
Supplementary Material for
Implicit Regularization of Random Feature Models

We organize the Supplementary Material (Supp. Mat.) as follows:

• In Section A, we present the details for the numerical results presented in the main text (and in the Supp. Mat.).

• In Section B, we present additional experiments and some discussions.

• In Section C, we present the proofs of the mathematical results presented in the main text.

A. Experimental Details
The experimental setting consists of N training and Ntst test datapoints {(xi, yi)}N+Ntst

i=1 ∈ Rd × R. We sample P Gaussian
features f (1), . . . , f (P ) ofN+Ntst dimension with zero mean and covariance matrix entries thereof Ci,j = K(xi, xj) where
K(x, x′) = exp(−‖x − x′‖2/`) is a Radial Basis Function (RBF) Kernel with lengthscale `. The extended data matrix
F̄ = 1√

P
[f (1), . . . , f (P )] of size (N +Ntst)× P is decomposed into two matrices: the (training) data matrix F = F̄[:N,:] of

size N × P , and a test data matrix Ftst = F̄[N :,:] of size Ntst × P so that F̄ = [F ;Ftst]. For a given ridge λ, we compute the

optimal solution using the data matrix F , i.e. θ̂ = FT
(
FFT + λIN

)−1
y and obtain the predictions on the test datapoints

ŷtst = FtstF
T
(
FFT + λIN

)−1
y.

Using the procedure above, we performed the following experiments:

A.1. Experiments with Sinusoidal data

We consider a dataset of N = 4 training datapoints (xi, sin(xi)) ∈ [0, 2π) × [−1, 1] and Ntst = 100 equally spaced test
data points in the interval [0, 2π). In this experiment, the lengthscale of the RBF Kernel is ` = 2. We compute the average
and standard deviation the λ-RF predictor using 500 samplings of F̄ (see Figure 1 in the main text and Figure 1 in the Supp.
Mat.).

A.2. MNIST experiments

We sample N = 100 and Ntst = 100 images of digits 7 and 9 from the MNIST dataset (image size d = 24× 24, edge pixels
cropped, all pixels rescaled down to [0, 1] and recentered around the mean value) and label each of them with +1 and −1
labels, respectively. In this experiment, the lengthscale of the RBF Kernel is ` = d`0 where `0 = 0.2. We approximate the
expected λ-RF predictor on the test datapoints using the average of ŷtst over 50 instances of F̄ and compute the MSE (see
Figures 2, 3 in the main text; in the ridgeless case –λ = 10−4 in our experiments– when P is close to N , the average is over
500 instances). In Figure 4 of the main text, using Ntst = 100 test points, we compare two predictors trained over N = 100
and N = 1000 training datapoints.

A.3. Random Fourier Features

We sample random Fourier Features corresponding to the RBF Kernel with lengthscale ` = d`0 where `0 = 0.2 (same
as above) and consider the same dataset as in the MNIST experiment. The extended data matrix F̄ for Fourier features
is obtained as follows: we sample d-dimensional i.i.d. centered Gaussians w(1), . . . , w(P ) with standard deviation

√
2/`,

sample b(1), . . . , b(P ) uniformly in [0, 2π), and define F̄i,j =
√

2
P cos(xTi w

(j) + b(j)). We approximate the expected

Fourier Features predictor on the test datapoints using the average of ŷtst over 50 instances of F̄ (see Figure 5).
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B. Additional Experiments
We present the following complementary simulations:

• In Section B.1, we present the distribution of the λ-RF predictor for the selected P and λ.

• In Section B.2, we present the evolution of λ̃ and its derivative ∂λλ̃ for different eigenvalue spectra.

• In Section B.3, we show the evolution of the eigenvalue spectrum of E[Aλ].

• In Section B.4, we present numerical experiments on MNIST using random Fourier features.

B.1. Distribution of the RF predictor
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(e) P = 2, λ = 10−4
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(f) P = 4, λ = 10−4
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(g) P = 10, λ = 10−4
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(h) P = 100, λ = 10−4
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(i) P = 2, λ = 10−1
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(l) P = 100, λ = 10−1
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(p) P = 100, λ = 1

Figure 1. Distribution of the RF predictor. Red dots represent a sinusoidal dataset yi = sin(xi) for N = 4 points xi in [0, 2π). For
P ∈ {2, 4, 10, 100} and λ ∈ {0, 10−4, 10−1, 1}, we sample ten RF predictors (blue dashed lines) and compute empirically the average
RF predictor (black lines) with ±2 standard deviations intervals (shaded regions).
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B.2. Evolution of the Effective Ridge λ̃

In Figure 2, we show how the effective ridge λ̃ and its derivative ∂λλ̃ evolve for the selected eigenvalue spectra with various
decays (exponential or polynomial) as a function of γ and λ. In Figure 3, we compare the evolution of λ̃ for various N .

100

10-1

10-2

10-3

10-4

10-1 100 101 102

(a) Exponential, λ̃

1

2

3

4

5

6

10-1 100 101 102

(b) Exponential, ∂λλ̃

0.00
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

(c) Exponential, λ̃

100

10-1

10-2

10-3

10-4

10-1 100 101 102

(d) Polynomial, λ̃

1

2

3

4

5

6

10-1 100 101 102

(e) Polynomial, ∂λλ̃

0.00
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

(f) Polynomial, λ̃

Figure 2. Evolution of the effective ridge λ̃ and its derivative ∂λλ̃ for various levels of ridge λ (or γ) and for N = 20. We consider two

different decays for d1, . . . , dN : (i) exponential decay in i (i.e. di = e−
(i−1)

2 , top plots) and (ii) polynomial decay in i (i.e. di = 1
i
,

bottom plots).
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Figure 3. Evolution of effective ridge λ̃ as a function of γ for two ridges (a) λ = 10−4 and (b) λ = 0.5 and for various N . We consider

an exponential decay for d1, . . . , dN , i.e. di = e−
(i−1)

2 .
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B.3. Eigenvalues of Aλ

The (random) prediction ŷ on the training data is given by ŷ = Aλy where Aλ = F (FTF + λI)−1FT . The average
λ-RF predictor is E[f̂

(RF )
λ (x)] = K(x,X)K(X,X)−1E[Aλ]y. We denote by d̃1, . . . d̃N the eigenvalues of E[Aλ]. By

Proposition C.7, the d̃i’s converge to the eigenvalues d1
d1+λ̃

, . . . , dN
dN+λ̃

of K(K+ λ̃IN )−1 as P goes to infinity. We illustrate

the evolution of d̃i and their convergence to di
di+λ̃

for two different eigenvalue spectrums d1, . . . dN .
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Figure 4. Eigenvalues d̃1, . . . d̃N (red dots) vs. eigenvalues d1
d1+λ̃

, . . . , dN
dN+λ̃

(blue dots) for N = 10. We consider various values of P

and two different decays for d1, . . . , dN : (i) exponential decay in i, i.e. di = e−
(i−1)

2 (right plots) and (ii) polynomial decay in i, i.e.
di =

1
i

(left plots).
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B.4. Average Fourier Features Predictor

The Fourier Features predictor λ-FF is f̂ (FF )(x) = 1√
P

∑P
j=1 θ̂jφ

(j)(x) where φ(j)(x) = cos(xTw(j) + b(j)) and

θ̂ = FT
(
FFT + λIN

)−1
y with the data matrix F as described in Section A.3.

We investigate how close the average λ-FF predictor is to the λ̃-KRR predictor and we observe the following:

1. The difference of the test errors of the two predictors decreases as γ increases.

2. In the overparameterized regime, i.e. P ≥ N , the test error of the λ̃-KRR predictor matches with the test error of the
λ-FF predictor.

3. For N = 1000, strong agreement between the two test errors is observed already for γ > 0.1. We also observe that
Gaussian features achieve lower (or equal) test error than the Fourier features for all γ in our experiments.
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Figure 5. Comparision of the test errors of the average λ-FF predictor and the λ̃-KRR predictor. In (a) and (c), the test errors of the
average λ-FF predictor and of the λ̃-KRR predictor are reported for various ridge for N = 100 and N = 1000 MNIST data points (top
and bottom rows). In (b) and (d), the average test error of the λ-FF predictor and the test error of its average are reported.

.
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C. Proofs
C.1. Gaussian Random Features

Proposition C.1. Let f̂ (RF )
λ be the λ-RF predictor and let ŷ = F θ̂ be the prediction vector on training data, i.e. ŷi =

f̂
(RF )
λ (xi). The process f̂ (RF )

λ is a mixture of Gaussians: conditioned on F , we have that f̂ (RF )
λ is a Gaussian process. The

mean and covariance of f̂ (RF )
λ conditioned on F are given by

E[f̂
(RF )
λ (x)|F ] = K(x,X)K(X,X)−1ŷ, (1)

Cov[f̂
(RF )
λ (x), f̂

(RF )
λ (x′)|F ] =

‖θ̂‖2

P
K̃(x, x′) (2)

where K̃(x, x′) = K(x, x′)−K(x,X)K(X,X)−1K(X,x′) denotes the posterior covariance kernel.

Proof. Let F = ( 1√
P
f (j)(xi))i,j be the N × P matrix of values of the random features on the training set. By definition,

f̂
(RF )
λ = 1√

P

∑P
p=1 θ̂pf

(p). Conditioned on the matrix F , the optimal parameters (θ̂p)p are not random and (f (p))p is still

Gaussian, hence, conditioned on the matrix F , the process f̂ (RF )
λ is a mixture of Gaussians. Moreover, conditioned on the

matrix F , for any p, p′, f (p) and f (p
′) remain independent, hence

E
[
f̂
(RF )
λ (x) | F

]
=

1√
P

P∑
p=1

θ̂pE
[
f (p)(x) | f (p)N

]

Cov
[
f̂
(RF )
λ (x), f̂

(RF )
λ (x′) | F

]
=

1

P

P∑
p=1

θ̂2pCov
[
f (p)(x), f (p)(x′) | f (p)N

]
.

where we have set f (p)N = (f (p)(xi))i ∈ RN . The value of E
[
f (p)(x) | f (p)N

]
and Cov

[
f (p)(x), f (p)(x′) | f (p)N

]
are

obtained from classical results on Gaussian conditional distributions (Eaton, 2007):

E
[
f (p)(x) | f (p)N

]
= K(x,X)K(X,X)−1f

(p)
N ,

Cov
[
f (p)(x), f (p)(x′) | f (p)N

]
= K̃(x, x′),

where K̃(x, x′) = K(x, x′)−K(x,X)K(X,X)−1K(X,x′). Thus, conditioned on F , the predictor f̂ (RF )
λ has expectation:

E
[
f̂
(RF )
λ (x) | F

]
= K(x,X)K(X,X)−1

1√
P

P∑
p=1

θ̂pf
(p)
N = K(x,X)K(X,X)−1ŷ

and covariance:

Cov
[
f̂
(RF )
λ (x), f̂

(RF )
λ (x′) | F

]
=

1

P

P∑
p=1

θ̂2pK̃(x, x′) =
‖θ̂‖2

P
K̃(x, x′).

C.2. Generalized Wishart Matrix

Setup. In this section, we consider a fixed deterministic matrix K of size N ×N which is diagonal positive semi-definite,
with eigenvalues d1, . . . , dN . We also consider a P ×N random matrix W with i.i.d. standard Gaussian entries.

The key object of study is the P × P generalized Wishart random matrix FTF = 1
PWKWT and in particular its Stieltjes

transform defined on z ∈ C \ R+, where R+ = [0,+∞[:

mP (z) =
1

P
Tr
[(
FTF − zIP

)−1]
=

1

P
Tr

[(
1

P
WKWT − zIP

)−1]
,
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where K is a fixed positive semi-definite matrix.

Since FTF has positive real eigenvalues λ1, . . . , λP ∈ R+, and

mP (z) =
1

P

P∑
p=1

1

λp − z
,

we have that for any z ∈ C \ R+,

|mP (z)| ≤ 1

d(z,R+)
,

where d(z,R+) = inf {|z − y| , y ∈ R+} is the distance of z to the positive real line. More precisely, mP (z) lies in the
convex hull Ωz = Conv

({
1
d−z : d ∈ R+

})
. As a consequence, the argument arg (mP (z)) ∈ (−π, π) lies between 0 and

arg
(
− 1
z

)
, i.e. mP (z) lies in the cone spanned by 1 and − 1

z .

Our first lemma implies that the Stieljes transform concentrates around its mean as N and P go to infinity with γ = P
N fixed.

Lemma C.2. For any integer m ∈ N and any z ∈ C \ R+, we have

E [|mP (z)− E [mP (z)]|m] ≤ cP−
m
2 ,

where c depends on z, γ, and m only.

Proof. The proof follows Step 1 of (Bai & Wang, 2008). Let w1, ..., wN be the columns of W from left to right. Let
us introduce the P × P matrices B(z) = 1

PWKWT − zIP and B(i)(z) = 1
PW(i)K(i)W

T
(i) − zIP where W(i) is the

P × (N − 1) submatrix of W obtained by removing its i-th column wi, and K(i) is the (N − 1)× (N − 1) submatrix of K
obtained by removing both its i-th column and i-th row. Since the eigenvalues of WKWT and W(i)K(i)W

T
(i) are all real

and positive, B(z) and B(i)(z) are invertible matrices for z /∈ R+.

Noticing that

B(z) =
1

P
WKWT − zIP =

1

P
W(i)K(i)W

T
(i) − zIP +

di
P
wiw

T
i

is a rank one perturbation of the matrix B(i)(z), by the Sherman–Morrison’s formula, the inverse of B(z) is given by:

B(z)−1 =
(
B(i)(z)

)−1 − di
P

1

1 + di
P w

T
i

(
B(i)(z)

)−1
wi

(
B(i)(z)

)−1
wiw

T
i

(
B(i)(z)

)−1
.

We denote Ei the conditional expectation givenwi+1, ..., wN . We have E0[mP (z)] = mP (z) and EN [mP (z)] = E[mP (z)].
As a consequence, we get:

mP (z)− E[mP (z)] =

N∑
i=1

(Ei−1[mP (z)]− Ei[mP (z)])

=
1

P

N∑
i=1

(Ei−1 − Ei)
[
Tr
(
B(z)−1

)]
=

1

P

N∑
i=1

(Ei−1 − Ei)
[
Tr
(
B(z)−1

)
− Tr

(
B(i)(z)

−1)] .
The last equality comes from the fact that Tr

(
B(i)(z)

−1) does not depend on wi, hence

Ei−1
[
Tr
(
B(i)(z)

−1)] = Ei
[
Tr
(
B(i)(z)

−1)] .
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Let gi : C \ R+ → C be the holomorphic function given by gi(z) := 1
P w

T
i

(
B(i)(z)

)−1
wi. Its derivative is given by

g′i(z) = 1
P w

T
i

(
B(i)(z)

)−2
wi. Hence

Tr
(
B(z)−1

)
− Tr

(
B(i)(z)

−1) = −
di
P Tr

((
B(i)(z)

)−1
wiw

T
i

(
B(i)(z)

)−1)
1 + digi(z)

= − dig
′
i(z)

1 + digi(z)
,

where we used the cyclic property of the trace. We can now bound this difference:

∣∣Tr
(
B(z)−1

)
− Tr

(
B(i)(z)

−1)∣∣ =

∣∣∣∣ dig
′
i(z)

1 + digi(z)

∣∣∣∣
≤

∣∣∣∣∣wTi
(
B(i)(z)

)−2
wi

wTi
(
B(i)(z)

)−1
wi

∣∣∣∣∣
≤ max

w

∣∣∣∣∣wT
(
B(i)(z)

)−2
w

wT
(
B(i)(z)

)−1
w

∣∣∣∣∣
≤ ‖

(
B(i)(z)

)−1 ‖op = max
j
| 1

νj − z
| ≤ 1

d(z,R+)
,

where νj are the eigenvalues of 1
PW(i)K(i)W

T
(i).

The sequence (
(EN−i − EN−i+1)

[
Tr
(
B(z)−1

)
− Tr

(
B(N−i+1)(z)

−1)])
i=1,...,N

is a martingale difference sequence. Hence, by Burkholder’s inequality, there exists a positive constant Km such that

E [|mP (z)− E [mP (z)]|m] ≤ Km
1

Pm
E

( N∑
i=1

∣∣[Ei−1 − Ei]
(
Tr
(
B(z)−1

)
− Tr

(
B(i)(z)

−1))∣∣2)m
2


≤ Km

1

Pm

(
N

(
2

d(z,R+)

)2
)m

2

≤ Kmγ
−m2

(
2

d(z,R+)

)m
P−

m
2 ,

hence the desired result with c = Kmγ
−m2

(
2

d(z,R+)

)m
.

The following lemma, which is reminiscent of Lemma 4.5 in (Au et al., 2018), is a consequence of Wick’s formula for
Gaussian random variables and is key to prove Lemma C.4.

Lemma C.3. If A(1), . . . , A(k) are k square random matrices of size P independent from a standard Gaussian vector w of
size P ,

E
[
wTA(1)wwTA(2)w . . . wTA(k)w

]
=

∑
p∈P 2(2k)

∑
i1,...,i2k∈{1,...,P}
p≤Ker(i1,...,i2k)

E
[
A

(1)
i1i2

. . . A
(k)
i2k−1i2k

]
, (3)

where P 2(2k) is the set of pair partitions of {1, . . . , 2k}, ≤ is the coarser (i.e. p ≤ q if q is coarser than p), and for any
i1, . . . , i2k in {1, . . . , P}, Ker(i1, . . . , i2k) is the partition of {1, . . . , 2k} such that two elements u and v in {1, ..., 2k} are
in the same block (i.e. pair) of Ker (i1, . . . , i2k) if and only if iu = iv .
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Furthermore,

E
[(
wTA(1)w − Tr

(
A(1)

))(
wTA(2)w − Tr

(
A(2)

))
. . .
(
wTA(k)w − Tr

(
A(k)

))]
=

∑
p∈:P 2(2k):

∑
i1,...,i2k∈{1,...,P}
p≤Ker(i1,...,i2k)

E
[
A

(1)
i1i2

. . . A
(k)
i2k−1i2k

]
, (4)

where : P 2(2k) : is the subset of partitions p in P 2(2k) for which {2j − 1, 2j} is not a block of p for any j ∈ {1, . . . , k}.

Proof. Expanding the left-hand side of Equation (3), we obtain:

E

 ∑
i1,...,i2k∈{1,...,P}

wi1A
(1)
i1i2

wi2wi3A
(2)
i3i4

wi4 . . . wi2k−1
A

(k)
i2k−1i2k

wi2k

 .
Using Wick’s formula, we get: ∑

i1,...,i2k∈{1,...,P}

∑
p∈P2(2k),

p≤Ker(i1,...,i2k)

E
[
A

(1)
i1i2

A
(2)
i3i4

. . . A
(k)
i2k−1i2k

]
,

hence, interchanging the order of summation, we recover the left-hand side of Equation (3):∑
p∈P 2(2k)

∑
i1,...,i2k∈{1,...,P}
p≤Ker(i1,...,i2k)

E
[
A

(1)
i1i2

. . . A
(k)
i2k−1i2k

]
.

We now prove Equation (4). Expanding the product, the left-hand side is equal to:

∑
I⊂{1,...,k}

(−1)k−#IE

[∏
i∈I

wTA(i)w
∏
i/∈I

Tr(A(i))

]
.

Expanding the product and the trace, and using Wick’s equation, we obtain: a∑
I⊂{1,...,k}

(−1)k−#I
∑

i1,...,i2k∈{1,...,P}

∑
p∈P2(2k),p≤pI
p≤Ker(i1,...,i2k)

E
[
A

(1)
i1i2

. . . A
(k)
i2k−1i2k

]
.

where pI is the partition composed of blocks of size 2 given by {2l, 2l + 1} with l /∈ I and the rest of the indices contained
in a single block. Interchanging the order of summation, we get:

∑
i1,...,i2k∈{1,...,P}

∑
p∈P2(2k),

p≤Ker(i1,...,i2k)

E
[
A

(1)
i1i2

. . . A
(k)
i2k−1i2k

] ∑
I⊂{1,...,k},

p≤pI

(−1)k−#I

 .
Since

[∑
I⊂{1,...,k},p≤pI (−1)#I

]
= δ{I⊂[k],p≤pI}={{1,...,k}} and {I ⊂ [k], p ≤ pI} = {{1, . . . , k}} if and only if

p ∈:P 2(2k):, interchanging a last time the order of summation, we recover the left-hand side of Equation (4):∑
p∈:P 2(2k):

∑
i1,...,i2k∈{1,...,P}
p≤Ker(i1,...,i2k)

E
[
A

(1)
i1i2

. . . A
(k)
i2k−1i2k

]
.
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For any z ∈ C \ R+, we define the holomorphic function gi : C \ R+ → C by

gi(z) =
1

P
wTi

(
1

P
W(i)K(i)W

T
(i) − z IP

)−1
wi,

where W(i) is the P × (N − 1) submatrix of W obtained by removing its i-th column wi, and K(i) is the (N − 1)× (N − 1)
submatrix of K obtained by removing both its i-th column and i-th row. In the following lemma, we bound the distance of
gi(z) to its mean. Then we prove that E[gi(z)] is close to the expected Stieljes transform of K.

Lemma C.4. The random function gi(z) satisfies:

|E [gi(z)]− E [mP (z)]| ≤ c0
P
,

Var (gi(z)) ≤ c1
P
,

E
[
(gi(z)− E [gi(z)])

4
]
≤ c2

P 2
,

E
[
(gi(z)− E [gi(z)])

8
]
≤ c3

P 4
,

where c0, c1, c2, and c3 depend on γ and z only.

Proof. The random variable wi is independent from B(i)(z) = 1
PW(i)K(i)W

T
(i) − zIP since the i-th column of W does

not appear in the definition of B(i)(z). Using Lemma C.3, since there exists a unique pair partition p ∈ P 2(2), namely
{{1, 2}}, the expectation of gi(z) is given by

E [gi(z)] =
1

P
E
[
Tr
[
B(i)(z)

−1]] .
Recall that E [mP (z)] = 1

P E
[
Tr
[
B(z)−1

]]
and

∣∣Tr
(
B(z)−1

)
− Tr

(
B(i)(z)

−1)∣∣ ≤ 1
d(z,R+) (from the proof of Lemma

C.2). Hence

|E [gi(z)]− E [mP (z)]| ≤ 1

P
E
[∣∣Tr

(
B(z)−1

)
− Tr

(
B(i)(z)

−1)∣∣] ≤ 1

P

1

d(z,R+)
.

which proves the first assertion with c0 = 1
d(z,R+) .

Now, let us consider the variance of gi(z). Using our previous computation of E [gi(z)], we have

Var(gi(z)) = E

[
wTi

(
B(i)(z)

)−1
P

wiw
T
i

(
B(i)(z)

)−1
P

wi

]
− E

[
1

P
Tr
[
B(i)(z)

−1]]2 .
The first term can be computed using the first assertion of Lemma C.3: there are 2 matrices involved, thus we have to

sum over 3 pair partitions. A simplification arises since (B(i)(z))
−1

P is symmetric: the partition {{1, 2}, {3, 4}} yields

E

[(
Tr

[
(B(i)(z))

−1

P

])2
]

whereas both {{1, 3}, {2, 4}} and {{1, 4}, {2, 4}} yield E
(

Tr

[
(B(i)(z))

−2

P 2

])
.

Thus, the variance of gi(z) is given by:

Var(gi(z)) = 2E

(
Tr

[(
B(i)(z)

)−2
P 2

])
+ E

[(
1

P
Tr
[(
B(i)(z)

)−1])2
]
− E

[
1

P
Tr
[(
B(i)(z)

)−1]]2
hence is given by a sum of two terms:

Var(gi(z)) =
2

P
E
(

1

P
Tr
[(
B(i)(z)

)−2])
+ Var

(
1

P
Tr
[(
B(i)(z)

)−1])
.

Using the same arguments as those explained for the bound on the Stieltjes transform, the first term is bounded by 2
Pd(z,R+)2 .

In order to bound the second term, we apply Lemma C.2 for W(i) and K(i) in place of W and K. The second term is
bounded by c

P , hence the bound Var (gi(z)) ≤ c1

P .
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Finally, we prove the bound on the fourth moment of gi(z)− E [gi(z)]. We denote m(i)(z) = 1
P Tr

[(
B(i)(z)

)−1]
. Recall

that E [gi(z)] = E
[
m(i)(z)

]
. Using the convexity of t 7→ t4, we have

E
[
(gi(z)− E[gi(z)])

4
]

= E
[(
gi(z)−m(i)(z) +m(i)(z)− E

[
m(i)(z)

])4]
≤ 8E

[(
gi(z)−m(i)(z)

)4]
+ 8E

[(
m(i)(z)− E

[
m(i)(z)

])4]
.

We bound the second term using the concentration of the Stieljes transform (Lemma C.2): it is bounded by 8c
P 2 . The first

term is bounded using the second assertion of Lemma C.3. Using the symmetry of B(i)(z), the partitions in : P 2(4) : yield
two different terms, namely:

1. 1
P 2E

[(
1
P Tr

[(
B(i)(z)

)−2])2]
, for example if p = {{1, 3}, {2, 4}, {5, 7}, {6, 8}}

2. 1
P 3E

[
1
P Tr

[(
B(i)(z)

)−4]]
, for example if p = {{2, 3}, {4, 5}, {6, 7}, {8, 1}}.

We bound the two terms using the same arguments as those explained for the bound on the Stieljes transform at the
beginning of the section. The first term is bounded by d(z,R+)−4

P 2 and the second term by d(z,R+)−4

P 3 hence the bound

E
[
(gi(z)− E [gi(z)])

4
]
≤ c2

P 2 .

The bound E[(gi(z)− E [gi(z)])
8
] ≤ c3

P 4 is obtained in a similar way, using the second assertion of Lemma C.3 and simple
bounds on the Stieljes transform.

In the next proposition we show that the Stieltjes transform mP (z) is close in expectation to the solution of a fixed point
equation.

Proposition C.5. For any z ∈ H<0 = {z : Re(z) < 0} ,

|E [mP (z)]− m̃(z)| ≤ e

P
,

where e depends on z, γ, and 1
NTr(K) only and where m̃(z) is the unique solution in the cone Cz := {u− 1

z v : u, v ∈ R+}
spanned by 1 and − 1

z of the equation

γ =
1

N

N∑
i=1

dim̃(z)

1 + dim̃(z)
− γzm̃(z).

Proof. We use the same notation as in the previous proofs, namelyB(z) = 1
PWKWT −zIP ,B(i)(z) = 1

PW(i)K(i)W
T
(i)−

zIP and gi(z) = 1
P w

T
i

(
B(i)(z)

)−1
wi. Let νj ≥ 0, j = 1, . . . , P be the spectrum of the positive semi-definite matrix

1
PW(i)K(i)W

T
(i). After diagonalization, we have

B(i)(z)
−1 = OTdiag(

1

ν1 − z
, . . . ,

1

νP − z
)O,

with O an orthogonal matrix. Then

gi(z) =
1

P
Tr
((
B(i)(z)

)−1
wiw

T
i

)
=

1

P

P∑
j=1

((Owi)jj)
2

νj − z
. (5)

Since z ∈ H<0, we conclude that <[gi(z)] ≥ 0 for all i = 1, . . . , P .

In order to prove the proposition, the key remark is that, since Tr
(
( 1
PWKWT − zIP )(B(z))−1

)
= P , the Stieltjes

transform mP (z) satisfies the following equation:

P = Tr

(
1

P
KWTB(z)−1W

)
− zPmP (z).
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From the proof of Lemma C.2, recall that B−1(z) = B−1(i) (z)− di
P

1

1+
di
P w

T
i B
−1
(i)

(z)wi
B−1(i) (z)wiw

T
i B
−1
(i) (z), hence:

1

P
wTi B

−1(z)wi = gi(z)−
digi(z)

2

1 + digi(z)

=
gi(z)

1 + digi(z)
.

(6)

Expanding the trace,

Tr

(
1

P
KWTB(z)−1W

)
=

N∑
i=1

di
1

P
wTi B

−1(z)wi =

N∑
i=1

digi(z)

1 + digi(z)
.

Thus, the Stieljes transform mP (z) satisfies the following equation P =
∑N
i=1

digi(z)
1+digi(z)

− zPmP (z), or equivalently

γ =
1

N

N∑
i=1

digi(z)

1 + digi(z)
− zγmP (z).

Recall that γ > 0 and Re(z) < 0. The Stieljes transform mP (z) can be written as a function of gi(z) for i = 1, . . . , n:
mP (z) = f(g1(z), ..., gN (z)) where

f(g1, . . . , gN ) =
1

γzN

N∑
i=1

digi
1 + digi

− 1

z
= −1

z

(
1− 1

γ
+

1

γ

1

N

N∑
i=1

1

1 + digi

)
.

From Lemma C.6, the map f(m) = f(m, ...,m) has a unique non-degenerate fixed point m̃(z) in the cone Cz . We will
show that E [mP (z)] is close to m̃(z) using the following two steps: we show a non-tight bound |E [mP (z)]− m̃(z)| ≤ e′√

P

and use it to obtain the tighter bound |E[mP (z)]− m̃(z)| ≤ e
P .

Let us prove the e′√
P

bound. From Lemma C.6, the distance between mP (z) and the fixed point m̃(z) of f is bounded by
the distance between f(mP (z), . . . ,mP (z)) and mP (z) . Using the fact that mP (z) = f(g1(z), ..., gN (z)), we obtain

|E[mP (z)]− m̃(z)| ≤ E [|mP (z)− m̃(z)|] ≤ E [|f(mP (z), . . . ,mP (z))− f(g1(z), ..., gN (z))|] .

Recall that for any z ∈ H<0, <(gi(z)) ≥ 0: we need to study the function f on HN≥0 where H≥0 = {z ∈ C|<(z) ≥ 0}. On
HN≥0, the function f is Lipschitz:

|∂gif(g1, .., gN )| =
∣∣∣∣ 1

γzN

di
(1 + digi)2

∣∣∣∣ ≤ di
γ |z|N

.

Thus,

E [|f (mP (z), ...,mP (z))− f (g1(z), ..., gN (z))|] ≤
N∑
i=1

di
γ |z|N

E [|mP (z)− gi(z)|] .

Since

E [|mP (z)− gi(z)|] ≤ E [|mP (z)− E [mP (z)]|] + |E [mP (z)]− E [gi(z)]|+ E [|gi(z)− E [gi(z)]|] ,

using Lemmas C.2 and C.4, we get that E [|mP (z)− gi(z)|] ≤ d√
P

, where d depends on γ and z only. This implies that

E [|f (mP (z), ...,mP (z))− f (g1(z), ..., gN (z))|] ≤ 1√
P

d

N
Tr (K) ,

which allows to conclude that |E[mP (z)]− m̃(z)| ≤ e′√
P

where e′ depends on γ, z and 1
NTr(K) only.
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We strengthen this inequality and show the e
P bound. Using again Lemma C.6, we bound the distance between E[mP (z)]

and the fixed point m̃(z) by

|E[mP (z)]− m̃(z)| ≤ |E[f(g1(z), . . . , gN (z))]− f(E[mP (z)], . . . ,E[mP (z)])|

and study the r.h.s. using a Taylor approximation of f near E [mP (z)]. For i = 1, . . . , N and m0 ∈ H≥0, let Tm0hi be the
first order Taylor approximation of the map hi : m 7→ 1

1+dim
at a point m0. The error of the first order Taylor approximation

is given by

hi(m)− Tm0hi(m) =
1

1 + dim
−

(
1

1 + dim0
− di(m−m0)

(1 + dim0)
2

)
=

d2i (m0 −m)
2

(1 + dim) (1 + dim0)
2 ,

which, for m ∈ H≥0 can be upper bounded by a quadratic term:

|hi(m)− Tm0
hi(m)| =

∣∣∣∣∣ d2i

(1 + dim) (1 + dim0)
2

∣∣∣∣∣ |m0 −m|2 ≤
1

|m0|2
|m0 −m|2 . (7)

The first order Taylor approximation Tf of f at the N -tuple (E [mP (z)] , ...,E [mP (z)]) is

Tf(g1, .., gN ) = −1

z

(
1− 1

γ
+

1

γ

1

N

N∑
i=1

TE[mP (z)]hi(gi)

)
.

Using this Taylor approximation, E[f(g1(z), . . . , gN (z))]− f(E[mP (z)], . . . ,E[mP (z)]) is equal to:

E [Tf(g1(z), .., gN (z))]− f(E[mP (z)], . . . ,E[mP (z)]) + E [f(g1(z), ..., gN (z))− Tf(g1(z), .., gN (z))] .

Using Lemma C.4, we get

|E [f(g1(z), ..., gN (z))− Tf(g1(z), .., gN (z))]| ≤ 1

|z| γ
1

N

N∑
i=1

1

|E[mP (z)]|2
E
[
|gi(z)− E [mP (z)]|2

]
≤ 1

P

α

|E[mP (z)]|2

and

|E [Tf(g1(z), .., gN (z))]− f(E [mP (z)] , ...,E [mP (z)])| ≤ 1

|z| γ
1

N

N∑
i=1

di |E [gi]− E [mP (z)]|
|1 + diE [mP (z)]|2

≤
β
(

1
NTrK

)
P

where α and β depends on z and γ only. From the bounds |E[mP (z)]− m̃(z)| ≤ e′√
P

and |m̃(z)| ≥ (|z|+ 1
NγTr(K))−1

(Lemma C.6), the bound 1
P

α
|E[mP (z)]|2 yields a α̃

P bound. This implies that |E[mP (z)]− f(E[mP (z)], . . . ,E[mP (z)])| ≤ e
P ,

hence the desired inequality |E [mP (z)]− m̃(z)| ≤ e
P .

For the proof of Proposition C.5, we have used the fact that the map fz introduced therein has a unique non-degenerate fixed
point in the cone Cz := {u− 1

z v : u, v ∈ R+}. We now proceed with proving this statement.

Lemma C.6. Let d1, . . . , dn ≥ 0 and let γ ≥ 0. For any fixed z ∈ H<0 , let fz : H≥0 → C be the function t 7→ fz(t) =

− 1
z

(
1− 1

γ
1
N

∑N
i=1

dit
1+dit

)
. Let Cz := {u − 1

z v : u, v ∈ R+} be the convex region spanned by the half-lines R+ and

− 1
zR+. Then for every z ∈ H<0 there exists a unique fixed point t̃(z) ∈ Cz such that t̃(z) = fz(t̃(z)). The map t̃ : z 7→ t̃(z)

is holomorphic in H<0 and

|t̃(z)| ≥
(
|z|+

∑
i di
γN

)−1
.

Furthermore for every z ∈ H<0 and any t ∈ H≥0, one has

|t− t̃(z)| ≤ |t− fz(t)|.
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Proof. By means of Schwarz reflection principle, we can assume that =(z) ≥ 0. Let z ∈ H<0 and let Πz := {−wz :
=(w) ≤ 0} and let Cz be the wedged region Cz := Πz ∩ {w ∈ C : =(w) ≥ 0}. To show the existence of a fixed point in Cz
we show that 0 is in the image of the function ψ : t 7→ fz(t)− t. Note that since di ≥ 0, the eventual poles of fz are all
strictly negative real numbers, hence ψ : Cz → C is an holomorphic function.

To prove that 0 ∈ ψ(Cz) we proceed with a geometrical reasoning: the image ψ(Cz) is (one of) the region of the plane
confined by ψ (∂Cz), so we only need to “draw” ψ (∂Cz) and show that 0 belongs to the “good” connected component
confined by it.

The boundary of Cz is made up of two half-lines R+ and − 1
zR+. Under the map fz , 0 is mapped to − 1

z and∞ is mapped

to − 1− 1
γ

z , the two half-lines are hence mapped to paths from − 1
z to − 1− 1

γ

z . Now under ψ the half-lines will be mapped to
paths going − 1

z to∞ because by our assumption − 1
z lies in the upper right quadrant, we will show that the image of R+

under φ goes ’above’ the origin while the image of − 1
zR+ goes ’under’ the origin:

• R+ is mapped under fz to the segment − 1
z [1, 1 − 1

γ ], as a result, its map under ψ lies in the Minkowski sum

− 1
z [1, 1− 1

γ ] + (−R+) which is contained in C \Πz .

• For any t ∈ − 1
zR+ we have for all di

=
(

dit

1 + dit

)
= =

(
1− 1

1 + dit

)
= =

(
1

1 + dit

)
≤ 0,

since =(t) ≥ 0. As a result the image of − 1
zR+ under fz lies in Πz and its image under ψ lies in the Minkovski sum

Πz + (− 1
zR+) = Πz .

Thus we can conclude that 0 ∈ ψ (Cz), which shows that there exists at least a fixed point m̃ in Cz .

We observe that, for every t ∈ Cz , the derivative of f has negative real part:

Re (f ′z(t)) =
1

γ

1

N

N∑
i=1

Re

(
di

z (1 + dit)
2

)

=
1

γ

1

N

N∑
i=1

di
[
<(z) + 2di<(z)<(t)− 2di=(z)=(t) + d2i<(zt2)

]
|z|2 |1 + dit|4

≤ 0,

where we concluded the last inequality by using that <(z) ≤ 0, <(t) ≥ 0, =(z)=(t) ≥ 0 and <(zt2) ≤ 0. Thus, since for
no point t ∈ Cz has f ′z(t) = 1, any fixed point of fz is a simple fixed point.

We now proceed to show the uniqueness of the fixed point in the region Cz . Suppose there are two fixed points t1 and t2,
then

t1 − t2 = fz(t1)− fz(t2)

= (t1 − t2)
1

z

1

γN

N∑
i=1

di
(1 + dit1)(1 + dit2)

.

Again, since <(z) ≤ 0, <(t1),<(t2) ≥ 0, =(z)=(t1),=(z)=(t2),≥ 0 and <(zt1t2) ≤ 0, the factor
1
z

1
N

∑N
i=1

di
(1+dit1)(1+dit2)

has negative real part, and thus the identity is possible only if t1 = t2. Let’s then t̃(z) be
the only fixed point in Cz .

We proceed now to show that |t− fz(t)| ≥ |t− t̃(z)|, i.e. if t and its image are close, then t is not too far from being a fixed
point, and so it is close to t̃(z).
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For any t ∈ Cz , we have

|t− fz(t)| = |t− t̃(z) + fz(t̃(z))− f̃z(t)|

=

∣∣∣∣∣(t− t̃(z))− (t− t̃(z))
(

1

z

1

γN

N∑
i=1

di

(1 + dit)(1 + dit̃(z))

)∣∣∣∣∣
=
∣∣t− t̃(z)∣∣ ∣∣∣∣∣1− 1

z

1

γN

N∑
i=1

di

(1 + dit)(1 + dit̃(z))

∣∣∣∣∣
≥
∣∣t− t̃(z)∣∣

where we have used again that 1
z

1
N

∑N
i=1

di
(1+dit)(1+di t̃(z))

has negative real part.

We provide a lower bound on the norm of the fixed point:

∣∣t̃(z)∣∣ =
1

|z|

∣∣∣∣∣1− 1

γ

1

N

N∑
i=1

dit̃(z)

1 + dit̃(z)

∣∣∣∣∣ ≥ 1

|z|

(
1− 1

γ

1

N

N∑
i=1

∣∣∣∣ dit̃(z)

1 + dit̃(z)

∣∣∣∣
)
≥ 1

|z|

(
1−

∣∣t̃(z)∣∣
γN

N∑
i=1

di

)
.

hence

|t̃(z)| ≥
(
|z|+

∑
i di
γN

)−1
.

Finally, note that z can be expressed from the fixed point m̃, hence defining an inverse for the map t̃:

t̃−1(m̃) = z = − 1

m̃

(
1− 1

γ

1

N

N∑
i=1

dim̃

1 + dim̃

)

because the inverse is holomorphic, so is t̃.

C.3. Ridge

Using Proposition C.1, in order to have a better description of the distribution of the predictor f̂ (RF )
λ,γ , it remains to study the

distributions of both the final labels ŷ on the training set and the parameter norm ‖θ̂‖2. In Section C.3.1, we first study the
expectation of the final labels ŷ: this allows us to study the loss of the average predictor E

[
f̂
(RF )
λ,γ

]
. Then in Section C.3.3, a

study of the variance of the predictor allows us to study the average loss of the RF predictor.

C.3.1. EXPECTATION OF THE PREDICTOR

The optimal parameters θ̂ which minimize the regularized MSE loss is given by θ̂ = FT (FFT + λIN )−1y, or equivalently
by θ̂ = (FTF + λ)−1FT y. Thus, the final labels take the form ŷ = A(−λ)y where A(z) is the random matrix defined as

A(z) := F
(
FTF − zIP

)−1
FT

=
1

P
K

1
2WT

(
1

P
WKWT − zIP

)−1
WK

1
2 .

Note that the matrix Aλ defined in the proof sketch of Theorem 4.1 in the main text is given by Aλ = A(−λ).

Proposition C.7. For any γ > 0, any z ∈ H<0, and any symmetric positive definite matrix K,

‖E [A(z)]−K(K + λ̃(−z)IN )−1‖op ≤
c

P
, (8)

where λ̃(z) := 1
m̃(−z) and c > 0 depends on z, γ and 1

N Tr(K) only.
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Proof. Since the distribution of W is invariant under orthogonal transformations, by applying a change of basis, in order
to prove Inequality (8), we may assume that K is diagonal with diagonal entries d1, . . . , dN . Denoting w1, . . . , wN the
columns of W , for any i, j = 1, . . . , N ,

(A(z))ij =
1

P

√
didjw

T
i

(
1

P
WKWT − zIP

)−1
wj ,

where WKWT =
∑N
i=1 diwiw

T
i . Replacing wi by −wi does not change the law W hence does not change the law of

(A(z))ij . Since WKWT is invariant under this change of sign, we get that for i 6= j, E [(A(z))ij ] = −E [(A(z))ij ], hence
the off-diagonal terms of E [A(z)] vanish.

Consider a diagonal term (A(z))ii. From Equation (6), we get

(A(z))ii =
di
P
wTi B

−1(z)wi =
digi(z)

1 + digi(z)
. (9)

By Lemma C.4, gi lies close to mP (z) which itself is approximatively equal to m̃(z) by Proposition C.5. Therefore, we
expect E [(A(z))ii] = E

[
digi

1+digi

]
to be at short distance from dim̃(z)

1+dim̃(z) .

In order to make rigorous this heuristic and to prove that E [(A(z))ii] is within O( 1
P ) distance to dim̃(z)

1+dim̃(z) , we consider the
first order Taylor approximation Tm̃(z)hi of the map hi : g 7→ 1

1+dig
(as in the proof Proposition C.5 but this time centered at

m̃(z)). Using the fact that dit
1+dit

= 1− 1
1+dit

= 1−hi(t), and inserting the Taylor approximation, E [(A(z))ii]− dim̃(z)
1+dim̃(z)

is equal to:

hi(m̃(z))− hi(gi(z)) =
1

1 + dim̃(z)
− E

[
Tm̃(z)h(gi(z))

]
+ E

[
Tm̃(z)h(gi(z))− h(gi(z))

]
.

Thus, ∣∣∣∣E [(A(z))ii]−
dim̃(z)

1 + dim̃(z)

∣∣∣∣ ≤ ∣∣∣∣ 1

1 + dim̃(z)
− E

[
Tm̃(z)h(gi(z))

]∣∣∣∣+
∣∣E [Tm̃(z)h(gi(z))− h(gi(z))

]∣∣ .
Using Lemma C.4 and Proposition C.5, the first term

∣∣∣ 1
1+dim̃(z) − E

[
Tm̃(z)h(gi(z))

]∣∣∣ = di|E[gi(z)]−m̃(z)|
|1+dim̃(z)|2 can be bounded

by δ
P

di
|1+dim̃(z)|2 where δ depends on z, γ and 1

NTr(K) only. Since Re [m̃(z)] ≥ 0 thus |1 + dim̃(z)| ≥ max(1, |dim̃(z)|),

and |m̃(z)| ≥ 1
|z|+ 1

γ
1
N TrK

(Lemma C.6), the denominator can be lower bounded:

|1 + dim̃(z)|2 ≥ |dim̃(z)| ≥ di

|z|+ 1
γ

1
NTrK

,

yielding the upper bound: ∣∣∣∣ 1

1 + dim̃(z)
− E

[
Tm̃(z)h(gi(z))

]∣∣∣∣ ≤ 1

P
δ

[
|z|+ 1

γ

1

N
TrK

]
.

For the second term, using the same arguments as for the proof of Proposition C.5, we have:

∣∣E [Tm̃(z)h(gi(z))− h(gi(z))
]∣∣ ≤ E

[
|m̃(z)− gi(z)|2

]
|m̃(z)|2

.

Recall that |m̃(z)| ≥ 1
|z|+ 1

γ
1
N TrK

and that, by Lemma C.4 and Proposition C.2, E
[
|m̃(z)− gi(z)|2

]
≤ δ̃

P where δ̃ depends

on z, γ and 1
NTr(K) only. This implies that

∣∣E [Tm̃(z)h(gi(z))− h(gi(z))
]∣∣ ≤ δ̃

P

[
|z|+ 1

γ

1

N
TrK

]2
.
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As a consequence, there exists a constant c which depends on z, γ and 1
NTr(K) only such that:∣∣∣∣E [(A(z))ii]−

dim̃(z)

1 + dim̃(z)

∣∣∣∣ ≤ c

P
.

Using the effective ridge λ̃(z) := 1
m̃(−z) , the term dim̃(z)

1+dim̃(z) = di
di+λ̃(−z)

is equal to (K(K + λ̃IN )−1)ii since, in the basis

considered, K(K + λ̃IN )−1 is a diagonal matrix. Hence, we obtain:∥∥∥E [A(z)]−K(K + λ̃IN )−1
∥∥∥
op
≤ c

P

which allows us to conclude.

Using the above proposition, we can bound the distance between the expected λ-RF predictor and the λ̃-RF predictor.

Theorem C.8. For N,P > 0 and λ > 0, we have∣∣∣E[f̂
(RF )
λ,γ (x)]− f̂ (K)

λ̃
(x)
∣∣∣ ≤ c

√
K(x, x)‖y‖K−1

P
(10)

where the effective ridge λ̃(λ, γ) > λ is the unique positive number satisfying

λ̃ = λ+
λ̃

γ

1

N

N∑
i=1

di

λ̃+ di
, (11)

and where c > 0 depends on λ, γ, and 1
NTrK(X,X) only.

Proof. Recall that m̃(−λ) is the unique non negative real such that γ = 1
N

∑N
i=1

dim̃(−λ)
1+dim̃(−λ) + γλm̃(−λ). Dividing this

equality by γm̃(−λ) yields Equation (11). From now on, let λ̃ = λ̃(λ, γ).

We now bound the l.h.s. of Equation (10). By Proposition C.1, since ŷ = A(−λ)y, the average λ-RF predictor is

E
[
f
(RF )
λ,γ (x)

]
= K(x,X)K−1E [A(−λ)] y. The λ̃-KRR predictor is f (K)

λ̃
(x) = K(x,X)

(
K + λ̃IN

)−1
y. Thus:

∣∣∣E[f
(RF )
λ,γ (x)]− f (K)

λ̃
(x)
∣∣∣ =

∣∣∣∣K(x,X)K−1
[
E [A(−λ)]−K

(
K + λ̃IN

)−1]
y

∣∣∣∣ .
The r.h.s. can be expressed as the absolute value of the scalar product |〈w, v〉K−1 | =

∣∣vTK−1w∣∣ where v = K(x,X) and
w = [E [A(−λ)]−K(K + λ̃IN )−1]y. By Cauchy-Schwarz inequality, |〈v, w〉K−1 | ≤ ‖v‖K−1 ‖w‖K−1 .

For a general vector v, the K−1-norm ‖v‖K−1 is equal to the norm mininum Hilbert norm (for the RKHS associated to the
kernel K) interpolating function:

‖v‖K−1 = min
f∈H,f(xi)=vi

‖f‖H .

Indeed the minimal interpolating function is the kernel regression given by f (K)(·) = K(·, X)K(X,X)−1v which has
norm (writing β = K−1v):

∥∥∥f (K)
∥∥∥
H

=

∥∥∥∥∥
N∑
i=1

βiK(·, xi)

∥∥∥∥∥
H

=

√√√√ N∑
i,j=1

βiβjK(xi, xj) =
√
vTK−1KK−1v = ‖v‖K−1 .

We can now bound the two norms ‖v‖K−1 and ‖w‖K−1 . For v = K(x,X), we have

‖v‖K−1 = min
f∈H,f(xi)=vi

‖f‖H ≤ ‖K(x, ·)‖H = K(x, x)
1
2 . (12)

since K(x, ·) is an interpolating function for v.
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It remains to bound ‖w‖K−1 . Recall that K = UDUT with D diagonal, and that, from the previous proposition,

E [A(−λ)] = UDAU
T where DA = diag

(
d1g1(−λ)

1+d1g1(−λ) , . . . ,
dNgN (−λ)

1+dNgN (−λ)

)
. The norm ‖w‖K−1 is equal to√

ỹT
[
DA −D

(
D + λ̃(λ)IN

)−1]T
D−1

[
DA −D

(
D + λ̃(λ)IN

)−1]
ỹ,

where ỹ = UT y. Expanding the product, ‖w‖K−1 =

√∑N
i=1

ỹ2i
di

(
(DA)ii − di

λ̃(λ)+di

)2
, hence by Proposition C.7,

‖w‖K−1 ≤ c
P

√∑N
i=1

ỹ2

di
. The result follows from noticing that

∑N
i=1

ỹ2

di
= ỹTD−1ỹ = ‖y‖2K−1 :

∣∣∣E[f
(RF )
λ,γ (x)]− f (K)

λ̃
(x)
∣∣∣ ≤ ‖v‖K−1 ‖w‖K−1 ≤

cK(x, x)
1
2 ‖y‖K−1

P
.

which allows us to conclude.

Corollary C.9. If ED[K(x, x)] < ∞, we have that the difference of errors δE =
∣∣∣L(E[f̂

(RF )
λ,γ ])− L(f̂

(K)

λ̃
)
∣∣∣ is bounded

from above by

δE ≤
C‖y‖K−1

P

(
2

√
L
(
f̂
(K)

λ̃

)
+
C‖y‖K−1

P

)
,

where C is given by c
√
ED[K(x, x)], with c the constant appearing in (10) above.

Proof. For any function f : Rd → R, we denote by ‖f‖ = (ED
[
f(x)2

]
)

1
2 its L2(D)-norm. Integrating∣∣∣E[f

(RF )
λ,γ (x)]− f (K)

λ̃
(x)
∣∣∣2 ≤ c2K(x,x)‖y‖2

K−1

P 2 over x ∼ D, we get the following bound:

‖E[f
(RF )
λ,γ ]− f (K)

λ̃
‖ ≤ c [ED [K(x, x)]]

1
2 ‖y‖K−1

P
.

Hence, if f∗ is the true function, by the triangular inequality,

∣∣∣‖E[f
(RF )
λ,γ ]− f∗‖ − ‖f (K)

λ̃
− f∗‖

∣∣∣ ≤ c [ED [K(x, x)]]
1
2 ‖y‖K−1

P
.

Notice that L(E[f̂
(RF )
γ,λ ]) = ‖E[f

(RF )
λ,γ ]− f∗‖2 and L(f̂

(K)

λ̃
) = ‖f (K)

λ̃
− f∗‖2. Since

∣∣a2 − b2∣∣ ≤ |a− b| (|a− b|+ 2 |b|),
we obtain∣∣∣L(E[f̂

(RF )
γ,λ ]

)
− L

(
f̂
(K)

λ̃

)∣∣∣ ≤ c [ED [K(x, x)]]
1
2 ‖y‖K−1

P

(
2

√
L
(
f̂
(K)

λ̃

)
+
c [ED [K(x, x)]]

1
2 ‖y‖K−1

P

)
,

which allows us to conclude.

C.3.2. PROPERTIES OF THE EFFECTIVE RIDGE

Thanks to the implicit definition of the effective ridge λ̃, we obtain the following:

Proposition C.10. The effective ridge λ̃ satisfies the following properties:

1. for any γ > 0, we have λ < λ̃(λ, γ) ≤ λ+ 1
γT ;

2. the function γ 7→ λ̃(λ, γ) is decreasing;

3. for γ > 1, we have λ̃ ≤ γ
γ−1λ;

4. for γ < 1, we have λ̃ ≥ 1−√γ√
γ mini di.
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Proof. (1) The upper bound in the first statement follows directly from Lemma C.6 where it was shown that m̃(−λ) ≥
1

λ+ 1
γ

1
N TrK

and from the fact that λ̃(λ,γ) = 1
m̃(−λ) . For the lower bound, remark that Equation (11) can be written as:

λ̃(λ, γ) = λ+
1

γ

1

N
Tr[λ̃(λ, γ)K(λ̃(λ, γ)IN +K)−1].

Since λ̃(λ, γ) ≥ 0 and K is a positive symmetric matrix, Tr[K[λ̃(λ, γ)IN +K]−1] ≥ 0: this yields λ̃(λ, γ) ≥ λ.

(2) We show that γ 7→ λ̃(λ, γ) is decreasing by computing the derivative of the effective ridge with respect to γ. Differenti-
ating both sides of Equation (11), ∂γ λ̃ = ∂γ

[
λ+ λ̃

γ
1
N

∑N
i=1

di
λ̃+di

]
. The r.h.s. is equal to:

∂γ λ̃

γ

1

N

N∑
i=1

di

λ̃+ di
− λ̃

γ2
1

N

N∑
i=1

di

λ̃+ di
− λ̃

γ

1

N

N∑
i=1

di∂γ λ̃

(λ̃+ di)2
.

Using Equation (11), 1
γ

1
N

∑N
i=1

di
λ̃+di

= λ̃−λ
λ̃

and thus:

∂γ λ̃

λ
λ̃

+
λ̃

γ

1

N

N∑
i=1

di(
λ̃+ di

)2
 = − λ̃− λ

γ
.

Since λ̃ ≥ λ ≥ 0, the derivative of the effective ridge with respect to γ is negative: the function γ 7→ λ̃(λ, γ) is decreasing.

(3) Using the bound di
λ̃+di

≤ 1 in Equation (11), we obtain λ̃ ≤ λ+ λ̃
γ which, when γ ≥ 1, implies that λ̃ ≤ λ γ

γ−1 .

(4) Recall that λ > 0 and that the effective ridge λ̃ is the unique fixpoint of the map f(t) = λ+ t
γ

1
N

∑
i

di
t+di

in R+. The

map is concave and, at t = 0, we have f(t) = λ > 0 = t: this implies that f ′(λ̃) < 1 otherwise by concavity, for any t ≤ λ̃
one would have f(t) ≤ t. The derivative of f is f ′(t) = 1

γ
1
N

∑N
i=1

d2i
(t+di)

2 , thus 1
γ

1
N

∑N
i=1

d2i

(λ̃+di)
2 < 1. Using the fact

that d0 is the smallest eigenvalue of K(X,X), i.e. di ≥ d0, we get 1 > 1
γ

d20

(λ̃+d0)
2 hence λ̃ ≥ d0

1−√γ√
γ .

Similarily, we gather a number of properties of the derivative ∂λλ̃(λ, γ).

Proposition C.11. For γ > 1, as λ→ 0, the derivative ∂λλ̃ converges to γ
γ−1 . As λγ →∞, we have ∂λλ̃(λ, γ)→ 1.

Proof. Differentiating both sides of Equation (11),

∂λλ̃ = 1 + ∂λλ̃
1

γ

1

N

N∑
i=1

di

λ̃+ di
− λ̃∂λλ̃

1

γ

1

N

N∑
i=1

di

(λ̃+ di)2
.

Hence the derivative ∂λλ̃ satisfies the following equality

∂λλ̃

(
1− 1

γ

1

N

N∑
i=1

di

λ̃+ di
+ λ̃

1

γ

1

N

N∑
i=1

di

(λ̃+ di)2

)
= 1. (13)

(1) Assuming γ > 1, from the point 3. of Proposition C.10, we already know that λ̃(λ, γ) ≤ λ γ
γ−1 hence λ̃(0, γ) = 0.

Actually, using similar arguments as in the proof of point 3., this holds also for γ = 1. Using the fact that λ̃(0, γ) = 0, we
get ∂λλ̃(0, γ) = 1 + ∂λλ̃(0,γ)

γ , hence ∂λλ̃(0, γ) = γ
γ−1 .

(2) From the first point of Proposition C.10, λ̃ ∼ λ as λγ →∞. Since Equation (13) can be expressed as:

∂λλ̃

(
1− 1

γλ

1

N

N∑
i=1

di
λ̃
λ + di

+
1

γλ

λ̃

λ

1

N

N∑
i=1

di

( λ̃λ + di)2

)
= 1,

we obtain that ∂λλ̃→ 1 as λ→∞.
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C.3.3. VARIANCE OF THE PREDICTOR

By the bias-variance decomposition, in order to bound the difference between E[L(f̂
(RF )
γ,λ )] and L(f̂

(K)

λ̃
, we have to

bound ED[Var(f(x))]. The law of total variance yields Var(f̂(x)) = Var(E[f̂(x)|F ]) + E[Var[f̂(x)|F ]]. By Proposi-
tion C.1, we have E[f̂(x)|F ] = K(x,X)K(X,X)−1ŷ and Var[f̂(x)|F ] = 1

P ‖θ̂‖
2K̃(x, x). Hence, it remains to study

Var
(
K(x,X)K(X,X)−1ŷ

)
and E[‖θ̂‖2]. Recall that we denote T = 1

NTrK(X,X).

This section is dedicated to the proof of the variance bound of Theorem 5.1 of the paper:

Theorem 5.1 There are constants c1, c2 > 0 depending on λ, γ, T only such that

Var
(
K(x,X)K(X,X)−1ŷ

)
≤
c1K(x, x)‖y‖2K−1

P∣∣∣E‖[θ̂‖2]− ∂λλ̃yTMλ̃y
∣∣∣ ≤ c2‖y‖2K−1

P
,

where ∂λλ̃ is the derivative of λ̃ with respect to λ and for Mλ̃ = K(X,X)(K(X,X) + λ̃IN )−2. As a result

Var
(
f̂
(RF )
λ (x)

)
≤
c3K(x, x)‖y‖2K−1

P
,

where c3 > 0 depends on λ, γ, T .

• Bound on Var
(
K(x,X)K(X,X)−1ŷ

)
. We first study the covariance of the entries of the matrix

Aλ =
1

P
K

1
2WT

(
1

P
WKWT + λIP

)−1
WK

1
2 ,

where K = diag(d1, . . . , dN ) is a positive definite diagonal matrix and W is a P ×N matrix with i.i.d. Gaussian entries.
In the next proposition we show a c1

P bound for the covariance of the entries of Aλ, then we exploit this result in order to
prove the bound on the variance of K(x,X)K(X,X)−1ŷ.

Proposition C.12. There exists a constant c′1 > 0 depending on λ, γ, and 1
NTr(K) only, such that the following bounds

hold:

|Cov ((Aλ)ii, (Aλ)jj) | ≤
c′1
P

Var ((Aλ)ij) ≤ min

{
di
dj
,
dj
di

}
c′1
P
.

For all other cases (i.e. if i,j, k and l take more than two different values),Cov ((Aλ)ij , (Aλ)kl) = 0.

Proof. We want to study the covariances Cov ((Aλ)ij , (Aλ)kl) for any i, j, k, l. Using the same symmetry argument as in
the proof of Proposition C.7, E [(Aλ)ij(Aλ)kl] = 0 whenever each value in {i, j, k, l} does not appear an even number
of times in (i, j, k, l). Using the fact that Aλ is symmetric, it remains to study Cov ((Aλ)ii, (Aλ)jj), Var ((Aλ)ii) and
Var [(Aλ)ij ] for all i 6= j. By the Cauchy-Schwarz inequality, any bound on Var ((Aλ)ii) will imply a similar bound on
Cov ((Aλ)ii, (Aλ)jj). Besides, as we have seen in the proof of Proposition C.7, E [(Aλ)ij ] = 0 for any i 6= j. Thus, we
only have to study Var ((Aλ)ii) and E

[
(Aλ)2ij

]
.

• Bound on Var ((Aλ)ii): From Equation (9),

Var ((Aλ)ii) = Var

(
digi

1 + digi

)
= Var

(
1− 1

1 + digi

)
= Var

(
1

1 + digi

)
≤ E

[(
1

1 + digi
− 1

1 + dim̃

)2
]
,

where gi := gi(−λ). Again, we use the first order Taylor approximation Th of h : x→ 1
1+dix

centered at m̃ := m̃(−λ), as
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well as the bound (7), to obtain

E

[(
1

1 + digi
− 1

1 + dim̃

)2
]

= E

(− di

(1 + dim̃)
2 (gi − m̃) + h(gi)− Th(gi)

)2


≤ 2d2i

(1 + dim̃)
4E
[
(gi − m̃)

2
]

+ 2E
[
(h(gi)− Th(gi))

2
]

≤ 2

6m̃2
E
[
(gi − m̃)

2
]

+
2

m̃4
E
[
(gi − m̃)

4
]
.

Using Lemma C.4, we get Var ((Aλ)ii) ≤ c′1
P , where c′1 > 0 depends on λ, γ, and 1

NTr(K) only.

• Bound on E ((Aλ)ij) for i 6= j: Following the same arguments as for Equation (9), (Aλ)ij is equal to

(Aλ)ij =

√
didj

P

[
wTi B

−1
(i) wj −

digi
1 + digi

wTi B
−1
(i) wj

]
=

√
didj

1 + digi

1

P
wTi B

−1
(i) wj ,

where we set B(i) := Bi(−λ). Since wi and B(i) are independent, E
[(
wTi B

−1
(i) wj

)2]
= E

[
wTj B

−2
(i) wj

]
, and thus, by the

Cauchy-Schwarz inequality, we have

E
[
(Aλ)2ij

]
≤ 1

P 2

√√√√E

[
d2i d

2
j

(1 + digi)
4

]√
E
[(
wTj B

−2
(i) wj

)2]
. (14)

Recall that m̃ := m̃(−λ). Using the fact that 1
1+digi

= 1
1+dim̃

+ 1
1+digi

− 1
1+dim̃

and inserting the first Taylor approximation
Th of h : x→ 1

1+dix
centered at m̃, we get:

E

[(
1

1 + digi

)4
]

= E

( 1

1 + dim̃
− di

(1 + dim̃)
2 (gi − m̃) + h(gi)− Th(gi)

)4
 .

Using a convexity argument, the bound (7), and the lower bound on m̃ given by Lemma C.6, there exists three constants c̃1,

c̃2, c̃3, which depend on λ, γ and 1
NTr(K) only, such that E

[(
1

1+digi

)4]
is bounded by

c̃1

(1 + dim̃)
4 +

c̃2d
4
i

(1 + dim̃)
8E
[
(gi − m̃)

4
]

+ c̃3E
[
(gi − m̃)

8
]
.

Thanks to Lemma C.4 and Proposition C.5, this last expression can be bounded by an expression of the form ẽ1
d4i

+ ẽ2
P 2d4i

+ ẽ3
P 4 .

Note that ẽ2
P 2d4i

≤ ẽ2
d4i

and ẽ3
P 4 ≤ ẽ3

γ4

( 1
N Tr(K))4

d4i
. Hence, we obtain the bound:

E

[(
1

1 + digi

)4
]
≤ c̃

d4i
,

where c̃ = ẽ1 + ẽ2 +
ẽ3(

1
N Tr(K))4)

γ4 depends on λ, γ and and 1
NTr(K) only.

Let us now consider the second term in the r.h.s. of (14) . Using the fact that ‖B(i)‖op ≥ 1
λ , we get√

E
[(
wTj B

−2
(i) wj

)2]
≤
√

1

λ4
E
[(
wTj wj

)2]
=

√
1

λ4
N(N + 2) ≤ N + 1

λ2
,
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where we have used the fact that the second moment of a χ2(N) distribution is N(N + 2). Together, we obtain

E
[
(A)2ij

]
≤ 1

P 2

√√√√E

[
d2i d

2
j

(1 + digi)
4

]√
E
[(
wTj B

−2
(i) wj

)2]
≤ c̃didj

d2i

N + 1

P 2λ2

≤ c̃dj
Pdiλ2γ

N + 1

N
≤ c′1
P

di
dj
,

for c′1 = 2 c̃
λ2γ . Since the matrix Aλ is symmetric, we finally conclude that

E
[
(Aλ)2ij

]
≤ c′1
P

min

{
di
dj
,
dj
di

}
.

Note that c′1 is a constant related to the bounds constructed in Lemma C.2 and Proposition C.5 and as such it depends on
1
NTr(K), γ and λ only.

Proposition C.13. There exists a constant c1 > 0 (depending on λ, γ, T only) such that the variance of the estimator is
bounded by

Var
(
K(x,X)K(X,X)−1ŷ

)
≤
c1‖y‖2K−1K(x, x)

P
.

Proof. As in the proof of Theorem C.8, with the right change of basis, we may assume the Gram matrix K(X,X) to be
diagonal.

We first express the covariances of ŷ = A(−λ)y. Using Proposition Proposition C.12, for i 6= j we have

Cov (ŷi, ŷj) =

N∑
k,l=1

Cov ((Aλ)ik, (Aλ)lj) ykyl = Cov ((Aλ)ii, (Aλ)jj) yiyj + E
[
(Aλ)2ij

]
yjyi,

whereas for i = j we have

Cov (ŷi, ŷi) =

N∑
k=1

Cov ((Aλ)ik, (Aλ)ki) y
2
k = Var ((Aλ)ii) y

2
i +

∑
k 6=i

E
[
(Aλ)2ik

]
y2k.

We decompose K−
1
2 Cov(ŷ, ŷ)K−

1
2 into two terms: let C be the matrix of entries

Cij =
Cov((Aλ)ii, (Aλ)jj) + δi 6=jE

[
(Aλ)2ij

]√
didj

yiyj ,

and let D the diagonal matrix with entries

Dii =

∑
k 6=i E

[
(Aλ)2ik

]
y2k

di
.

We have the decomposition K−
1
2 Cov(ŷ, ŷ)K−

1
2 = C +D.

Proposition C.12 asserts that Cov((Aλ)ii, (Aλ)jj ≤ c′1
P and E

[
(Aλ)2ij

]
≤ c′1

P , and thus the operator norm of C is bounded
by

‖C‖op ≤ ‖C‖F

=

√√√√∑
i,j

(
Cov((Aλ)ii, (Aλ)jj) + δi6=jE

[
(Aλ)2ij

])2
didj

y2i y
2
j

≤ 2c′1
P

√∑
ij

1

didj
y2i y

2
j =

2c′1‖y‖2K−1

P
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For the matrix D, we use the bound E
[
(Aλ)2ik

]
≤ c′1

P
di
dk

to obtain

Dii =

∑
k 6=i E

[
(Aλ)2ik

]
y2k

di
≤ c′1
P

∑
k 6=i

y2k
dk
≤
c′1‖y‖2K−1

P
,

which implies that ‖D‖op ≤
c′1‖y‖

2
K−1

P . As a result

Var
(
K(x,X)K−1ŷ

)
= K(x,X)K−1Cov(ŷ, ŷ)K−1K(X,x)

≤ K(x,X)K−
1
2 ‖C +D‖opK−

1
2K(X,x)

≤
3c′1‖y‖2K−1

P
‖K(x,X)‖2K−1

≤
3c′1K(x, x)‖y‖2K−1

P
,

where we used Inequality (12). This yields the result with c1 = 3c′1.

• Bound on Eπ
[
‖θ̂‖2

]
. To understand the variance of the λ-RF estimator f̂ (RF )

λ , we need to describe the distribution of
the squared norm of the parameters:

Proposition C.14. For γ, λ > 0 there exists a constant c2 > 0 depending on λ, γ, T only such that∣∣∣∣E[‖θ̂‖2]− ∂λλ̃yTK(X,X)
(
K(X,X) + λ̃IN

)−2
y

∣∣∣∣ ≤ c2‖y‖2K−1

P
. (15)

Proof. As in the proof of Theorem C.8, with the right change of basis, we may assume the Gram matrix K(X,X) to be
diagonal. Recall that θ̂ = 1√

P

(
1
PWK(X,X)WT + λIN

)−1WK(X,X)
1
2 y, thus we have:

‖θ̂‖2 =
1

P
yTK(X,X)

1
2WT (

1

P
WK(X,X)WT + λIP )−2WK(X,X)

1
2 y = yTA′(−λ)y, (16)

where A′(−λ) is the derivative of

A(z) =
1

P
K(X,X)

1
2WT

(
1

P
WK(X,X)WT − zIP

)−1
WK(X,X)

1
2

with respect to z evaluated at −λ. Let

Ã(z) = K(X,X)(K(X,X) + λ̃(−z)IN )−1.

Remark that the derivative of Ã(z) is given by Ã′(z) = λ̃′(−z)K(X,X)(K(X,X) + λ̃(−z)IN )−2. Thus, from Equation
(16), the l.h.s. of (15) is equal to: ∣∣∣yT (E[A′(−λ)]− Ã′(−λ)

)
y
∣∣∣ . (17)

Using a classical complex analysis argument, we will show that E[A′(−λ)] is close to Ã′(−λ) by proving a bound of the
difference between E[A(z)] and Ã(z) for any z ∈ H<0.

Note that the proof of Proposition C.7 provides a bound on the diagonal entries of E[A(z)], namely that for any z ∈ H<0,∣∣∣E[(A(z))ii]− (Ã(z))ii

∣∣∣ ≤ c

P
,

where ĉ depends on z, γ and T only. Actually, in order to prove (15), we will derive the following slightly different bound:
for any z ∈ H<0, ∣∣∣E[(A(z))ii]− (Ã(z))ii

∣∣∣ ≤ ĉ

diP
, (18)



Implicit Regularization of Random Feature Models

where ĉ depends on z, γ and T only. Let gi := gi(z) and m̃ := m̃(z). Recall that for hi : x 7→ dix
1+dix

, one has
(A(z))ii = hi(gi), (Ã(z))ii = hi(m̃) and

Tm̃hi(gi) =
dim̃

1 + dim̃
− di (gi − m̃)

(1 + dim̃)
2 ,

hi(gi)− Tm̃hi(gi) =
d2i (gi − m̃)

2

(1 + digi) (1 + dim̃)
2 ,

where Tm̃hi is the first order Taylor approximation of hi centered at m̃. Using this first order Taylor approximation, we can
bound the difference |E[hi(gi)]− hi(m̃)|:

|E[hi(gi)]− hi(m̃)| ≤ di |E[gi]− m̃|
(1 + dim̃)

2 +
d2i

(1 + dim̃)
2E

[
|gi − m̃|2

1 + digi

]

≤ a

diP
+ a

√√√√E

[
1

(1 + digi)
2

]
E
[
|gi − m̃|4

]
,

where a depends on z, γ and T . We need to bound E
[

1
(1+digi)

2

]
. Recall that in the proof of Proposition C.12, we bounded

E
[

1
(1+digi)

4

]
. Using similar arguments, one shows that

E

[
1

(1 + digi)
2

]
≤ ê2

d2i
,

where ê depends on z, γ and 1
NTr(K(X,X)) only. The term E

[
|gi − m̃|4

]
is bounded using Lemmas C.4, C.2 and

Proposition C.5. This allows us to conclude that:

|E[hi(gi)]− hi(m̃)| ≤ ĉ

diP
,

where ĉ depends on z, γ and 1
NTr(K(X,X)) only, hence we obtain the Inequality (18).

We can now prove Inequality 15. We bound the difference of the derivatives of the diagonal terms of A(z) and Ã(z) by
means of Cauchy formula. Consider a simple closed path φ : [0, 1]→ H<0 which surrounds z. Since

E[(A′(z))ii]− (Ã′(z))ii =
1

2πi

∮
φ

E[(A(z))ii]− (Ã(z))ii

(w − z)2
dw,

using the bound (18), we have:∣∣∣E[(A′(z))ii]− (Ã′(z))ii

∣∣∣ ≤ ĉ

diP

1

2π

∮
φ

1

|w − z|2
dw ≤ c2

diP
,

where c2 depends on z, γ, and T only. This allows one to bound the operator norm of K(X,X)(E[A′(z)]− Ã′(z)):

‖K(X,X)(E[A′(z)]− Ã′(z))‖op ≤
c2
P
.

Using this bound and (17), we have∣∣∣∣E[‖θ̂‖2]− ∂λλ̃ yTK(X,X)
(
K(X,X) + λ̃IN

)−2
y

∣∣∣∣ =
∣∣∣yT (E[A′(−λ)]− Ã′(−λ)

)
y
∣∣∣ ≤ c2‖y‖2K−1

P
,

which allows us to conclude.

• Bound on Var
(
f̂
(RF )
λ (x)

)
. We have shown all the bounds needed in order to prove the following proposition.



Implicit Regularization of Random Feature Models

Proposition C.15. For any x ∈ Rd, we have

Var
(
f̂
(RF )
λ (x)

)
≤
c3K(x, x)‖y‖2K−1

P
,

where c3 > 0 depends on λ, γ, T .

Proof. Recall that for any x ∈ Rd,

Var(f̂
(RF )
λ (x)) = Var

(
E
[
f̂
(RF )
λ (x) | F

])
+ E

[
Var

[
f̂
(RF )
λ (x) | F

]]
= Var

(
K(x,X)K(X,X)−1ŷ

)
+

1

P
E
[
‖θ̂‖2

] [
K(x, x)−K(x,X)K(X,X)−1K(X,x)

]
.

From Proposition C.13,

Var
(
K(x,X)K(X,X)−1ŷ

)
≤
c1K(x, x)‖y‖2K−1

P
,

and from Proposition C.14, we have:

E
[
‖θ̂‖2

]
≤ ∂λλ̃ yTK

(
K + λ̃IN

)−2
y +

c2‖y‖2K−1

P
≤ ∂λλ̃ ‖y‖2K−1 +

c2‖y‖2K−1

P
≤ α‖y‖2K−1 ,

where α = ∂λλ̃+ c2. Using the fact that K̃(x, x) ≤ K(x, x), we get

E
[
Var

[
f̂(x) | F

]]
=

1

P
E
[
‖θ̂‖2

] [
K(x, x)−K(x,X)K(X,X)−1K(X,x)

]
≤
α‖y‖2K−1K(x, x)

P
.

This yields

Var
(
f̂
(RF )
λ (x)

)
≤
c3‖y‖2K−1K(x, x)

P
,

where c3 = α+ c1.

C.3.4. AVERAGE LOSS OF λ-RF PREDICTOR AND LOSS OF λ̃-KRR:

Putting the pieces together, we obtain the following bound on the difference ∆E = |E[L(f̂
(RF )
λ,γ )]− L(f̂

(K)

λ̃
)| between the

expected RF loss and the KRR loss:

Corollary C.16. If ED[K(x, x)] <∞, we have

∆E ≤
C1‖y‖K−1

P

(
2
√
L(f̂

(K)

λ̃
) + C2‖y‖K−1

)
,

where C1 and C2 depend on λ, γ, T and ED[K(x, x)] only.

Proof. Using the bias/variance decomposition, Corollary C.9, and the bound on the variance of the predictor, we obtain∣∣∣E [L(f̂ (RF )
γ,λ

)]
− L

(
f̂
(K)

λ̃

)∣∣∣ ≤ ∣∣∣L(E [f̂ (RF )
γ,λ

])
− L

(
f̂
(K)

λ̃

)∣∣∣+ ED
[
Var

(
f̂(x)

)]
≤ C‖y‖K−1

P

(
2

√
L
(
f̂
(K)

λ̃

)
+
C‖y‖K−1

P

)
+
c3‖y‖2K−1ED [K(x, x)]

P

≤ C1‖y‖K−1

P

(
2

√
L
(
f̂
(K)

λ̃

)
+ C2‖y‖K−1

)
,

where C1 and C2 depends on λ, γ, T and ED [K(x, x)] only.
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C.3.5. DOUBLE DESCENT CURVE

Recall that for any λ̃, we denote Mλ̃ = K(X,X)(K(X,X) + λ̃IN )−2. A direct consequence of Proposition C.14 is the
following lower bound on the variance of the predictor.

Corollary C.17. There exists c4 > 0 depending on λ, γ, T only such that Var
(
f̂
(RF )
λ (x)

)
is bounded from below by

∂λλ̃
yTMλ̃y

P
K̃(x, x)−

c4K(x, x)‖y‖2K−1

P 2
.

Proof. By the law of total cumulance,

Var
(
f̂
(RF )
λ (x)

)
≥ E

[
Var

[
f̂
(RF )
λ (x) | F

]]
≥ 1

P
E
[
‖θ̂‖2

]
K̃(x, x).

From Proposition C.14, E[‖θ̂‖2] ≥ ∂λλ̃ yTMλ̃y −
c2‖y‖2K−1

P , hence

Var
(
f̂
(RF )
λ (x)

)
≥ ∂λλ̃

yTMλ̃y

P
K̃(x, x)−

c4K̃(x, x)‖y‖2K−1

P 2
.

The result follows from the fact that K̃(x, x) ≤ K(x, x).
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