z))}$ has negative real part. We provide a lower bound on the norm of the fixed point:

 $\frac{1}{\sqrt{2}} \sum_{i=1}^{N} \frac{d_i \tilde{t}(z)}{1 + d_i \tilde{t}(z)} \bigg| \ge \frac{1}{|z|} \left(1 - \frac{1}{2} \frac{1}{N} \sum_{i=1}^{N} \left| \frac{d_i \tilde{t}(z)}{1 + d_i \tilde{t}(z)} \right| \right) \ge \frac{1}{|z|} \left(1 - \frac{|\tilde{t}(z)|}{2N} \sum_{i=1}^{N} d_i \right)$

$$\left|\tilde{t}(z)\right| = \frac{1}{|z|} \left| 1 - \frac{1}{\gamma} \frac{1}{N} \sum_{i=1}^{N} \frac{d_i \tilde{t}(z)}{1 + d_i \tilde{t}(z)} \right| \ge \frac{1}{|z|} \left(1 - \frac{1}{\gamma} \frac{1}{N} \sum_{i=1}^{N} \left| \frac{d_i \tilde{t}(z)}{1 + d_i \tilde{t}(z)} \right| \right) \ge \frac{1}{|z|} \left(1 - \frac{|t(z)|}{\gamma N} \sum_{i=1}^{N} d_i \right).$$

hence

$$|\tilde{t}(z)| \ge \left(|z| + \frac{\sum_i d_i}{\gamma N}\right)^{-1}.$$

Finally, note that z can be expressed from the fixed point \tilde{m} , hence defining an inverse for the map \tilde{t} :

$$\tilde{t}^{-1}(\tilde{m}) = z = -\frac{1}{\tilde{m}} \left(1 - \frac{1}{\gamma} \frac{1}{N} \sum_{i=1}^{N} \frac{d_i \tilde{m}}{1 + d_i \tilde{m}} \right)$$

because the inverse is holomorphic, so is \tilde{t} .

C.3. Ridge

Using Proposition C.1, in order to have a better description of the distribution of the predictor $\hat{f}_{\lambda,\gamma}^{(RF)}$, it remains to study the distributions of both the final labels \hat{y} on the training set and the parameter norm $\|\hat{\theta}\|^2$. In Section C.3.1, we first study the expectation of the final labels \hat{y} : this allows us to study the loss of the average predictor $\mathbb{E}\left[\hat{f}_{\lambda,\gamma}^{(RF)}\right]$. Then in Section C.3.3, a study of the variance of the predictor allows us to study the average loss of the RF predictor.

C.3.1. EXPECTATION OF THE PREDICTOR

The optimal parameters $\hat{\theta}$ which minimize the regularized MSE loss is given by $\hat{\theta} = F^T (FF^T + \lambda I_N)^{-1} y$, or equivalently by $\hat{\theta} = (F^T F + \lambda)^{-1} F^T y$. Thus, the final labels take the form $\hat{y} = A(-\lambda)y$ where A(z) is the random matrix defined as

$$A(z) := F \left(F^T F - z \mathbf{I}_P \right)^{-1} F^T = \frac{1}{P} K^{\frac{1}{2}} W^T \left(\frac{1}{P} W K W^T - z \mathbf{I}_P \right)^{-1} W K^{\frac{1}{2}}.$$

Note that the matrix A_{λ} defined in the proof sketch of Theorem 4.1 in the main text is given by $A_{\lambda} = A(-\lambda)$. **Proposition C.7.** For any $\gamma > 0$, any $z \in \mathbb{H}_{<0}$, and any symmetric positive definite matrix K,

$$\|\mathbb{E}\left[A(z)\right] - K(K + \tilde{\lambda}(-z)I_N)^{-1}\|_{op} \le \frac{c}{P},\tag{8}$$

where $\tilde{\lambda}(z) := \frac{1}{\tilde{m}(-z)}$ and c > 0 depends on z, γ and $\frac{1}{N}Tr(K)$ only.

Proof. Since the distribution of W is invariant under orthogonal transformations, by applying a change of basis, in order to prove Inequality (8), we may assume that K is diagonal with diagonal entries d_1, \ldots, d_N . Denoting w_1, \ldots, w_N the columns of W, for any $i, j = 1, \ldots, N$,

$$(A(z))_{ij} = \frac{1}{P}\sqrt{d_i d_j} w_i^T \left(\frac{1}{P}WKW^T - zI_P\right)^{-1} w_j,$$

where $WKW^T = \sum_{i=1}^N d_i w_i w_i^T$. Replacing w_i by $-w_i$ does not change the law W hence does not change the law of $(A(z))_{ij}$. Since WKW^T is invariant under this change of sign, we get that for $i \neq j$, $\mathbb{E}[(A(z))_{ij}] = -\mathbb{E}[(A(z))_{ij}]$, hence the off-diagonal terms of $\mathbb{E}[A(z)]$ vanish.

Consider a diagonal term $(A(z))_{ii}$. From Equation (6), we get

$$(A(z))_{ii} = \frac{d_i}{P} w_i^T B^{-1}(z) w_i = \frac{d_i g_i(z)}{1 + d_i g_i(z)}.$$
(9)

By Lemma C.4, g_i lies close to $m_P(z)$ which itself is approximatively equal to $\tilde{m}(z)$ by Proposition C.5. Therefore, we expect $\mathbb{E}\left[(A(z))_{ii}\right] = \mathbb{E}\left[\frac{d_i g_i}{1+d_i g_i}\right]$ to be at short distance from $\frac{d_i \tilde{m}(z)}{1+d_i \tilde{m}(z)}$.

In order to make rigorous this heuristic and to prove that $\mathbb{E}\left[(A(z))_{ii}\right]$ is within $\mathcal{O}(\frac{1}{P})$ distance to $\frac{d_i\tilde{m}(z)}{1+d_i\tilde{m}(z)}$, we consider the first order Taylor approximation $T_{\tilde{m}(z)}h_i$ of the map $h_i: g \mapsto \frac{1}{1+d_ig}$ (as in the proof Proposition C.5 but this time centered at $\tilde{m}(z)$). Using the fact that $\frac{d_it}{1+d_it} = 1 - \frac{1}{1+d_it} = 1 - h_i(t)$, and inserting the Taylor approximation, $\mathbb{E}\left[(A(z))_{ii}\right] - \frac{d_i\tilde{m}(z)}{1+d_i\tilde{m}(z)}$ is equal to:

$$h_i(\tilde{m}(z)) - h_i(g_i(z)) = \frac{1}{1 + d_i \tilde{m}(z)} - \mathbb{E} \left[T_{\tilde{m}(z)} h(g_i(z)) \right] + \mathbb{E} \left[T_{\tilde{m}(z)} h(g_i(z)) - h(g_i(z)) \right].$$

Thus,

$$\left|\mathbb{E}\left[(A(z))_{ii}\right] - \frac{d_i\tilde{m}(z)}{1 + d_i\tilde{m}(z)}\right| \le \left|\frac{1}{1 + d_i\tilde{m}(z)} - \mathbb{E}\left[\mathrm{T}_{\tilde{m}(z)}h(g_i(z))\right]\right| + \left|\mathbb{E}\left[\mathrm{T}_{\tilde{m}(z)}h(g_i(z)) - h(g_i(z))\right]\right|.$$

Using Lemma C.4 and Proposition C.5, the first term $\left|\frac{1}{1+d_i\tilde{m}(z)} - \mathbb{E}\left[\mathrm{T}_{\tilde{m}(z)}h(g_i(z))\right]\right| = \frac{d_i|\mathbb{E}[g_i(z)]-\tilde{m}(z)|}{|1+d_i\tilde{m}(z)|^2}$ can be bounded by $\frac{\delta}{P}\frac{d_i}{|1+d_i\tilde{m}(z)|^2}$ where δ depends on z, γ and $\frac{1}{N}\mathrm{Tr}(K)$ only. Since $\mathrm{Re}\left[\tilde{m}(z)\right] \ge 0$ thus $|1+d_i\tilde{m}(z)| \ge \max(1, |d_i\tilde{m}(z)|)$, and $|\tilde{m}(z)| \ge \frac{1}{|z|+\frac{1}{2}\frac{1}{N}\mathrm{Tr}K}$ (Lemma C.6), the denominator can be lower bounded:

$$1 + d_i \tilde{m}(z) \Big|^2 \ge \left| d_i \tilde{m}(z) \right| \ge \frac{d_i}{|z| + \frac{1}{\gamma} \frac{1}{N} \operatorname{Tr} K}$$

yielding the upper bound:

$$\left|\frac{1}{1+d_i\tilde{m}(z)} - \mathbb{E}\left[\mathrm{T}_{\tilde{m}(z)}h(g_i(z))\right]\right| \le \frac{1}{P}\delta\left[|z| + \frac{1}{\gamma}\frac{1}{N}\mathrm{Tr}K\right]$$

For the second term, using the same arguments as for the proof of Proposition C.5, we have:

$$\left|\mathbb{E}\left[\mathrm{T}_{\tilde{m}(z)}h(g_{i}(z))-h(g_{i}(z))\right]\right| \leq \frac{\mathbb{E}\left[\left|\tilde{m}(z)-g_{i}(z)\right|^{2}\right]}{\left|\tilde{m}(z)\right|^{2}}.$$

Recall that $|\tilde{m}(z)| \geq \frac{1}{|z| + \frac{1}{\gamma} \frac{1}{N} \operatorname{Tr} K}$ and that, by Lemma C.4 and Proposition C.2, $\mathbb{E}\left[|\tilde{m}(z) - g_i(z)|^2 \right] \leq \frac{\tilde{\delta}}{P}$ where $\tilde{\delta}$ depends on z, γ and $\frac{1}{N} \operatorname{Tr}(K)$ only. This implies that

$$\left|\mathbb{E}\left[\mathrm{T}_{\tilde{m}(z)}h(g_{i}(z))-h(g_{i}(z))\right]\right| \leq \frac{\tilde{\delta}}{P}\left[|z|+\frac{1}{\gamma}\frac{1}{N}\mathrm{Tr}K\right]^{2}$$

As a consequence, there exists a constant c which depends on z, γ and $\frac{1}{N} \text{Tr}(K)$ only such that:

$$\mathbb{E}\left[(A(z))_{ii}\right] - \frac{d_i \tilde{m}(z)}{1 + d_i \tilde{m}(z)} \le \frac{c}{P}$$

Using the effective ridge $\tilde{\lambda}(z) := \frac{1}{\tilde{m}(-z)}$, the term $\frac{d_i \tilde{m}(z)}{1+d_i \tilde{m}(z)} = \frac{d_i}{d_i + \tilde{\lambda}(-z)}$ is equal to $(K(K + \tilde{\lambda}I_N)^{-1})_{ii}$ since, in the basis considered, $K(K + \tilde{\lambda}I_N)^{-1}$ is a diagonal matrix. Hence, we obtain:

$$\left\| \mathbb{E}\left[A(z) \right] - K(K + \tilde{\lambda} I_N)^{-1} \right\|_{op} \le \frac{c}{P}$$

which allows us to conclude.

Using the above proposition, we can bound the distance between the expected λ -RF predictor and the $\tilde{\lambda}$ -RF predictor. **Theorem C.8.** For N, P > 0 and $\lambda > 0$, we have

$$\left| \mathbb{E}[\hat{f}_{\lambda,\gamma}^{(RF)}(x)] - \hat{f}_{\tilde{\lambda}}^{(K)}(x) \right| \leq \frac{c\sqrt{K(x,x)} \|y\|_{K^{-1}}}{P}$$

$$\tag{10}$$

where the effective ridge $\tilde{\lambda}(\lambda, \gamma) > \lambda$ is the unique positive number satisfying

$$\tilde{\lambda} = \lambda + \frac{\tilde{\lambda}}{\gamma} \frac{1}{N} \sum_{i=1}^{N} \frac{d_i}{\tilde{\lambda} + d_i},\tag{11}$$

and where c > 0 depends on λ, γ , and $\frac{1}{N} \operatorname{Tr} K(X, X)$ only.

Proof. Recall that $\tilde{m}(-\lambda)$ is the unique non negative real such that $\gamma = \frac{1}{N} \sum_{i=1}^{N} \frac{d_i \tilde{m}(-\lambda)}{1+d_i \tilde{m}(-\lambda)} + \gamma \lambda \tilde{m}(-\lambda)$. Dividing this equality by $\gamma \tilde{m}(-\lambda)$ yields Equation (11). From now on, let $\tilde{\lambda} = \tilde{\lambda}(\lambda, \gamma)$.

We now bound the l.h.s. of Equation (10). By Proposition C.1, since $\hat{y} = A(-\lambda)y$, the average λ -RF predictor is $\mathbb{E}\left[f_{\lambda,\gamma}^{(RF)}(x)\right] = K(x,X)K^{-1}\mathbb{E}\left[A(-\lambda)\right]y$. The $\tilde{\lambda}$ -KRR predictor is $f_{\tilde{\lambda}}^{(K)}(x) = K(x,X)\left(K + \tilde{\lambda}I_N\right)^{-1}y$. Thus:

$$\left| \mathbb{E}[f_{\lambda,\gamma}^{(RF)}(x)] - f_{\tilde{\lambda}}^{(K)}(x) \right| = \left| K(x,X)K^{-1} \left[\mathbb{E}\left[A(-\lambda)\right] - K\left(K + \tilde{\lambda}I_N\right)^{-1} \right] y \right|$$

The r.h.s. can be expressed as the absolute value of the scalar product $|\langle w, v \rangle_{K^{-1}}| = |v^T K^{-1} w|$ where v = K(x, X) and $w = [\mathbb{E}[A(-\lambda)] - K(K + \tilde{\lambda}I_N)^{-1}]y$. By Cauchy-Schwarz inequality, $|\langle v, w \rangle_{K^{-1}}| \le ||v||_{K^{-1}} ||w||_{K^{-1}}$.

For a general vector v, the K^{-1} -norm $||v||_{K^{-1}}$ is equal to the norm minimum Hilbert norm (for the RKHS associated to the kernel K) interpolating function:

$$||v||_{K^{-1}} = \min_{f \in \mathcal{H}, f(x_i) = v_i} ||f||_{\mathcal{H}}.$$

Indeed the minimal interpolating function is the kernel regression given by $f^{(K)}(\cdot) = K(\cdot, X)K(X, X)^{-1}v$ which has norm (writing $\beta = K^{-1}v$):

$$\left\| f^{(K)} \right\|_{\mathcal{H}} = \left\| \sum_{i=1}^{N} \beta_i K(\cdot, x_i) \right\|_{\mathcal{H}} = \sqrt{\sum_{i,j=1}^{N} \beta_i \beta_j K(x_i, x_j)} = \sqrt{v^T K^{-1} K K^{-1} v} = \|v\|_{K^{-1}}$$

We can now bound the two norms $||v||_{K^{-1}}$ and $||w||_{K^{-1}}$. For v = K(x, X), we have

$$\|v\|_{K^{-1}} = \min_{f \in \mathcal{H}, f(x_i) = v_i} \|f\|_{\mathcal{H}} \le \|K(x, \cdot)\|_{\mathcal{H}} = K(x, x)^{\frac{1}{2}}.$$
(12)

since $K(x, \cdot)$ is an interpolating function for v.

It remains to bound $||w||_{K^{-1}}$. Recall that $K = UDU^T$ with D diagonal, and that, from the previous proposition, $\mathbb{E}[A(-\lambda)] = UD_A U^T$ where $D_A = \operatorname{diag}\left(\frac{d_1g_1(-\lambda)}{1+d_1g_1(-\lambda)}, \ldots, \frac{d_Ng_N(-\lambda)}{1+d_Ng_N(-\lambda)}\right)$. The norm $||w||_{K^{-1}}$ is equal to

$$\sqrt{\tilde{y}^T \left[D_A - D \left(D + \tilde{\lambda}(\lambda) I_N \right)^{-1} \right]^T D^{-1} \left[D_A - D \left(D + \tilde{\lambda}(\lambda) I_N \right)^{-1} \right] \tilde{y}},$$

where $\tilde{y} = U^T y$. Expanding the product, $\|w\|_{K^{-1}} = \sqrt{\sum_{i=1}^N \frac{\tilde{y}_i^2}{d_i} \left((D_A)_{ii} - \frac{d_i}{\tilde{\lambda}(\lambda) + d_i} \right)^2}$, hence by Proposition C.7, $\|w\|_{K^{-1}} \leq \frac{c}{P} \sqrt{\sum_{i=1}^N \frac{\tilde{y}^2}{d_i}}$. The result follows from noticing that $\sum_{i=1}^N \frac{\tilde{y}^2}{d_i} = \tilde{y}^T D^{-1} \tilde{y} = \|y\|_{K^{-1}}^2$:

$$\left| \mathbb{E}[f_{\lambda,\gamma}^{(RF)}(x)] - f_{\tilde{\lambda}}^{(K)}(x) \right| \le \|v\|_{K^{-1}} \|w\|_{K^{-1}} \le \frac{cK(x,x)^{\frac{1}{2}} \|y\|_{K^{-1}}}{P}.$$

which allows us to conclude.

Corollary C.9. If $\mathbb{E}_{\mathcal{D}}[K(x,x)] < \infty$, we have that the difference of errors $\delta_E = \left| L(\mathbb{E}[\hat{f}_{\lambda,\gamma}^{(RF)}]) - L(\hat{f}_{\bar{\lambda}}^{(K)}) \right|$ is bounded from above by

$$\delta_E \le \frac{C \|y\|_{K^{-1}}}{P} \left(2\sqrt{L\left(\hat{f}_{\tilde{\lambda}}^{(K)}\right)} + \frac{C \|y\|_{K^{-1}}}{P} \right) + \frac{C \|y\|_{K^{-1}}}{P} \right)$$

where C is given by $c\sqrt{\mathbb{E}_{\mathcal{D}}[K(x,x)]}$, with c the constant appearing in (10) above.

Proof. For any function $f : \mathbb{R}^d \to \mathbb{R}$, we denote by $||f|| = (\mathbb{E}_{\mathcal{D}} [f(x)^2])^{\frac{1}{2}}$ its $L^2(\mathcal{D})$ -norm. Integrating $\left|\mathbb{E}[f_{\lambda,\gamma}^{(RF)}(x)] - f_{\tilde{\lambda}}^{(K)}(x)\right|^2 \leq \frac{c^2 K(x,x) ||y||_{K^{-1}}^2}{P^2}$ over $x \sim \mathcal{D}$, we get the following bound:

$$\|\mathbb{E}[f_{\lambda,\gamma}^{(RF)}] - f_{\tilde{\lambda}}^{(K)}\| \le \frac{c \left[\mathbb{E}_{\mathcal{D}}\left[K(x,x)\right]\right]^{\frac{1}{2}} \|y\|_{K^{-1}}}{P}.$$

Hence, if f^* is the true function, by the triangular inequality,

$$\left| \left\| \mathbb{E}[f_{\lambda,\gamma}^{(RF)}] - f^* \right\| - \left\| f_{\tilde{\lambda}}^{(K)} - f^* \right\| \right| \le \frac{c \left[\mathbb{E}_{\mathcal{D}} \left[K(x,x) \right] \right]^{\frac{1}{2}} \|y\|_{K^{-1}}}{P}.$$

Notice that $L(\mathbb{E}[\hat{f}_{\gamma,\lambda}^{(RF)}]) = \|\mathbb{E}[f_{\lambda,\gamma}^{(RF)}] - f^*\|^2$ and $L(\hat{f}_{\tilde{\lambda}}^{(K)}) = \|f_{\tilde{\lambda}}^{(K)} - f^*\|^2$. Since $|a^2 - b^2| \le |a - b| (|a - b| + 2|b|)$, we obtain

$$\left| L\left(\mathbb{E}[\hat{f}_{\gamma,\lambda}^{(RF)}] \right) - L\left(\hat{f}_{\tilde{\lambda}}^{(K)}\right) \right| \le \frac{c \left[\mathbb{E}_{\mathcal{D}}\left[K(x,x) \right] \right]^{\frac{1}{2}} \|y\|_{K^{-1}}}{P} \left(2\sqrt{L\left(\hat{f}_{\tilde{\lambda}}^{(K)}\right)} + \frac{c \left[\mathbb{E}_{\mathcal{D}}\left[K(x,x) \right] \right]^{\frac{1}{2}} \|y\|_{K^{-1}}}{P} \right),$$

which allows us to conclude.

C.3.2. PROPERTIES OF THE EFFECTIVE RIDGE

Thanks to the implicit definition of the effective ridge $\tilde{\lambda}$, we obtain the following:

Proposition C.10. The effective ridge λ satisfies the following properties:

- 1. for any $\gamma > 0$, we have $\lambda < \tilde{\lambda}(\lambda, \gamma) \le \lambda + \frac{1}{\gamma}T$;
- 2. the function $\gamma \mapsto \tilde{\lambda}(\lambda, \gamma)$ is decreasing;
- 3. for $\gamma > 1$, we have $\tilde{\lambda} \leq \frac{\gamma}{\gamma-1}\lambda$;
- 4. for $\gamma < 1$, we have $\tilde{\lambda} \geq \frac{1-\sqrt{\gamma}}{\sqrt{\gamma}} \min_i d_i$.

Proof. (1) The upper bound in the first statement follows directly from Lemma C.6 where it was shown that $\tilde{m}(-\lambda) \ge \frac{1}{\lambda + \frac{1}{\gamma} \frac{1}{N} \operatorname{Tr} K}$ and from the fact that $\tilde{\lambda}(\lambda, \gamma) = \frac{1}{\tilde{m}(-\lambda)}$. For the lower bound, remark that Equation (11) can be written as:

$$\tilde{\lambda}(\lambda,\gamma) = \lambda + \frac{1}{\gamma} \frac{1}{N} \operatorname{Tr}[\tilde{\lambda}(\lambda,\gamma) K(\tilde{\lambda}(\lambda,\gamma) I_N + K)^{-1}].$$

Since $\tilde{\lambda}(\lambda, \gamma) \ge 0$ and K is a positive symmetric matrix, $\operatorname{Tr}[K[\tilde{\lambda}(\lambda, \gamma)I_N + K]^{-1}] \ge 0$: this yields $\tilde{\lambda}(\lambda, \gamma) \ge \lambda$.

(2) We show that $\gamma \mapsto \tilde{\lambda}(\lambda, \gamma)$ is decreasing by computing the derivative of the effective ridge with respect to γ . Differentiating both sides of Equation (11), $\partial_{\gamma}\tilde{\lambda} = \partial_{\gamma} \left[\lambda + \frac{\tilde{\lambda}}{\gamma} \frac{1}{N} \sum_{i=1}^{N} \frac{d_i}{\tilde{\lambda} + d_i}\right]$. The r.h.s. is equal to:

$$\frac{\partial_{\gamma}\tilde{\lambda}}{\gamma}\frac{1}{N}\sum_{i=1}^{N}\frac{d_{i}}{\tilde{\lambda}+d_{i}} - \frac{\tilde{\lambda}}{\gamma^{2}}\frac{1}{N}\sum_{i=1}^{N}\frac{d_{i}}{\tilde{\lambda}+d_{i}} - \frac{\tilde{\lambda}}{\gamma}\frac{1}{N}\sum_{i=1}^{N}\frac{d_{i}\partial_{\gamma}\tilde{\lambda}}{(\tilde{\lambda}+d_{i})^{2}}$$

Using Equation (11), $\frac{1}{\gamma} \frac{1}{N} \sum_{i=1}^{N} \frac{d_i}{\tilde{\lambda} + d_i} = \frac{\tilde{\lambda} - \lambda}{\tilde{\lambda}}$ and thus:

$$\partial_{\gamma}\tilde{\lambda}\left[\frac{\lambda}{\tilde{\lambda}}+\frac{\tilde{\lambda}}{\gamma}\frac{1}{N}\sum_{i=1}^{N}\frac{d_{i}}{\left(\tilde{\lambda}+d_{i}\right)^{2}}\right]=-\frac{\tilde{\lambda}-\lambda}{\gamma}.$$

Since $\tilde{\lambda} \ge \lambda \ge 0$, the derivative of the effective ridge with respect to γ is negative: the function $\gamma \mapsto \tilde{\lambda}(\lambda, \gamma)$ is decreasing. (3) Using the bound $\frac{d_i}{\tilde{\lambda}+d_i} \le 1$ in Equation (11), we obtain $\tilde{\lambda} \le \lambda + \frac{\tilde{\lambda}}{\gamma}$ which, when $\gamma \ge 1$, implies that $\tilde{\lambda} \le \lambda \frac{\gamma}{\gamma-1}$. (4) Recall that $\lambda > 0$ and that the effective ridge $\tilde{\lambda}$ is the unique fixpoint of the map $f(t) = \lambda + \frac{t}{\gamma} \frac{1}{N} \sum_i \frac{d_i}{t+d_i}$ in \mathbb{R}_+ . The map is concave and, at t = 0, we have $f(t) = \lambda > 0 = t$: this implies that $f'(\tilde{\lambda}) < 1$ otherwise by concavity, for any $t \le \tilde{\lambda}$ one would have $f(t) \le t$. The derivative of f is $f'(t) = \frac{1}{\gamma} \frac{1}{N} \sum_{i=1}^{N} \frac{d_i^2}{(t+d_i)^2}$, thus $\frac{1}{\gamma} \frac{1}{N} \sum_{i=1}^{N} \frac{d_i^2}{(\tilde{\lambda}+d_i)^2} < 1$. Using the fact

that
$$d_0$$
 is the smallest eigenvalue of $K(X, X)$, i.e. $d_i \ge d_0$, we get $1 > \frac{1}{\gamma} \frac{d_0^2}{\left(\tilde{\lambda} + d_0\right)^2}$ hence $\tilde{\lambda} \ge d_0 \frac{1 - \sqrt{\gamma}}{\sqrt{\gamma}}$.

Similarly, we gather a number of properties of the derivative $\partial_{\lambda} \tilde{\lambda}(\lambda, \gamma)$.

Proposition C.11. For $\gamma > 1$, as $\lambda \to 0$, the derivative $\partial_{\lambda} \tilde{\lambda}$ converges to $\frac{\gamma}{\gamma-1}$. As $\lambda \gamma \to \infty$, we have $\partial_{\lambda} \tilde{\lambda}(\lambda, \gamma) \to 1$.

Proof. Differentiating both sides of Equation (11),

$$\partial_{\lambda}\tilde{\lambda} = 1 + \partial_{\lambda}\tilde{\lambda}\frac{1}{\gamma}\frac{1}{N}\sum_{i=1}^{N}\frac{d_{i}}{\tilde{\lambda}+d_{i}} - \tilde{\lambda}\partial_{\lambda}\tilde{\lambda}\frac{1}{\gamma}\frac{1}{N}\sum_{i=1}^{N}\frac{d_{i}}{(\tilde{\lambda}+d_{i})^{2}}$$

Hence the derivative $\partial_{\lambda} \tilde{\lambda}$ satisfies the following equality

$$\partial_{\lambda}\tilde{\lambda}\left(1-\frac{1}{\gamma}\frac{1}{N}\sum_{i=1}^{N}\frac{d_{i}}{\tilde{\lambda}+d_{i}}+\tilde{\lambda}\frac{1}{\gamma}\frac{1}{N}\sum_{i=1}^{N}\frac{d_{i}}{(\tilde{\lambda}+d_{i})^{2}}\right)=1.$$
(13)

(1) Assuming $\gamma > 1$, from the point 3. of Proposition C.10, we already know that $\tilde{\lambda}(\lambda, \gamma) \leq \lambda \frac{\gamma}{\gamma-1}$ hence $\tilde{\lambda}(0, \gamma) = 0$. Actually, using similar arguments as in the proof of point 3., this holds also for $\gamma = 1$. Using the fact that $\tilde{\lambda}(0, \gamma) = 0$, we get $\partial_{\lambda} \tilde{\lambda}(0, \gamma) = 1 + \frac{\partial_{\lambda} \tilde{\lambda}(0, \gamma)}{\gamma}$, hence $\partial_{\lambda} \tilde{\lambda}(0, \gamma) = \frac{\gamma}{\gamma-1}$.

(2) From the first point of Proposition C.10, $\tilde{\lambda} \sim \lambda$ as $\lambda \gamma \to \infty$. Since Equation (13) can be expressed as:

$$\partial_{\lambda}\tilde{\lambda}\left(1-\frac{1}{\gamma\lambda}\frac{1}{N}\sum_{i=1}^{N}\frac{d_{i}}{\frac{\tilde{\lambda}}{\lambda}+d_{i}}+\frac{1}{\gamma\lambda}\frac{\tilde{\lambda}}{\lambda}\frac{1}{N}\sum_{i=1}^{N}\frac{d_{i}}{(\frac{\tilde{\lambda}}{\lambda}+d_{i})^{2}}\right)=1,$$

we obtain that $\partial_{\lambda} \tilde{\lambda} \to 1$ as $\lambda \to \infty$.

C.3.3. VARIANCE OF THE PREDICTOR

By the bias-variance decomposition, in order to bound the difference between $\mathbb{E}[L(\hat{f}_{\gamma,\lambda}^{(RF)})]$ and $L(\hat{f}_{\tilde{\lambda}}^{(K)})$, we have to bound $\mathbb{E}_{\mathcal{D}}[\operatorname{Var}(f(x))]$. The law of total variance yields $\operatorname{Var}(\hat{f}(x)) = \operatorname{Var}(\mathbb{E}[\hat{f}(x)|F]) + \mathbb{E}[\operatorname{Var}[\hat{f}(x)|F]]$. By Proposition C.1, we have $\mathbb{E}[\hat{f}(x)|F] = K(x,X)K(X,X)^{-1}\hat{y}$ and $\operatorname{Var}[\hat{f}(x)|F] = \frac{1}{P}\|\hat{\theta}\|^2 \tilde{K}(x,x)$. Hence, it remains to study $\operatorname{Var}(K(x,X)K(X,X)^{-1}\hat{y})$ and $\mathbb{E}[\|\hat{\theta}\|^2]$. Recall that we denote $T = \frac{1}{N}\operatorname{Tr}K(X,X)$.

This section is dedicated to the proof of the variance bound of Theorem 5.1 of the paper:

Theorem 5.1 There are constants $c_1, c_2 > 0$ depending on λ, γ, T only such that

$$\operatorname{Var}\left(K(x,X)K(X,X)^{-1}\hat{y}\right) \leq \frac{c_1 K(x,x) \|y\|_{K^{-1}}^2}{P} \\ \left\|\mathbb{E}\|[\hat{\theta}\|^2] - \partial_{\lambda} \tilde{\lambda} y^T M_{\tilde{\lambda}} y\right\| \leq \frac{c_2 \|y\|_{K^{-1}}^2}{P},$$

where $\partial_{\lambda}\tilde{\lambda}$ is the derivative of $\tilde{\lambda}$ with respect to λ and for $M_{\tilde{\lambda}} = K(X, X)(K(X, X) + \tilde{\lambda}I_N)^{-2}$. As a result

$$\operatorname{Var}\left(\hat{f}_{\lambda}^{(RF)}(x)\right) \leq \frac{c_3 K(x,x) \|y\|_{K^{-1}}^2}{P},$$

where $c_3 > 0$ depends on λ, γ, T .

• Bound on Var $(K(x,X)K(X,X)^{-1}\hat{y})$. We first study the covariance of the entries of the matrix

$$A_{\lambda} = \frac{1}{P} K^{\frac{1}{2}} W^T \left(\frac{1}{P} W K W^T + \lambda \mathbf{I}_P \right)^{-1} W K^{\frac{1}{2}},$$

where $K = \text{diag}(d_1, \ldots, d_N)$ is a positive definite diagonal matrix and W is a $P \times N$ matrix with i.i.d. Gaussian entries. In the next proposition we show a $\frac{c_1}{P}$ bound for the covariance of the entries of A_{λ} , then we exploit this result in order to prove the bound on the variance of $K(x, X)K(X, X)^{-1}\hat{y}$.

Proposition C.12. There exists a constant $c'_1 > 0$ depending on λ, γ , and $\frac{1}{N} \text{Tr}(K)$ only, such that the following bounds hold:

$$\begin{aligned} |\operatorname{Cov}\left((A_{\lambda})_{ii}, (A_{\lambda})_{jj}\right)| &\leq \frac{c_{1}'}{P} \\ \operatorname{Var}\left((A_{\lambda})_{ij}\right) &\leq \min\left\{\frac{d_{i}}{d_{j}}, \frac{d_{j}}{d_{i}}\right\} \frac{c_{1}'}{P}. \end{aligned}$$

For all other cases (i.e. if i, j, k and l take more than two different values), $Cov((A_{\lambda})_{ij}, (A_{\lambda})_{kl}) = 0$.

Proof. We want to study the covariances $\operatorname{Cov}((A_{\lambda})_{ij}, (A_{\lambda})_{kl})$ for any i, j, k, l. Using the same symmetry argument as in the proof of Proposition C.7, $\mathbb{E}[(A_{\lambda})_{ij}(A_{\lambda})_{kl}] = 0$ whenever each value in $\{i, j, k, l\}$ does not appear an even number of times in (i, j, k, l). Using the fact that A_{λ} is symmetric, it remains to study $\operatorname{Cov}((A_{\lambda})_{ii}, (A_{\lambda})_{jj})$, $\operatorname{Var}((A_{\lambda})_{ii})$ and $\operatorname{Var}[(A_{\lambda})_{ij}]$ for all $i \neq j$. By the Cauchy-Schwarz inequality, any bound on $\operatorname{Var}((A_{\lambda})_{ii})$ will imply a similar bound on $\operatorname{Cov}((A_{\lambda})_{ii}, (A_{\lambda})_{jj})$. Besides, as we have seen in the proof of Proposition C.7, $\mathbb{E}[(A_{\lambda})_{ij}] = 0$ for any $i \neq j$. Thus, we only have to study $\operatorname{Var}((A_{\lambda})_{ii})$ and $\mathbb{E}[(A_{\lambda})_{ij}^2]$.

• Bound on Var $((A_{\lambda})_{ii})$: From Equation (9),

$$\operatorname{Var}\left((A_{\lambda})_{ii}\right) = \operatorname{Var}\left(\frac{d_{i}g_{i}}{1+d_{i}g_{i}}\right) = \operatorname{Var}\left(1-\frac{1}{1+d_{i}g_{i}}\right) = \operatorname{Var}\left(\frac{1}{1+d_{i}g_{i}}\right) \leq \mathbb{E}\left[\left(\frac{1}{1+d_{i}g_{i}}-\frac{1}{1+d_{i}\tilde{m}}\right)^{2}\right],$$

where $g_i := g_i(-\lambda)$. Again, we use the first order Taylor approximation Th of $h: x \to \frac{1}{1+d_ix}$ centered at $\tilde{m} := \tilde{m}(-\lambda)$, as

well as the bound (7), to obtain

$$\mathbb{E}\left[\left(\frac{1}{1+d_ig_i} - \frac{1}{1+d_i\tilde{m}}\right)^2\right] = \mathbb{E}\left[\left(-\frac{d_i}{\left(1+d_i\tilde{m}\right)^2}(g_i - \tilde{m}) + h(g_i) - \mathrm{T}h(g_i)\right)^2\right]$$
$$\leq \frac{2d_i^2}{\left(1+d_i\tilde{m}\right)^4}\mathbb{E}\left[(g_i - \tilde{m})^2\right] + 2\mathbb{E}\left[(h(g_i) - \mathrm{T}h(g_i))^2\right]$$
$$\leq \frac{2}{6\tilde{m}^2}\mathbb{E}\left[(g_i - \tilde{m})^2\right] + \frac{2}{\tilde{m}^4}\mathbb{E}\left[(g_i - \tilde{m})^4\right].$$

Using Lemma C.4, we get $\operatorname{Var}((A_{\lambda})_{ii}) \leq \frac{c'_1}{P}$, where $c'_1 > 0$ depends on λ, γ , and $\frac{1}{N}\operatorname{Tr}(K)$ only. • Bound on $\mathbb{E}((A_{\lambda})_{ij})$ for $i \neq j$: Following the same arguments as for Equation (9), $(A_{\lambda})_{ij}$ is equal to

$$(A_{\lambda})_{ij} = \frac{\sqrt{d_i d_j}}{P} \left[w_i^T B_{(i)}^{-1} w_j - \frac{d_i g_i}{1 + d_i g_i} w_i^T B_{(i)}^{-1} w_j \right] = \frac{\sqrt{d_i d_j}}{1 + d_i g_i} \frac{1}{P} w_i^T B_{(i)}^{-1} w_j$$

where we set $B_{(i)} := B_i(-\lambda)$. Since w_i and $B_{(i)}$ are independent, $\mathbb{E}\left[\left(w_i^T B_{(i)}^{-1} w_j\right)^2\right] = \mathbb{E}\left[w_j^T B_{(i)}^{-2} w_j\right]$, and thus, by the Cauchy-Schwarz inequality, we have

$$\mathbb{E}\left[\left(A_{\lambda}\right)_{ij}^{2}\right] \leq \frac{1}{P^{2}} \sqrt{\mathbb{E}\left[\frac{d_{i}^{2} d_{j}^{2}}{\left(1+d_{i} g_{i}\right)^{4}}\right]} \sqrt{\mathbb{E}\left[\left(w_{j}^{T} B_{(i)}^{-2} w_{j}\right)^{2}\right]}.$$
(14)

Recall that $\tilde{m} := \tilde{m}(-\lambda)$. Using the fact that $\frac{1}{1+d_ig_i} = \frac{1}{1+d_i\tilde{m}} + \frac{1}{1+d_ig_i} - \frac{1}{1+d_i\tilde{m}}$ and inserting the first Taylor approximation Th of $h: x \to \frac{1}{1+d_ix}$ centered at \tilde{m} , we get:

$$\mathbb{E}\left[\left(\frac{1}{1+d_ig_i}\right)^4\right] = \mathbb{E}\left[\left(\frac{1}{1+d_i\tilde{m}} - \frac{d_i}{\left(1+d_i\tilde{m}\right)^2}(g_i - \tilde{m}) + h(g_i) - \mathrm{T}h(g_i)\right)^4\right].$$

Using a convexity argument, the bound (7), and the lower bound on \tilde{m} given by Lemma C.6, there exists three constants \tilde{c}_1 , \tilde{c}_2 , \tilde{c}_3 , which depend on λ , γ and $\frac{1}{N} \operatorname{Tr}(K)$ only, such that $\mathbb{E}\left[\left(\frac{1}{1+d_i g_i}\right)^4\right]$ is bounded by

$$\frac{\tilde{c}_1}{\left(1+d_i\tilde{m}\right)^4} + \frac{\tilde{c}_2 d_i^4}{\left(1+d_i\tilde{m}\right)^8} \mathbb{E}\left[\left(g_i-\tilde{m}\right)^4\right] + \tilde{c}_3 \mathbb{E}\left[\left(g_i-\tilde{m}\right)^8\right].$$

Thanks to Lemma C.4 and Proposition C.5, this last expression can be bounded by an expression of the form $\frac{\tilde{e}_1}{d_i^4} + \frac{\tilde{e}_2}{P^2 d_i^4} + \frac{\tilde{e}_3}{P^4}$. Note that $\frac{\tilde{e}_2}{P^2 d_i^4} \leq \frac{\tilde{e}_2}{d_i^4}$ and $\frac{\tilde{e}_3}{P^4} \leq \frac{\tilde{e}_3}{\gamma^4} \frac{(\frac{1}{N} \operatorname{Tr}(K))^4}{d_i^4}$. Hence, we obtain the bound:

$$\mathbb{E}\left[\left(\frac{1}{1+d_ig_i}\right)^4\right] \le \frac{\tilde{c}}{d_i^4}$$

where $\tilde{c} = \tilde{e}_1 + \tilde{e}_2 + \frac{\tilde{e}_3(\frac{1}{N}\operatorname{Tr}(K))^4}{\gamma^4}$ depends on λ , γ and and $\frac{1}{N}\operatorname{Tr}(K)$ only.

Let us now consider the second term in the r.h.s. of (14). Using the fact that $||B_{(i)}||_{op} \geq \frac{1}{\lambda}$, we get

$$\sqrt{\mathbb{E}\left[\left(w_j^T B_{(i)}^{-2} w_j\right)^2\right]} \le \sqrt{\frac{1}{\lambda^4} \mathbb{E}\left[\left(w_j^T w_j\right)^2\right]} = \sqrt{\frac{1}{\lambda^4} N(N+2)} \le \frac{N+1}{\lambda^2},$$

where we have used the fact that the second moment of a $\chi^2(N)$ distribution is N(N+2). Together, we obtain

$$\mathbb{E}\left[(A)_{ij}^{2}\right] \leq \frac{1}{P^{2}} \sqrt{\mathbb{E}\left[\frac{d_{i}^{2}d_{j}^{2}}{\left(1+d_{i}g_{i}\right)^{4}}\right]} \sqrt{\mathbb{E}\left[\left(w_{j}^{T}B_{(i)}^{-2}w_{j}\right)^{2}\right]}$$
$$\leq \frac{\tilde{c}d_{i}d_{j}}{d_{i}^{2}}\frac{N+1}{P^{2}\lambda^{2}}$$
$$\leq \frac{\tilde{c}d_{j}}{Pd_{i}\lambda^{2}\gamma}\frac{N+1}{N} \leq \frac{c_{1}'}{P}\frac{d_{i}}{d_{j}},$$

for $c'_1 = 2 \frac{\tilde{c}}{\lambda^2 \gamma}$. Since the matrix A_{λ} is symmetric, we finally conclude that

$$\mathbb{E}\left[(A_{\lambda})_{ij}^{2}\right] \leq \frac{c_{1}'}{P} \min\left\{\frac{d_{i}}{d_{j}}, \frac{d_{j}}{d_{i}}\right\}.$$

Note that c'_1 is a constant related to the bounds constructed in Lemma C.2 and Proposition C.5 and as such it depends on $\frac{1}{N}$ Tr(K), γ and λ only.

Proposition C.13. There exists a constant $c_1 > 0$ (depending on λ, γ, T only) such that the variance of the estimator is bounded by

$$\operatorname{Var}\left(K(x,X)K(X,X)^{-1}\hat{y}\right) \le \frac{c_1 \|y\|_{K^{-1}}^2 K(x,x)}{P}.$$

Proof. As in the proof of Theorem C.8, with the right change of basis, we may assume the Gram matrix K(X, X) to be diagonal.

We first express the covariances of $\hat{y} = A(-\lambda)y$. Using Proposition Proposition C.12, for $i \neq j$ we have

$$\operatorname{Cov}\left(\hat{y}_{i}, \hat{y}_{j}\right) = \sum_{k,l=1}^{N} \operatorname{Cov}\left((A_{\lambda})_{ik}, (A_{\lambda})_{lj}\right) y_{k} y_{l} = \operatorname{Cov}\left((A_{\lambda})_{ii}, (A_{\lambda})_{jj}\right) y_{i} y_{j} + \mathbb{E}\left[(A_{\lambda})_{ij}^{2}\right] y_{j} y_{i},$$

whereas for i = j we have

$$\operatorname{Cov}\left(\hat{y}_{i}, \hat{y}_{i}\right) = \sum_{k=1}^{N} \operatorname{Cov}\left((A_{\lambda})_{ik}, (A_{\lambda})_{ki}\right) y_{k}^{2} = \operatorname{Var}\left((A_{\lambda})_{ii}\right) y_{i}^{2} + \sum_{k \neq i} \mathbb{E}\left[(A_{\lambda})_{ik}^{2}\right] y_{k}^{2}$$

We decompose $K^{-\frac{1}{2}} \text{Cov}(\hat{y}, \hat{y}) K^{-\frac{1}{2}}$ into two terms: let C be the matrix of entries

$$C_{ij} = \frac{\operatorname{Cov}((A_{\lambda})_{ii}, (A_{\lambda})_{jj}) + \delta_{i \neq j} \mathbb{E}\left[(A_{\lambda})_{ij}^{2}\right]}{\sqrt{d_{i}d_{j}}} y_{i}y_{j},$$

and let D the diagonal matrix with entries

$$D_{ii} = \frac{\sum_{k \neq i} \mathbb{E}\left[(A_{\lambda})_{ik}^2 \right] y_k^2}{d_i}$$

We have the decomposition $K^{-\frac{1}{2}} \text{Cov}(\hat{y}, \hat{y}) K^{-\frac{1}{2}} = C + D.$

Proposition C.12 asserts that $\operatorname{Cov}((A_{\lambda})_{ii}, (A_{\lambda})_{jj} \leq \frac{c'_1}{P}$ and $\mathbb{E}\left[(A_{\lambda})^2_{ij}\right] \leq \frac{c'_1}{P}$, and thus the operator norm of C is bounded by

$$\begin{split} \|C\|_{op} &\leq \|C\|_{F} \\ &= \sqrt{\sum_{i,j} \frac{\left(\operatorname{Cov}((A_{\lambda})_{ii}, (A_{\lambda})_{jj}) + \delta_{i \neq j} \mathbb{E}\left[(A_{\lambda})_{ij}^{2}\right]\right)^{2}}{d_{i}d_{j}} y_{i}^{2}y_{j}^{2}} \\ &\leq \frac{2c_{1}'}{P} \sqrt{\sum_{ij} \frac{1}{d_{i}d_{j}} y_{i}^{2}y_{j}^{2}} = \frac{2c_{1}' \|y\|_{K^{-1}}^{2}}{P} \end{split}$$

For the matrix D, we use the bound $\mathbb{E}\left[(A_{\lambda})_{ik}^{2}\right] \leq \frac{c_{1}'}{P} \frac{d_{i}}{d_{k}}$ to obtain

$$D_{ii} = \frac{\sum_{k \neq i} \mathbb{E}\left[(A_{\lambda})_{ik}^2 \right] y_k^2}{d_i} \le \frac{c_1'}{P} \sum_{k \neq i} \frac{y_k^2}{d_k} \le \frac{c_1' \|y\|_{K^{-1}}^2}{P},$$

which implies that $||D||_{op} \leq \frac{c'_1 ||y||_{K^{-1}}^2}{P}$. As a result

$$\begin{aligned} \operatorname{Var}\left(K(x,X)K^{-1}\hat{y}\right) &= K(x,X)K^{-1}\operatorname{Cov}(\hat{y},\hat{y})K^{-1}K(X,x) \\ &\leq K(x,X)K^{-\frac{1}{2}} \|C+D\|_{op}K^{-\frac{1}{2}}K(X,x) \\ &\leq \frac{3c_1'\|y\|_{K^{-1}}^2}{P} \|K(x,X)\|_{K^{-1}}^2 \\ &\leq \frac{3c_1'K(x,x)\|y\|_{K^{-1}}^2}{P}, \end{aligned}$$

where we used Inequality (12). This yields the result with $c_1 = 3c'_1$.

• Bound on $\mathbb{E}_{\pi} \left[\|\hat{\theta}\|^2 \right]$. To understand the variance of the λ -RF estimator $\hat{f}_{\lambda}^{(RF)}$, we need to describe the distribution of the squared norm of the parameters:

Proposition C.14. For γ , $\lambda > 0$ there exists a constant $c_2 > 0$ depending on λ , γ , T only such that

$$\left| \mathbb{E}[\|\hat{\theta}\|^2] - \partial_{\lambda} \tilde{\lambda} y^T K(X, X) \left(K(X, X) + \tilde{\lambda} I_N \right)^{-2} y \right| \le \frac{c_2 \|y\|_{K^{-1}}^2}{P}.$$
(15)

Proof. As in the proof of Theorem C.8, with the right change of basis, we may assume the Gram matrix K(X, X) to be diagonal. Recall that $\hat{\theta} = \frac{1}{\sqrt{P}} \left(\frac{1}{P} W K(X, X) W^T + \lambda I_N \right)^{-1} W K(X, X)^{\frac{1}{2}} y$, thus we have:

$$\|\hat{\theta}\|^{2} = \frac{1}{P} y^{T} K(X, X)^{\frac{1}{2}} W^{T}(\frac{1}{P} W K(X, X) W^{T} + \lambda I_{P})^{-2} W K(X, X)^{\frac{1}{2}} y = y^{T} A'(-\lambda) y,$$
(16)

where $A'(-\lambda)$ is the derivative of

$$A(z) = \frac{1}{P} K(X, X)^{\frac{1}{2}} W^{T} \left(\frac{1}{P} W K(X, X) W^{T} - z \mathbf{I}_{P}\right)^{-1} W K(X, X)^{\frac{1}{2}}$$

with respect to z evaluated at $-\lambda$. Let

$$\tilde{A}(z) = K(X, X)(K(X, X) + \tilde{\lambda}(-z)\mathbf{I}_N)^{-1}.$$

Remark that the derivative of $\tilde{A}(z)$ is given by $\tilde{A}'(z) = \tilde{\lambda}'(-z)K(X,X)(K(X,X) + \tilde{\lambda}(-z)I_N)^{-2}$. Thus, from Equation (16), the l.h.s. of (15) is equal to:

$$\left| y^T \left(\mathbb{E}[A'(-\lambda)] - \tilde{A}'(-\lambda) \right) y \right|.$$
(17)

Using a classical complex analysis argument, we will show that $\mathbb{E}[A'(-\lambda)]$ is close to $\tilde{A}'(-\lambda)$ by proving a bound of the difference between $\mathbb{E}[A(z)]$ and $\tilde{A}(z)$ for any $z \in \mathbb{H}_{<0}$.

Note that the proof of Proposition C.7 provides a bound on the diagonal entries of $\mathbb{E}[A(z)]$, namely that for any $z \in \mathbb{H}_{<0}$,

$$\left|\mathbb{E}[(A(z))_{ii}] - (\tilde{A}(z))_{ii}\right| \le \frac{c}{P},$$

where \hat{c} depends on z, γ and T only. Actually, in order to prove (15), we will derive the following slightly different bound: for any $z \in \mathbb{H}_{<0}$,

$$\left|\mathbb{E}[(A(z))_{ii}] - (\tilde{A}(z))_{ii}\right| \le \frac{\hat{c}}{d_i P},\tag{18}$$

where \hat{c} depends on z, γ and T only. Let $g_i := g_i(z)$ and $\tilde{m} := \tilde{m}(z)$. Recall that for $h_i : x \mapsto \frac{d_i x}{1+d_i x}$, one has $(A(z))_{ii} = h_i(g_i), (\tilde{A}(z))_{ii} = h_i(\tilde{m})$ and

$$T_{\tilde{m}}h_i(g_i) = \frac{d_i\tilde{m}}{1+d_i\tilde{m}} - \frac{d_i\left(g_i - \tilde{m}\right)}{\left(1+d_i\tilde{m}\right)^2},$$
$$h_i(g_i) - T_{\tilde{m}}h_i(g_i) = \frac{d_i^2\left(g_i - \tilde{m}\right)^2}{\left(1+d_ig_i\right)\left(1+d_i\tilde{m}\right)^2},$$

where $T_{\tilde{m}}h_i$ is the first order Taylor approximation of h_i centered at \tilde{m} . Using this first order Taylor approximation, we can bound the difference $|\mathbb{E}[h_i(g_i)] - h_i(\tilde{m})|$:

$$\begin{aligned} |\mathbb{E}[h_i(g_i)] - h_i(\tilde{m})| &\leq \frac{d_i |\mathbb{E}[g_i] - \tilde{m}|}{\left(1 + d_i \tilde{m}\right)^2} + \frac{d_i^2}{\left(1 + d_i \tilde{m}\right)^2} \mathbb{E}\left[\frac{|g_i - \tilde{m}|^2}{1 + d_i g_i}\right] \\ &\leq \frac{\mathbf{a}}{d_i P} + \mathbf{a} \sqrt{\mathbb{E}\left[\frac{1}{\left(1 + d_i g_i\right)^2}\right] \mathbb{E}\left[|g_i - \tilde{m}|^4\right]}, \end{aligned}$$

where a depends on z, γ and T. We need to bound $\mathbb{E}\left[\frac{1}{(1+d_ig_i)^2}\right]$. Recall that in the proof of Proposition C.12, we bounded $\mathbb{E}\left[\frac{1}{(1+d_ig_i)^4}\right]$. Using similar arguments, one shows that

$$\mathbb{E}\left[\frac{1}{\left(1+d_{i}g_{i}\right)^{2}}\right] \leq \frac{\hat{e}^{2}}{d_{i}^{2}},$$

where \hat{e} depends on z, γ and $\frac{1}{N} \text{Tr}(K(X, X))$ only. The term $\mathbb{E}\left[|g_i - \tilde{m}|^4\right]$ is bounded using Lemmas C.4, C.2 and Proposition C.5. This allows us to conclude that:

$$|\mathbb{E}[h_i(g_i)] - h_i(\tilde{m})| \le \frac{\hat{c}}{d_i P},$$

where \hat{c} depends on z, γ and $\frac{1}{N} \text{Tr}(K(X, X))$ only, hence we obtain the Inequality (18).

We can now prove Inequality 15. We bound the difference of the derivatives of the diagonal terms of A(z) and $\tilde{A}(z)$ by means of Cauchy formula. Consider a simple closed path $\phi : [0,1] \to \mathbb{H}_{<0}$ which surrounds z. Since

$$\mathbb{E}[(A'(z))_{ii}] - (\tilde{A}'(z))_{ii} = \frac{1}{2\pi i} \oint_{\phi} \frac{\mathbb{E}[(A(z))_{ii}] - (A(z))_{ii}}{(w-z)^2} dw,$$

using the bound (18), we have:

$$\left| \mathbb{E}[(A'(z))_{ii}] - (\tilde{A}'(z))_{ii} \right| \le \frac{\hat{c}}{d_i P} \frac{1}{2\pi} \oint_{\phi} \frac{1}{|w-z|^2} dw \le \frac{c_2}{d_i P},$$

where c_2 depends on z, γ , and T only. This allows one to bound the operator norm of $K(X, X)(\mathbb{E}[A'(z)] - \tilde{A}'(z))$:

$$||K(X,X)(\mathbb{E}[A'(z)] - \tilde{A}'(z))||_{op} \le \frac{c_2}{P}.$$

Using this bound and (17), we have

$$\left| \mathbb{E}[\|\hat{\theta}\|^2] - \partial_\lambda \tilde{\lambda} y^T K(X, X) \left(K(X, X) + \tilde{\lambda} I_N \right)^{-2} y \right| = \left| y^T \left(\mathbb{E}[A'(-\lambda)] - \tilde{A}'(-\lambda) \right) y \right| \le \frac{c_2 \|y\|_{K^{-1}}^2}{P}$$

which allows us to conclude.

• Bound on $\operatorname{Var}\left(\hat{f}_{\lambda}^{(RF)}(x)\right)$. We have shown all the bounds needed in order to prove the following proposition.

Proposition C.15. *For any* $x \in \mathbb{R}^d$ *, we have*

$$\operatorname{Var}\left(\widehat{f}_{\lambda}^{(RF)}(x)\right) \leq \frac{c_{3}K(x,x)\|y\|_{K^{-1}}^{2}}{P},$$

where $c_3 > 0$ depends on λ, γ, T .

Proof. Recall that for any $x \in \mathbb{R}^d$,

$$\begin{aligned} \operatorname{Var}(\hat{f}_{\lambda}^{(RF)}(x)) &= \operatorname{Var}\left(\mathbb{E}\left[\hat{f}_{\lambda}^{(RF)}(x) \mid F\right]\right) + \mathbb{E}\left[\operatorname{Var}\left[\hat{f}_{\lambda}^{(RF)}(x) \mid F\right]\right] \\ &= \operatorname{Var}\left(K(x,X)K(X,X)^{-1}\hat{y}\right) + \frac{1}{P}\mathbb{E}\left[\|\hat{\theta}\|^{2}\right]\left[K(x,x) - K(x,X)K(X,X)^{-1}K(X,x)\right].\end{aligned}$$

From Proposition C.13,

$$\operatorname{Var}\left(K(x,X)K(X,X)^{-1}\hat{y}\right) \le \frac{c_1 K(x,x) \|y\|_{K^{-1}}^2}{P},$$

and from Proposition C.14, we have:

$$\mathbb{E}\left[\|\hat{\theta}\|^{2}\right] \leq \partial_{\lambda}\tilde{\lambda} y^{T} K\left(K + \tilde{\lambda}I_{N}\right)^{-2} y + \frac{c_{2}\|y\|_{K^{-1}}^{2}}{P} \leq \partial_{\lambda}\tilde{\lambda} \|y\|_{K^{-1}}^{2} + \frac{c_{2}\|y\|_{K^{-1}}^{2}}{P} \leq \alpha \|y\|_{K^{-1}}^{2},$$

where $\alpha = \partial_{\lambda} \tilde{\lambda} + c_2$. Using the fact that $\tilde{K}(x, x) \leq K(x, x)$, we get

$$\mathbb{E}\left[\operatorname{Var}\left[\hat{f}(x) \mid F\right]\right] = \frac{1}{P} \mathbb{E}\left[\|\hat{\theta}\|^2\right] \left[K(x,x) - K(x,X)K(X,X)^{-1}K(X,x)\right]$$
$$\leq \frac{\alpha \|y\|_{K^{-1}}^2 K(x,x)}{P}.$$

This yields

$$\operatorname{Var}\left(\hat{f}_{\lambda}^{(RF)}(x)\right) \leq \frac{c_3 \|y\|_{K^{-1}}^2 K(x,x)}{P}$$

where $c_3 = \alpha + c_1$.

C.3.4. Average loss of λ -RF predictor and loss of $\tilde{\lambda}$ -KRR:

Putting the pieces together, we obtain the following bound on the difference $\Delta_E = |\mathbb{E}[L(\hat{f}_{\lambda,\gamma}^{(RF)})] - L(\hat{f}_{\tilde{\lambda}}^{(K)})|$ between the expected RF loss and the KRR loss:

Corollary C.16. If $\mathbb{E}_{\mathcal{D}}[K(x, x)] < \infty$, we have

$$\Delta_E \le \frac{C_1 \|y\|_{K^{-1}}}{P} \left(2\sqrt{L(\hat{f}_{\bar{\lambda}}^{(K)})} + C_2 \|y\|_{K^{-1}} \right),$$

where C_1 and C_2 depend on λ , γ , T and $\mathbb{E}_{\mathcal{D}}[K(x, x)]$ only.

Proof. Using the bias/variance decomposition, Corollary C.9, and the bound on the variance of the predictor, we obtain

$$\begin{split} \left| \mathbb{E} \left[L\left(\hat{f}_{\gamma,\lambda}^{(RF)}\right) \right] - L\left(\hat{f}_{\tilde{\lambda}}^{(K)}\right) \right| &\leq \left| L\left(\mathbb{E} \left[\hat{f}_{\gamma,\lambda}^{(RF)}\right]\right) - L\left(\hat{f}_{\tilde{\lambda}}^{(K)}\right) \right| + \mathbb{E}_{\mathcal{D}} \left[\operatorname{Var}\left(\hat{f}(x)\right) \right] \\ &\leq \frac{C \|y\|_{K^{-1}}}{P} \left(2\sqrt{L\left(\hat{f}_{\tilde{\lambda}}^{(K)}\right)} + \frac{C \|y\|_{K^{-1}}}{P} \right) + \frac{c_3 \|y\|_{K^{-1}}^2 \mathbb{E}_{\mathcal{D}} \left[K(x,x) \right]}{P} \\ &\leq \frac{C_1 \|y\|_{K^{-1}}}{P} \left(2\sqrt{L\left(\hat{f}_{\tilde{\lambda}}^{(K)}\right)} + C_2 \|y\|_{K^{-1}} \right), \end{split}$$

where C_1 and C_2 depends on λ , γ , T and $\mathbb{E}_{\mathcal{D}}[K(x, x)]$ only.

C.3.5. DOUBLE DESCENT CURVE

Recall that for any $\tilde{\lambda}$, we denote $M_{\tilde{\lambda}} = K(X, X)(K(X, X) + \tilde{\lambda}I_N)^{-2}$. A direct consequence of Proposition C.14 is the following lower bound on the variance of the predictor.

Corollary C.17. There exists $c_4 > 0$ depending on λ, γ, T only such that $\operatorname{Var}\left(\hat{f}_{\lambda}^{(RF)}(x)\right)$ is bounded from below by

$$\partial_{\lambda}\tilde{\lambda}\frac{y^T M_{\tilde{\lambda}}y}{P}\tilde{K}(x,x) - \frac{c_4 K(x,x) \|y\|_{K^{-1}}^2}{P^2}.$$

Proof. By the law of total cumulance,

$$\operatorname{Var}\left(\hat{f}_{\lambda}^{(RF)}(x)\right) \geq \mathbb{E}\left[\operatorname{Var}\left[\hat{f}_{\lambda}^{(RF)}(x) \mid F\right]\right] \geq \frac{1}{P}\mathbb{E}\left[\|\hat{\theta}\|^{2}\right]\tilde{K}(x,x).$$

From Proposition C.14, $\mathbb{E}[\|\hat{\theta}\|^2] \ge \partial_{\lambda} \tilde{\lambda} y^T M_{\tilde{\lambda}} y - \frac{c_2 \|y\|_{K^{-1}}^2}{P}$, hence

$$\operatorname{Var}\left(\hat{f}_{\lambda}^{(RF)}(x)\right) \geq \partial_{\lambda}\tilde{\lambda}\frac{y^{T}M_{\tilde{\lambda}}y}{P}\tilde{K}(x,x) - \frac{c_{4}\tilde{K}(x,x)\|y\|_{K^{-1}}^{2}}{P^{2}}.$$

The result follows from the fact that $\tilde{K}(x, x) \leq K(x, x)$.

References

- Au, B., Cébron, G., Dahlqvist, A., Gabriel, F., and Male, C. Large permutation invariant random matrices are asymptotically free over the diagonal, 2018. To appear in Annals of Probability.
- Bai, Z. and Wang, Z. Large sample covariance matrices without independence structures in columns. *Statistica Sinicia*, 18: 425–442, 2008.
- Eaton, M. Multivariate statistics: A vector space approach. *Journal of the American Statistical Association*, 80, 01 2007. doi: 10.2307/20461449.