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A. Proof of Lemma 3
In this section, we show that conditions 1-3 holds with high probability and prove Lemma 3. To prove the lemma we first
prove three auxiliary lemmas; each of these three Lemma will lead to one of the three conditions in Lemma 3. These three
lemmas characterizes the statistical properties of the collection of good batches BG. We state and prove these lemmas in the
next subsection.

A.1. Statistical Properties of the Good Batches

Recall that, for a good batch b ∈ BG and subset S ⊆ [k], 1S(Xb
i ), for i ∈ [n], are i.i.d. indicator random variables

and µ̄b(S) is the mean of these n indicator variables. Since the indicator random variables are sub-gaussian, namely
1S(Xb

i ) ∼ subG(p(S), 1/4), the mean µ̄b(S) satisfies µ̄b(S) ∼ subG(p(S), 1/4n). subG(.) is used to denote a sub-
gaussian distribution. This observation plays the key role in the proof of all three auxiliary lemmas in this section.

The first lemma among these three lemmas show that for any fixed subset S ⊆ [k], µ̄b(S) for most of the good batches is
close to p(S). This lemma is used to show Condition 1.

Lemma 10. For any ε ∈ (0, 1/4] and |BG| ≥ 12k/ε, ∀S ⊆ [k], with probability ≥ 1− e−k,

∣∣{b ∈ BG : |µ̄b(S)− p(S)| ≥
√

ln(1/ε)

n

}∣∣ ≤ ε|BG|.
Proof. From Hoeffding’s inequality, for b ∈ BG and S ⊆ [k],

Pr
[
|µ̄b(S)− p(S)| ≥

√
ln(1/ε)

n

]
≤ 2e−2 ln(1/ε) ≤ 2ε2 ≤ ε/2.

Let 1b(S) be the indicator random variable that takes the value 1 iff |µ̄b(S)− p(S)| ≥
√

ln(1/ε)/n. Therefore, for b ∈ BG,
E[1b(S)] ≤ ε/2. Using the Chernoff bound,

Pr[
∑
b∈BG

1b(S) ≥ ε|BG|] ≤ e−
1
3 ·
ε
2 |BG| ≤ e−2k.

Taking the union bound over all 2k subsets S completes the proof. �

The next lemma show that even upon removal of any small fraction of good batches from BG, the empirical mean and the
variance of the remaining sub-collection of batches approximate the distribution mean and the variance well enough.

Lemma 11. For any ε ∈ (0, 1/4], and |BG| ≥ k
ε2 ln(e/ε) . Then ∀S ⊆ [k] and ∀B′G ⊆ BG of size |B′G| ≥ (1 − ε)|BG|,

with probability ≥ 1− 6e−k,

∣∣∣p̄B′G(S)− p(S)| ≤ 3ε

√
ln(e/ε)

n
(2)

and ∣∣∣ 1

|B′G|
∑
b∈B′G

(µ̄b(S)− p(S))2 − V(p(S))
∣∣∣ ≤ 32

ε ln(e/ε)

n
. (3)

Proof. From Hoeffding’s inequality,

Pr
[
|BG||p̄BG(S)− p(S)| ≥ |BG|ε

√
ln(e/ε)

n

]
= Pr

[∣∣ ∑
b∈BG

(µ̄b(S)− p(S))
∣∣ ≥ |BG|ε√ ln(e/ε)

n

]
≤ 2e−

|BG|ε
2

2/(4n)
· ln(e/ε)n = 2e−2|BG|ε

2 ln(e/ε) ≤ 2e−2k. (4)
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Similarly, for a fix sub-collection UG ⊆ BG of size 1 ≤ |UG| ≤ ε|BG|,

Pr
[
|UG| · |p̄UG(S)− p(S)| ≥ ε|BG|

√
ln(e/ε)

n

]
= Pr

[∣∣∣ ∑
b∈UG

(µ̄b(S)− p(S))
∣∣∣ ≥ ε|BG|√ ln(e/ε)

n

]
≤ 2e

−2 ln(e/ε)
(ε|BG|)

2

|UG| ≤ 2e−2ε|BG| ln(e/ε),

where the last inequality used |UG| ≤ ε|BG|. Next, the number of sub-collections (non-empty) of BG with size ≤ ε|BG| is
bounded by

bε|BG|c∑
j=1

(
|BG|
j

)
≤ ε|BG|

(
|BG|
bε|BG|c

)
≤ ε|BG|

(e|BG|
ε|BG|

)ε|BG|
≤ eε|BG| ln(e/ε)+ln(ε|BG|) < e

3
2 ε|BG| ln(e/ε), (5)

where last of the above inequality used ln(ε|BG|) < ε|BG|/2 and ln(e/ε) ≥ 1. Then, using the union bound, ∀ UG ⊆ BG
such that |UG| ≤ ε|BG|, we get

Pr
[
|UG| · |p̄UG(S)− p(S)| ≥ ε|BG|

√
ln(e/ε)

n

]
≤ 2e−

1
2 ε|BG| ln(e/ε) < 2e−

k
2ε < 2e−2k. (6)

For any sub-collection B′G ⊆ BG with |B′G| ≥ (1− ε)|BG|,

|
∑
b∈B′G

(µ̄b(S)− p(S))| = |
∑
b∈BG

(µ̄b(S)− p(S))−
∑

b∈BG/B′G

(µ̄b(S)− p(S))|

≤
∣∣∣ ∑
b∈BG

(µ̄b(S)− p(S))
∣∣∣+
∣∣∣ ∑
b∈BG/B′G

(µ̄b(S)− p(S))
∣∣∣

≤ |BG| × |p̄BG(S)− p(S)|+ max
UG:|UG|≤ε|BG|

|UG| × |p̄UG(S)− p(S)|

≤ 2ε|BG|
√

ln(e/ε)

n
,

with probability ≥ 1− 2e−2k − 2e−2k ≥ 1− 4e−2k. Then

|p̄B′G(S)− p(S)| = 1

|B′G|

∣∣∣ ∑
b∈B′G

(µ̄b(S)− p(S))
∣∣∣ ≤ 2

ε|BG|
|B′G|

√
ln(e/ε)

n

≤ 2ε

(1− ε)

√
ln(e/ε)

n
< 3ε

√
ln(e/ε)

n
,

with probability ≥ 1− 4e−2k. The last step used ε ≤ 1/4. Since there are 2k different choices for S ⊆ [k], from the union
bound we get,

Pr
[ ⋃
S⊆[k]

{
|p̄B′G(S)− p(S)| > 4ε

√
ln(e/ε)

n

}]
≤ 4e−2k × 2k = 4e−k.

This completes the proof of (2).

Let Yb = (µ̄b(S)− p(S))2 − V(p(S)). For b ∈ BG, µ̄b(S)− p(S) ∼ subG(1/4n), therefore

(µ̄b(S)− p(S))2 − E(µ̄b(S)− p(S))2 = Yb ∼ subE(
16

4n
) = subE(

4

n
).

Here subE is sub exponential distribution (Philippe, 2015). Then Bernstein’s inequality gives:

Pr[
∣∣∣ ∑
b∈BG

Yb

∣∣∣ ≥ 8|BG|
ε

n
ln(e/ε)] ≤ 2e−

|BG|
2

(
8ε ln(e/ε)/n

4/n

)2
= 2e−2|BG|ε

2 ln2(e/ε) ≤ 2e−2k.
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Next, for a fix sub-collection UG ⊆ BG of size 1 ≤ |UG| ≤ ε|BG|,

Pr
[∣∣∣ ∑
b∈UG

Yb

∣∣∣ ≥ 16ε|BG|
ln(e/ε)

n

]
≤ 2e−

16ε|BG|
ln(e/ε)
n

2×4/n

≤ 2e−2ε|BG| ln(e/ε).

Then following the same steps as in the proof of (2) one can complete the proof of (3). �

To state the next lemma, we make use of the following definition. For a subset S ⊆ [k], let

BdG(S, ε) ,
{
b ∈ BG : |µ̄b(S)− p(S)| ≥ 2

√
ln(6e/ε)

n
)
}

be the sub-collection of batches for which empirical probabilities µ̄b(S) are far from p(S) for a given set S.

The last lemma of the section upper bounds the total squared deviation of empirical probabilities µ̄b(S) from p(S) for
batches in sub-collection BdG(S, ε). It helps in upper bounding the corruption for good batches and show that Condition 3
holds with high probability.

Lemma 12. For any 0 < ε < 1/2, and |BG| ≥ 120k
ε ln(e/ε) . Then ∀S ⊆ [k], with probability ≥ 1− 2e−k,

|BdG(S, ε)| ≤ ε

40
|BG|, (7)

and ∑
b∈BdG(S,ε)

(µ̄b(S)− p(S))2 <
ε

2
|BG|

ln(e/ε)

n
. (8)

Proof. The proof of the first part is the same as (with different constants) Lemma 10 and we skip it to avoid repetition.

To prove the second part we bound the total squared deviation of any subset of size ≤ ε
40 |BG|.

Let Yb = (µ̄b(S) − p(S))2 − V(p(S)). Similar to the previous lemma, for a fix sub-collection UG ⊆ BG of size
1 ≤ |UG| ≤ ε

40 |BG|, Bernstein’s inequality gives:

Pr
[∣∣∣ ∑
b∈UG

Yb

∣∣∣ ≥ 8
ε

20
|BG|

ln(e/ε)

n

]
≤ 2e−

8ε|BG|
ln(e/ε)
n

20×2×4/n

≤ 2e−
ε
20 |BG| ln(e/ε).

From (5), there are e
3
80 ε|BG| ln(e/ε) many sub-collections of size ≤ ε

40 |BG|. Then taking the union bound for all sub-
collections of this size and all subsets S ⊆ [k] we get,∣∣∣ ∑

b∈UG

(
(µ̄b(S)− p(S))2 − V(p(S))

)∣∣∣ ≤ 2ε

5
|BG|

ln(e/ε)

n
,

for all UG of size≤ ε
40 |BG|. Then using the fact that V(.) is upper bounded by 1

4n , and therefore |UG|V(p(S)) ≤ ε
4×40 |BG|,

completes the proof. �

A.2. Completing the proof of Lemma 3

We first show condition 1 holds with high probability.

It is easy to verify that |p(S)−med(µ̄(S))| ≥
√

ln 6/n, only if the sub-collection T = {b : |p(S)− µ̄b(S)| ≥
√

ln 6/n}
has at-least 0.5m batches. But

|T | = |T ∩BG|+ |T ∩BA|
(a)
< |BG|/6 + |BA| =

m

6
+

5

6
|BA|

(b)
≤ m

6
+

2m

6
= 0.5m,
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where inequality (a) follows from Lemma 10 by choosing ε = 1/6 and (b) follows since |BA| ≤ βm ≤ 0.4m.

Using ε = β/6 in Lemma 11 gives Condition 2.

Finally, we show the last condition. To show it we use ε = β in Lemma 12. From Condition 1, note that for b ∈
BG \BdG(S, β)

|µ̄b(S)−med(µ̄(S))| ≤ |µ̄b(S)− p(S)|+ |p(S)−med(µ̄(S))| ≤ 2

√
ln(6e/β)

n
+

√
ln 6

n
≤ 3

√
ln(6e/β)

n
,

Then, for b ∈ BG \ BdG(S, β), from the definition of corruption score it follows that ψb(S) = 0. Next set of inequalities
complete the proof of condition 3.

ψ(BG) =
∑
b∈BG

ψb(S) =
∑

b∈BG\BdG(S,β)

ψb(S) +
∑

b∈BdG(S,β)

ψb(S)

=
∑

b∈BdG(S,β)

ψb(S)

(a)
≤

∑
b∈BdG(S,β)

(µ̄b(S)−med(µ̄(S)))2

=
∑

b∈BdG(S,β)

(µ̄b(S)− p(S) + p(S)−med(µ̄(S)))2

(b)
≤

∑
b∈BdG(S,β)

(µ̄b(S)− p(S))2 +
∑

b∈BdG(S,β)

(med(µ̄(S))− p(S))2

+ 2

√√√√( ∑
b∈BdG(S,β)

(µ̄b(S)− p(S))2

)( ∑
b∈BdG(S,β)

(med(µ̄(S))− p(S))2

)
(c)
≤ β

2
|BG|

ln(e/β)

n
+

β

40
|BG|

ln 6

n
+

√
β

2
|BG|

ln(e/β)

n
× β

40
|BG|

ln 6

n
< β|BG|

ln(e/β)

n
,

here (a) follows from the definition of the corruption score, (b) uses Cauchy-Schwarz inequality and (c) follows from
Lemma 12 and Condition 1.

B. Proof of the other Lemmas
We first prove an auxiliary Lemma that will be useful in other proofs. For a given sub-collection B′ and subset S, the
next lemma bounds the total squared distance of µ̄b(S) from p(S) over the adversarial batches b ∈ B′ ∩ BA in terms of
corruption score ψ(B′, S).

Lemma 13. Suppose the conditions 1 and 3 holds. For subset S, let ψ(B′, S) = t · κG, for some t ≥ 0, then

(t− 3− 2
√
t)κG ≤

∑
b∈B′∩BA

(µ̄b(S)− p(S))2 ≤ (t+ 17 + 2
√
t)κG.

Proof. For the purpose of this proof, let B′G = B′ ∩BG and B′A = B′ ∩BA. Then∑
b∈B′A

(µ̄b(S)− p(S))2 =
∑

b∈B′A:ψb(S)>0

(µ̄b(S)− p(S))2 +
∑

b∈B′A:ψb(S)=0

(µ̄b(S)− p(S))2 (9)

From the definition of corruption score, for batch b ∈ B′, with zero corruption score ψb(S), we have |µ̄b(S)−med(µ̄(S))| ≤
3
√

ln(6e/β)
n . Then using Condition 1 and the triangle inequality, for such batches with zero corruption score, we get

|µ̄b(S)− p(S)| ≤
√

ln(6)/n+ 3

√
ln(6e/β)

n
< 4

√
ln(6e/β)

n
. (10)
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Next, ∑
b∈B′A:ψb(S)>0

(µ̄b(S)− p(S))2

=
∑

b∈B′A:ψb(S)>0

(µ̄b(S)−med(µ̄(S)) + med(µ̄(S))− p(S))2

(a)
≤

∑
b∈B′A:ψb(S)>0

(µ̄b(S)−med(µ̄(S)))2 +
∑

b∈B′A:ψb(S)>0

(med(µ̄(S))− p(S))2

+ 2

√√√√( ∑
b∈B′A:ψb(S)>0

(µ̄b(S)−med(µ̄(S)))2

)( ∑
b∈B′A:ψb(S)>0

(med(µ̄(S))− p(S))2

)

(b)
≤
∑
b∈B′A

ψb(S) +
∑
b∈B′A

ln 6

n
+ 2

√√√√( ∑
b∈B′A

ψb(S)

)( ∑
b∈B′A

ln 6

n

)
(c)
≤ ψ(B′A, S) + κG + 2

√
ψ(B′A, S) · κG, (11)

here (a) uses Cauchy-Schwarz inequality, (b) follows from the definition of corruption score and Condition 1, and (c) uses
|B′A| ≤ βm and (βm ln 6)/n ≤ κG.

A similar calculation as the above leads to the following∑
b∈B′A:ψb(S)>0

(µ̄b(S)− p(S))2 ≥ ψ(B′A, S)− 2
√
ψ(B′A, S) · κG, (12)

Next, we show the upper bound in the lemma. Combining equations (9), (10) and (11) gives∑
b∈B′A

(µ̄b(S)− p(S))2 ≤ ψ(B′A, S) + κG + 2
√
ψ(B′A, S) · κG +

∑
b∈B′A:ψb(S)=0

4

√
ln(6e/β)

n

≤ ψ(B′, S) + κG + 2
√
ψ(B′, S) · κG + 16|BA|

ln(6e/β)

n

≤ (t+ 17 + 2
√
t)κG,

here the second last inequality used B′A ⊆ B′ and B′A ⊆ BA. This completes the proof of the upper bound.

To prove the lower bound, we first note that

ψ(B′, S) =
∑
b∈B′

ψb(S) =
∑
b∈B′G

ψb(S) +
∑
b∈B′A

ψb(S)

≤
∑
b∈BG

ψb(S) + ψ(B′A, S)

≤ ψ(BG) + ψ(B′A, S) ≤ βm ln(6e/β)

n
+
∑
b∈B′A

ψb(S),

here the last inequality uses condition 3. The above equation implies that

ψ(B′A, S) ≥ ψ(B′, S)− βm ln(6e/β)

n
= (t− 1)κG. (13)

By combining, equations (9) (12) and (13), we get the lower bound∑
b∈B′A

(µ̄b(S)− p(S))2 ≥ (t− 1)κG − 2
√
|t− 1|κG · κG = (t− 1− 2

√
|t− 1|)κG ≥ (t− 3− 2

√
t)κG.

�
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B.1. Proof of Lemma 4

Proof. For the purpose of this proof, let B′G = B′ ∩BG and B′A = B′ ∩BA. Note that |B′| ≥ |B′G| ≥ (1− β/6)BG.

Fix subset S ⊆ [k]. Next,

p̄B′(S)− p(S) =
1

|B′|
∑
b∈B′

µ̄b(S)− p(S) =
1

|B′|
∑
b∈B′

(µ̄b(S)− p(S))

=
1

|B′|
∑
b∈B′G

(µ̄b(S)− p(S)) +
1

|B′|
∑
b∈B′A

(µ̄b(S)− p(S))

=
|B′G|
|B′|

(p̄B′G(S)− p(S)) +
1

|B′|
∑
b∈B′A

(µ̄b(S)− p(S))

Therefore,

|p̄B′(S)− p(S)| ≤ |B
′
G|
|B′|
|p̄B′G(S)− p(S)|+ 1

|B′|
∑
b∈B′A

|µ̄b(S)− p(S)|

(a)
≤ β

2

√
ln(6e/β)

n
+

1

|B′|
∑
b∈B′A

|µ̄b(S)− p(S)|

(b)
≤ β

2

√
ln(6e/β)

n
+

1

|B′|

√
|B′A|

∑
b∈B′A

(µ̄b(S)− p(S))2

(c)
≤ β

2

√
ln(6e/β)

n
+

1

|B′|

√
|B′A| · (t+ 17 + 2

√
t)κG

(d)
≤ β

2

√
ln(6e/β)

n
+

1

|B′|

√
|B′A| · (t+ 17 + 2

√
t)
βm ln(6e/β)

n

≤ β

2

√
ln(6e/β)

n
+

√
|B′A| ·m
|B′|2

· (t+ 17 + 2
√
t)
β ln(6e/β)

n
, (14)

here in (a) uses Condition 2 and |B′G| ≤ |B′|, inequality (b) follows from the Cauchy-Schwarz inequality, inequality (c) uses
Lemma 13, and (d) uses the definition of κG. Let |B′A| = |BA| − D, for some D ∈ [0, |BA|]. Also from Lemma note that

|B′G| ≥ (1− β/6)|BG| = |BG| − |BG|β/6 = |BG| −mβ(1− β)/6.

Therefore,

|B′A| ·m
|B′|2

=
|B′A| ·m

(|B′A|+ |B′G|)2
≤ (|BA| − D)m

(|BA| − D + |BG| −mβ(1− β)/6)2

=
(βm− D)m

(m− D−mβ(1− β)/6)2

(a)
≤ (βm− D)m

(m− D− 0.04m)2

(b)
≤ βm2

(0.96m)2
≤ β

0.962
,

here (a) follows since β(1− β) takes maximum value at β = 0.4 in range β ∈ (0, 0.4], and (b) follows since the expression
is maximized at D = 0.

Then combining above equation with (14) gives

|p̄B′(S)− p(S)| ≤ β

2

√
ln(6e/β)

n
+

√
(t+ 17 + 2

√
t)
β2 ln(6e/β)

0.962n
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≤
(

1/2 +
1

0.96

√
(t+ 17 + 2

√
t)
)
β

√
ln(6e/β)

n
(15)

(a)
≤
(

5 +
√

2.1t
)
β

√
ln(6e/β)

n
, (16)

here inequality (a) uses the fact that 2t1/2 ≤ t+ 1 and
√
x2 + y2 ≤ |x|+ |y|. Finally, using the definition of L1 distance

between two distributions complete the proof of the Theorem. �

B.2. Proof of Lemma 6

Proof. From the second statement in Lemma 5, each batch that gets removed is adversarial with probability ≥ 0.95. Batch
deletion deletes more than 0.1βm good batches in total over all runs iff it samples 0.1βm good batches in first 0.1βm+ |BA|
batches removed as otherwise all adversarial batches would have been exhausted already and Batch deletion algorithm
would not remove batches any further. But the expected number of good batches sampled is ≤ 0.05(×0.1βm+ |BA|) ≤
0.005βm+ 0.05βm < 0.06βm.

Then using the Chernoff-bound, probability of sampling (removing) more than 0.1βm good batches in 0.1βm + |BA|
deletions is ≤ e−O(βm) ≤ e−O(k). Hence, with high probability the algorithm deletes less than 0.1βm = 0.6βm/6 ≤
|BG|β/6 batches. �

B.3. Proof of Lemma 7

Proof. For the purpose of this proof, let B′G = B′ ∩BG and B′A = B′ ∩BA. For batches b in a sub-collection B′, the next
equation relates the empirical variance of µ̄b(S) to sum of their squared deviation from p(S).

|B′|VB′(S) =
∑
b∈B′

(µ̄b(S)− p̄B′(S))2 =
∑
b∈B′

(µ̄b(S)− p(S)− (p̄B′(S)− p(S)))2

=
∑
b∈B′

(
(µ̄b(S)− p(S))2 + (p̄B′(S)− p(S))2 − 2(p̄B′(S)− p(S))(µ̄b(S)− p(S))

)
=
∑
b∈B′

(µ̄b(S)− p(S))2 + |B′|(p̄B′(S)− p(S))2 − 2(p̄B′(S)− p(S))
∑
b∈B′

(µ̄b(S)− p(S))

=
∑
b∈B′

(µ̄b(S)− p(S))2 + |B′|(p̄B′(S)− p(S))2 − 2(p̄B′(S)− p(S))(|B′|p̄B′(S)− |B′|p(S))

=
∑
b∈B′

(µ̄b(S)− p(S))2 − |B′|(p̄B′(S)− p(S))2

=
∑
b∈B′A

(µ̄b(S)− p(S))2 +
∑
b∈B′G

(µ̄b(S)− p(S))2 − |B′|(p(S)− p̄B′(S))2. (17)

The next set of inequalities lead to the upper bound in the Lemma.

|B′|(VB′(S)− V(p̄B′(S)))

(a)
=
∑
b∈B′A

(µ̄b(S)− p(S))2 +
∑
b∈B′G

(µ̄b(S)− p(S))2 − |B′|(p(S)− p̄B′(S))2 − |B′|V(p̄B′(S))

(b)
≤ (t+ 17 + 2

√
t)κG + |B′G|V(p(S)) + |B′G|

6β ln( 6e
β )

n
− |B′|V(p̄B′(S))

(c)
≤ (t+ 17 + 2

√
t)κG + 6βm

ln(6e/β)

n
+ |B′|V(p(S))− |B′|V(p̄B′(S))

(d)
≤ (t+ 23 + 2

√
t)κG +m

|p(S)− p̄B′(S)|
n

,

here inequality (a) follows from (17), (b) follows from Lemma 13 and condition 2, and (c) follows since |B′G| ≤ |B′| and
V(·) ≥ 0, and inequality (d) uses (1) and |B′| ≤ m. Next, from equation (16) we have,

|p̄B′(S)− p(S)| ≤ (5 +
√

2.1t)β

√
ln(6e/β)

n
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= (5 +
√

2.1t)β ln(6e/β)

√
1

n ln(6e/β)

≤ (5 +
√

2.1t)
nκG
m

. (18)

Combining the above two equations gives the upper bound in the lemma.

Next showing the lower bound,

|B′|(VB′(S)− V(p̄B′(S)))

(a)
=
∑
b∈B′A

(µ̄b(S)− p(S))2 +
∑
b∈B′G

(µ̄b(S)− p(S))2 − |B′|(p(S)− p̄B′(S))2 − |B′|V(p̄B′(S))

(b)
≥ (t− 3− 2

√
t)κG + |B′G|V(p(S))− |B′G|

6β ln( 6e
β )

n
− |B′|(p(S)− p̄B′(S))2 − |B′|V(p̄B′(S))

≥ (t− 9− 2
√
t)κG + |B′G|V(p(S))− |B′|(p(S)− p̄B′(S))2 − |B′G|V(p̄B′(S))− |B′A|V(p̄B′(S))

≥ (t− 9− 2
√
t)κG − |B′G|(V(p̄B′(S))− V(p(S)))− |B′|(p(S)− p̄B′(S))2 − |B′A|V(p̄B′(S))

(c)
≥ (t− 9− 2

√
t)κG − |B′G|

|p(S)− p̄B′(S)|
n

− |B
′
A|

4n
− |B′|(p(S)− p̄B′(S))2

≥ (t− 9− 2
√
t)κG −m

|p(S)− p̄B′(S)|
n

− βm

4n
−m(p(S)− p̄B′(S))2

(d)
≥ (t− 15− 2

√
t−
√

2.1t)κG −m(p(S)− p̄B′(S))2,

here inequality (a) follows from (17), (b) follows from Lemma 13 and condition 2, (c) follows from (1) and V(·) ≤ 1
4n , and

inequality (d) follows from (18).

Next, we bound the last tem in the above equation to complete the proof. From equation (15),

(p(S)− p̄B′(S))2 ≤
(

1/2 +
1

0.96

√
(t+ 17 + 2

√
t)
)2
β2 ln(6e/β)

n

≤
(

1/4 +
1

0.962
(t+ 17 + 2

√
t) +

1

0.96

√
(t+ 17 + 2

√
t)
)
β · κG

(a)
≤
(

1/4 + 1.1(t+ 17 + 2
√
t) + 5 +

√
2.1t

)
β · κG

≤
(

24 + 1.1t+ 2.2
√
t+
√

2.1t
)
β · κG

(b)
≤ 0.4

(
24 + 1.1t+ 2.2

√
t+
√

2.1t
)
κG,

here inequality (a) uses the fact that 2t1/2 ≤ t+ 1 and
√
x2 + y2 ≤ |x|+ |y| and inequality (b) uses β ≤ 0.4. Combining

above two equations give us the lower bound in the Lemma. �

C. Proof of Theorem 9
First, we restate the statement of the main theorem.
Theorem 14. Suppose the conditions 1- 3 holds. Then Algorithm 2 runs in polynomial time and with probability ≥
1−O(e−k) returns a sub-collection B′f ⊆ B such that |B′f ∩BG| ≥ (1− β

6 )|BG| and for p∗ = p̄B′f ,

||p∗ − p||1 ≤ 100β

√
ln(6e/β)

n
.

Proof. Lemma 6 show that for the sub-collection B′i at each iteration i, |B′i ∩BG| ≥ (1− β
6 )|BG|, hence, for sub-collection

B′f returned by the algorithm |B′f ∩BG| ≥ (1− β
6 )|BG|, with probability ≥ 1−O(e−k). This also implies that the total

number of deleted batches are < (1 + 1/6)βm.

To complete the proof of the above Theorem, we state the following corollary, which is a direct consequence of Lemma 7.
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Corollary 15. Suppose the conditions 1- 3 holds. Then following hold for any B′ ⊆ B such that |B′ ∩BG| ≥ (1− β
6 )|BG|.

1. |VB′(S)− V(p̄B′(S))| ≥ 75κG implies that ψ(B′, S) ≥ 25κG.

2. |VB′(S)− V(p̄B′(S))| ≤ 150κG implies that ψ(B′, S) ≤ 900κG.

In each iteration of Algorithm 2, except the last, Detection−Algorithm returns a subset for which the difference between
two variance estimate is ≥ 75κG. The first statement in the above corollary implies that corruption is high for this subset.
Batch Deletion removes batches from the sub-collection to reduce the corruption for such subset. From Statement 3 of
Lemma 5, in each iteration Batch Deletion removes≥ 25κG−20κG batches. Since the total batches removed are < 7/6βm,
this implies that the algorithm runs for at-max 7βm

6×5κG < n iterations.

The algorithm terminates when Detection−Algorithm returns a subset for which the difference between two variance
estimate is ≤ 75κG. Then Lemma 8 implies that the difference between two variance estimate is ≤ 150κG for all subsets.
Then the above corollary shows that corruption for all subsets is ≤ 900κG. Therefore, ψ(B′) ≤ 900κG. Then Lemma 4
bounds the L1 distance. �

D. Proof of Theorem 2
We restate the theorem and give a short proof.
Theorem 16. For any given β ≤ 0.4, n and k and m, Algorithm 2 runs in polynomial time, and its estimate p∗ satisfies

||p∗ − p||1 ≤ O(max{β
√

ln(1/β)
n ,

√
k
mn}) with probability ≥ 1−O(e−k).

Proof. First we prove the theorem for m ≥ Ω(k). We further divide it into two case depending on number of batches, m.

1. When the number of batches m ≥ Ω
(

k
β2 log(1/β)

)
, then Theorem 1 implies the above result.

2. When the number of batches m ≤ O( k
β2 log(1/β) ), then let β∗ such that m = Θ

(
k

β2
∗ log(1/β∗)

)
. Clearly, β∗ � β. From

Theorem 1, the algorithm would achieve a distance O
(
β∗

√
log(1/β∗)

n

)
= O

(√
k
nm

)
.

This proves the theorem for m ≥ Ω(k).

For m ≤ O(k), there are two possibilities depending on the total number of samples, mn.

1. When mn ≤ O(k), one cannot learn the distribution, hence the L1 error is = Ω(1), and the guarantees of the theorem
trivially hold.

2. When mn ≥ Ω(k), divide each of the m batches into Θ(k/m) smaller batches so that there are m′ = Θ(k) batches of
n′ = Θ(mn/k) samples each. This operation preserves the fraction β of adversarial batches. Since we already proved
the theorem for m′ > Ω(k), applying this result for the updated batches yields the following bound:

max{β ·
√

log(1/β)

n′
,

√
k

m′n′
}

= max{β ·
√
k · log(1/β)

mn
,

√
k

mn
}

=

√
k

mn

≤ max{β ·
√

log(1/β)

n
,

√
k

mn
},

where the second equality follows as β < 1/2 implies β ·
√

log(1/β) < 1.

Thereby proving the theorem for the m ≤ O(k) range. �


