
Extra-gradient with player sampling

The appendices are structured as follows: App. A presents the setting and the existing results. In particular, we start by
introducing the setting of the mirror-prox algorithm in §A.1 and detail the relation between solving this problem and finding
Nash equilibria in convex n-player games §A.2. We then present the proofs of our theorems in App. B. We analyze the
DSEG algorithm (Alg. 1) and study its variance-reduction version. App. D presents further experimental results and details.

A. Existing results
A.1. Mirror-prox

Mirror-prox and mirror descent are the formulation of the extra-gradient method and gradient descent for non-Euclidean
(Banach) spaces. Bubeck (2015) (which is a good reference for this subsection) and Juditsky et al. (2011) study extra-
gradient/mirror-prox in this setting. We provide an introduction to the topic for completeness.

Setting and notations. We consider a Banach space E and a compact set Θ ⊂ E. We define an open convex set D such
that Θ is included in its closure, that is Θ ⊆ D̄ and D ∩Θ 6= ∅. The Banach space E is characterized by a norm ‖ · ‖. Its
conjugate norm ‖ · ‖∗ is defined as ‖ξ‖∗ = maxz:‖z‖61〈ξ, z〉. For simplicity, we assume E = Rn.

We assume the existence of a mirror map for Θ, which is defined as a function Φ: D → R that is differentiable and
µ-strongly convex i.e.

∀x, y ∈ D, 〈∇Φ(x)−∇Φ(y), x− y〉 > µ‖x− y‖2.
We can define the Bregman divergence in terms of the mirror map.
Definition 2. Given a mirror map Φ: D → R, the Bregman divergence D : D ×D → R is defined as

D(x, y) , Φ(x)− Φ(y)− 〈∇Φ(y), x− y〉.

Note that D(·, ·) is always non-negative. For more properties, see e.g. Nemirovsky & Yudin (1983) and references therein.
Given that Θ is compact convex space, we define Ω = maxx∈D∩Θ Φ(x)− Φ(x1). Lastly, for z ∈ D and ξ ∈ E∗, we define
the prox-mapping as

Pz(ξ) , argmin
u∈D∩Θ

{Φ(u) + 〈ξ −∇Φ(z), u〉} = argmin
u∈D∩Θ

{D(z, u) + 〈ξ, u〉}. (11)

The mirror-prox algorithm is the most well-known algorithm to solve convex n-player games in the mirror setting (and
variational inequalities, see §A.2). An iteration of mirror-prox consists of:

Compute the extrapolated point:

{
∇Φ(yτ+1/2) = ∇Φ(θτ )− γF (θτ ),

θτ+1/2 = argminx∈D∩Θ D(x, yτ+1/2),

Compute a gradient step:

{
∇Φ(yτ+1) = ∇Φ(θτ )− γF (θτ+1/2),

θτ+1 = argminx∈D∩Θ D(x, yτ+1).
.

(12)

Remark that the extra-gradient algorithm defined in equation (3) corresponds to the mirror-prox (12) when choosing
Φ(x) = 1

2‖x‖22.
Lemma 1. By using the proximal mapping notation (11), the mirror-prox updates are equivalent to:

Compute the extrapolated point: θτ+1/2 = Pθτ (γF (θτ )),

Compute a gradient step: θτ+1 = Pθτ (γF (θτ+1/2)).

Proof. We just show that θτ+1/2 = Pθτ (γF (θτ )), as the second part is analogous.

θτ+1/2 = argmin
x∈D∩Θ

D(x, yτ+1/2)

= argmin
x∈D∩Θ

Φ(x)− 〈∇Φ(yτ+1/2), x〉

= argmin
x∈D∩Θ

Φ(x)− 〈∇Φ(θτ )− αF (θτ ), x〉

= argmin
x∈D∩Θ

〈αF (θτ ), x〉+D(x, θτ ).
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The mirror framework is particularly well-suited for simplex constraints i.e. when the parameter of each player is a
probability vector. Such constraints usually arise in matrix games. If Θi is the di-simplex, we express the negative entropy
for player i as

Φi(θ
i) =

di∑
j=1

θi(j) log θi(j).

We can then define D , int Θ = int Θ1 × · · · × int Θn and the mirror map as

Φ(θ) =

n∑
i=1

Φi(θ
i).

We use this mirror map in the experiments for random monotone quadratic games (§5.1).

A.2. Link between convex games and variational inequalities

As first noted by Rosen (1965), finding a Nash equilibrium in a convex n-player game is related to solving a variational
inequality (VI) problem. We consider a space of parameters Θ ⊆ Rd that is compact and convex, equipped with the standard
scalar product 〈·, ·〉 in Rd.

For convex n-player games (Ass. 1), the simultaneous (sub)gradient F (Eq. 3.1) is a monotone operator.

Definition 3. An operator F : Θ→ Rd is monotone if ∀θ, θ′ ∈ Θ, 〈F (θ)− F (θ′), θ − θ′〉 > 0.

Assuming continuity of the losses `i, we then consider the set of solutions to the following vairational inequality problem:

Find θ∗ ∈ Θ such that 〈F (θ), θ − θ∗〉 > 0 ∀θ ∈ Θ. (13)

Under Ass. 1, this set coincides with the set of Nash equilibria, and we may solve (13) instead of (1) (Rosen, 1965; Harker
& Pang, 1990; Nemirovski et al., 2010). (13) indeed corresponds to the first-order necessary optimality condition applied to
the loss of each player.

The quantity used to quantify the inaccuracy of a solution θ to (13) is the dual VI gap defined as ErrVI(θ) =
maxu∈Θ〈F (u), θ − u〉. However, the functional Nash error (2), also known as the (Nikaidô & Isoda, 1955) function,
is the usual performance measure for convex games. We provide the convergence rates in term of functional Nash error but
they also apply to the dual VI gap.
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B. Proofs and mirror-setting algorithms
We start by proving Corollary 1, that derives from Juditsky et al. (2011) (§B.1). As this result is not instructive, we use the
structure of the player sampling noise in (5) to obtain a stronger result in the non-smooth case (§B.3). For this, we directly
modify the proof of Theorem 1 from Juditsky et al. (2011), using a few useful lemmas (§B.2). We then turn to the smooth
case, for which a variance reduction mechanism proves necessary (§B.4). The proof is original, and builds upon techniques
from the variance reduction literature (Defazio et al., 2014).

B.1. Proof of Corollary 1

Player sampling noise modifies the variance of the unbiased gradient estimate. Indeed, in equation (5) F̃i(θ,P) is an
unbiased estimate of∇i`i(θ), and for all i ∈ [n]

E
[
F̃i(θ,P)

]
= Prob(i ∈ P)

n

b
E [gi(θ)] = E [gi(θ)] = ∇i`i(θ).

If gi has variance bounded by σ2, we can bound the variance of F̃i(θ,P):

E
[
‖F̃i(θ,P)−∇i`i(θ)‖2

]
= E

[
‖F̃i(θ,P)− gi(θ) + gi(θ)−∇i`i(θ)‖2

]
6 2E

[
‖F̃i(θ,P)− gi(θ)‖2

]
+ 2E

[
‖gi(θ)−∇i`i(θ)‖2

]
6 2E

[
‖F̃i(θ,P)− gi(θ)‖2

]
+ 2σ2

= 2E
[
b

n

∥∥∥(n
b
− 1
)
gi(θ)

∥∥∥2

+

(
1− b

n

)
‖gi(θ)‖2

]
+ 2σ2

6 2
n− b
b

E
[
‖gi(θ)‖2

]
+ 2σ2

6 2
n− b
b

G2 + 2σ2.

Substituting σ2 by 2n−bb G2 + 2σ2 in equations (7) and (8) yields:

E
[
ErrN (θ̂t(k))

]
6 14n

√
Ω

3k

(
4n− 3b

b
G2 + 2σ2

)
= O

(
n

√
Ω

k

(n
b
G2 + σ2

))
.

E
[
ErrN (θ̂t(k))

]
6 max

{
7ΩLn3/2

k
, 28n

√
Ω((nb − 1)G2 + σ2)

3k

}

These bounds are worse than the ones in Theorem 1 when b � n. This motivates the following derivations, that
yields Theorem 2 and 3.

B.2. Useful lemmas

The following two technical lemmas are proven and used in the proof of Theorem 2 of Juditsky et al. (2011).

Lemma 2. Let z be a point in X , let χ, η be two points in the dual E∗, let w = Pz(χ) and r+ = Pz(η). Then,

‖w − r+‖ 6 ‖χ− η‖∗ .

Moreover, for all u ∈ E, one has

D(u, r+)−D(u, z) 6 〈η, u− w〉+
1

2
‖χ− η‖2∗ −

1

2
‖w − z‖2 .

Lemma 3. Let ξ1, ξ2, . . . be a sequence of elements of E∗. Define the sequence {yτ}∞τ=0 in X as follows:

yτ = Pyτ−1(ξτ ).
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Then yτ is a measurable function of y0 and ξ1, . . . , ξτ such that:

∀u ∈ Z,
〈 t∑
τ=1

ξt, yτ−1 − u
〉

6 D(u, y0) +
1

2

t∑
τ=1

‖ξτ‖2∗.

The following lemma stems from convexity assumptions on the losses (Ass. 1) and is proven as an intermediate development
of the proof of Theorem 2 of Juditsky et al. (2011).

Lemma 4. We consider a convex n-player game with players losses `i where i ∈ [n]. Let a sequence of points (zτ )τ∈[t] ∈ Θ,

the stepsizes (γτ )τ∈[t] ∈ (0,∞). We define the average iterate ẑτ =
[∑t

τ=0 γτ

]−1∑t
τ=0 γτzτ . The functional Nash error

evaluated in ẑt is upper bounded by

ErrN (ẑt) , sup
u∈Z

n∑
i=1

`i(ẑt)− `i(ui, ẑ−it ) 6 sup
u∈Z

(
t∑

τ=0

γτ

)−1 t∑
τ=0

〈γτF (zτ ), zτ − u〉.

The following lemma is a consequence of first-order optimality conditions.

Lemma 5. Let (γt)t∈N be a sequence in (0,∞) and A,B > 0. For any t ∈ N, we define the function ft to be

ft(α) ,
A∑t

τ=0 αγτ
+
B
∑t
τ=0(αγτ )2∑t
τ=0 αγτ

.

Then, it attains its minimum for α > 0 when both terms are equal. Let us call α∗ the point at which the minimum is reached.
Then,

α∗ =

√
A

B
∑t
τ=0 γ

2
τ

, ft(α∗) =
2
√
AB

∑t
τ=0 γ

2
τ∑t

τ=0 γτ
.

The next lemma describes the dual norm of the natural Pythagorean norm on a Cartesian product of Banach spaces.

Lemma 6. Let (X1, ‖ · ‖X1
), . . . , (Xn, ‖ · ‖Xn) be Banach spaces where for each i, ‖ · ‖Xi is the norm associated to Xi.

The Cartesian product is X = X1 ×X2 × · · · ×Xn and has a norm ‖ · ‖X defined for y = (y1, . . . , yn) ∈ X as

‖y‖X ,

√√√√ n∑
i=1

‖yi‖2Xi .

It is known that (X, ‖ · ‖X) is a Banach space. Moreover, we define the dual spaces (X∗1 , ‖ · ‖X∗1 , . . . , (X∗n, ‖ · ‖X∗n). The
dual space of X is X∗ = X∗1 ×X∗2 × ...×X∗n and has a norm ‖ · ‖X∗ . Then, for any a = (a1, ..., an) ∈ X∗, the following
inequality holds

‖a‖2X∗ =

n∑
i=1

‖ai‖2X∗i .

Proof. On the one hand,

‖a‖2X∗ = sup
y∈X

|ay|2
‖y‖2X

= sup
y∈X

(
∑n
i=1 aiyi)

2

‖y‖2X
6 sup
y∈X

(∑n
i=1 ‖ai‖X∗i ‖yi‖Xi

)2

‖y‖2X
,

and by Cauchy-Schwarz inequality

‖a‖2X∗ 6 sup
y∈X

(∑n
i=1 ‖ai‖2X∗i

) (∑n
i=1 ‖yi‖2Xi

)
‖y‖2X

=

n∑
i=1

‖ai‖2X∗i .
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To prove the other inequality we define Zi =
{
yi ∈ Xi|‖yi‖X = ‖ai‖X∗i

}
.

‖a‖2X∗ > sup
y∈Z1×···×Zn

|ay|2
‖y‖2X

=

(∑n
i=1 supyi∈Zi aiyi

)2∑n
i=1 ‖ai‖2X∗i

=

(∑n
i=1 ‖ai‖2X∗i

)2

∑n
i=1 ‖ai‖2X∗i

=

n∑
i=1

‖ai‖2X∗i .

The following two numerical lemmas will be used in Lemma 11.
Lemma 7. The following inequality holds for any j ∈ N, p ∈ R such that p > 0:

(2d(j + 1)/2e − j)(1− p)2d(j+1)/2e−j−1p+ 2(1− p)2d(j+1)/2e−j

p2
6

2− p
p2

.

Proof. For j even, we can write

(2d(j + 1)/2e − j)(1− p)2d(j+1)/2e−j−1p+ 2(1− p)2d(j+1)/2e−j = 2(1− p)p+ 2(1− p)2 = 2(1− p).
For j odd,

(2d(j + 1)/2e − j)(1− p)2d(j+1)/2e−j−1p+ 2(1− p)2d(j+1)/2e−j = p+ 1− p+ 1− p = 2− p.
Since p > 0, 2− p > 2(1− p).

Lemma 8. For all |α| < 1,
∞∑
s=q

αs−1s =
qαq−1(1− α) + αq

(1− α)2
.

Proof.
∞∑
s=q

αs−1s =

( ∞∑
s=q

αs

)′
=

(
αq

1− α

)′
=
qαq−1(1− α) + αq

(1− α)2
.

B.3. Doubly-stochastic mirror-prox—Proof of Theorem 2

B.3.1. ALGORITHM

While Alg. 1 presents the doubly-stochastic algorithm in the Euclidean setting, we consider here its mirror version.

Algorithm 3 Doubly-stochastic mirror-prox

1: Input: initial point θ0 ∈ Rd, stepsizes (γτ )τ∈[t], mini-batch size over the players b ∈ [n].
2: for τ = 0, . . . , t do
3: Sample the random matrices Mτ ,Mτ+1/2 ∈ Rd×d.
4: Compute F̃τ+1/2 = n

b ·Mτ F̂ (θτ ).

5: Extrapolation step: θτ+1/2 = Pθτ (γτ F̃τ+1/2).
6: Compute F̃τ+1 = n

b ·Mτ+1/2F̂ (θτ+1/2).

7: Gradient step: θτ+1 = Pθτ (γτ F̃τ+1).

8: Return θ̂t =
[∑t

τ=0 γτ

]−1∑t
τ=0 γτθτ .

Notation. We introduce the noisy simultaneous gradient F̂ (θ) defined as

F̂ (θ) = (F̂ (1)(θ), . . . , F̂ (n)(θ))> , (g1, . . . , gn)> ∈ Rd,

where gi is a noisy unbiased estimate of∇ili(θ) with variance bounded by σ2. We are abusing the notation because F̂ (θ) is
a random variable indexed by Θ and not a function, but we do so for the sake of clarity.

For our convenience, we also define the ratio p = b/n.
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Differences with Alg. 1 The notation in Alg. 3 differs in a few aspects. First, we model the sampling over the players by
using the random block-diagonal matrices Mτ and Mτ+1/2 in Rd×d. More precisely, at each iteration, we select according
to a uniform distribution b diagonal blocks and assign them to the identity matrix. Remark that we add a factor n/b in front
of the random matrices to ensure the unbiasedness of the gradient estimates F̃τ and F̃τ+1/2. Note that the matrices Mτ and
Mτ+1/2 are just used for the convenience of the analysis. In practice, sampling over players is not performed in this way.

Moreover, while the update in Alg. 1 involve Euclidean projections, we use the proximal mapping (11) in Alg. 3. The new
notation will be used throughout the appendix.

We first proceed to the analysis of Alg. 3 in the case of non-smooth losses.

B.3.2. CONVERGENCE RATE UNDER ASSUMPTION 2A (NON-SMOOTHNESS)—PROOF OF THEOREM 2

The following Theorem 4 generalizes Theorem 2 to the mirror setting.

Theorem 4. We consider a convex n-player game where Ass. 2a holds. Assume that Alg. 3 is run with constant stepsizes
γτ = γ. Let t(k) = k/(2b) be the number of iterations corresponding to k gradient computations. Setting

γ =

√√√√ 2Ω

n
(

(3n−b)G2

b + σ2
)

(t(k) + 1)
,

the rate of convergence in expectation at iteration t(k) is

E
[
ErrN (θ̂t(k))

]
= 4

√
Ωn (3G2n+ b(σ2 −G2))

k + 2b
. (14)

Proof. The strategy of the proof is similar to the proof of Theorem 2 and part of Theorem 1 from Juditsky et al. (2011). It
consists in bounding

∑t
τ=0〈γτF (θτ+1/2), θτ+1/2 − u〉, which by Lemma 4 is itself a bound of the functional Nash error.

By using Lemma 2 with z = θτ , χ = γτ F̃τ+1/2, η = γτ F̃τ+1 (so that w = θτ+1/2 and r+ = θτ+1), we have for any u ∈ Θ

〈γτ F̃τ+1, θτ+1/2 − u〉+D(u, θτ+1)−D(u, θτ ) 6
γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗ −

1

2
‖θτ+1/2 − θτ‖2∗

6
γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗. (15)

When summing up from τ = 0 to τ = t in equation (15), we get

t∑
τ=0

〈γτ F̃τ+1, θτ+1/2 − u〉 6 D(u, θ0)−D(u, θt+1) +

t∑
τ=0

γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗. (16)

By decomposing the right-hand side (16), we obtain

t∑
τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉 6 D(u, θ0)−D(u, θt+1) +

t∑
τ=0

γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗

+

t∑
τ=0

〈
γτ (F (θτ+1/2)− F̃τ+1), θτ+1/2 − u

〉

6 Ω +

t∑
τ=0

γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2∗

+

t∑
τ=0

γτ

〈
F (θτ+1/2)− F̃τ+1, θτ+1/2 − yτ

〉

+

t∑
τ=0

γτ

〈
F (θτ+1/2)− F̃τ+1, yτ − u

〉
,

(17)
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where we used D(u, θ0) 6 Ω and defined yτ+1 = Pyτ (γτ∆τ ) with y0 = θ0 and ∆τ = F (θτ+1/2) − F̃τ+1. So far, we
followed the same steps as Juditsky et al. (2011). We aim at bounding the left-hand side of equation (17) in expectation. To
this end, we will now bound the expectation of each of the right-hand side terms. These steps represent the main difference
with the analysis by Juditsky et al. (2011).

We first define the filtrations Fτ = σ(θτ ′ : τ ′ 6 τ + 1/2) and Fτ = σ(θτ ′ : τ ′ 6 τ). We now bound the third term on the
right-hand side of (17) in expectation.

E
[
‖F̃τ+1 − F̃τ+1/2‖2∗

]
6 2

(
E
[
‖F̃τ+1‖2∗

]
+ E

[
‖F̃τ+1/2‖2∗

])
=

2

p2

(
E
[
E
[
‖Mτ+1/2F̂ (θτ+1/2)‖2∗|Fτ

]]
+ E

[
E
[
‖Mτ F̂ (θτ )‖2∗|F ′τ

]])
=

2

p2

n∑
i=1

(
E
[
E
[
‖M (i)

τ+1/2F̂
(i)(θτ+1/2)‖2∗|Fτ

]]
(18)

+E
[
E
[
‖M (i)

τ F̂ (i)(θτ )‖2∗|F ′τ
]])

6
2

p

n∑
i=1

E
[
‖F̂ (i)(θτ+1/2)‖2∗

]
+ E

[
‖F̂ (i)(θτ )‖2∗

]
6

4nG2

p
,

where we used ‖a + b‖2∗ 6 2‖a‖2∗ + 2‖b‖2∗ in the first inequality and applied Lemma 6 in the second equality. Now, we
compute the expectation of the fourth term of equation (17).

E

[
γτ

t∑
τ=0

〈
F (θτ+1/2)− F̃τ+1, θτ+1/2 − yτ

〉]
(19)

= E

[
t∑

τ=0

E
[〈
γτ

(
I − Mτ+1/2

p

)
F̂ (θτ+1/2), θτ+1/2 − yτ

〉∣∣∣∣Fτ]
]

= E

[
t∑

τ=0

〈
γτE

[(
I − Mτ+1/2

p

) ∣∣∣∣Fτ]E [F̂ (θτ+1/2)

∣∣∣∣Fτ] , θτ+1/2 − yτ
〉]

= 0,

where we used the independence property of the random variables in the second equality and E[ kn ·Mτ+1/2] = Id in the
third equality. Regarding the fifth term of (17), by using the sequences {yτ} and {ξτ = γτ∆τ} in Lemma 3 (as done in
Juditsky et al. (2011)), we obtain:

t∑
τ=0

〈γτ∆τ , yτ − u〉 6 D(u, θ0) +

t∑
τ=0

γ2
τ

2
‖∆τ‖2∗ 6 Ω +

t∑
τ=0

γ2
τ

2
‖F (θτ+1/2)− F̃τ+1‖2∗. (20)

We now bound the expectation of ‖F (θτ+1/2)− F̃τ+1‖2∗ using the filtration Fτ . By using Lemma 6 in the first equality,
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‖a+ b‖2∗ 6 2‖a‖2∗ + 2‖b‖2∗ in the second inequality and the bound on the variance (Ass. 3) in the third inequality, we obtain

E
[
‖F (θτ+1/2)− F̃τ+1‖2∗

]
=

n∑
i=1

E
[
‖F (i)(θτ+1/2)− F̃ (i)

τ+1‖2∗
]

=

n∑
i=1

E

[∥∥∥∥F (i)(θτ+1/2)− M
(i)
τ+1

p
F̂ (i)(θτ+1/2)

∥∥∥∥2

∗

]

6
n∑
i=1

2E

[∥∥∥∥
(
I − M

(i)
τ+1

p

)
F̂ (i)(θτ+1/2)

∥∥∥∥2

∗

]
+

n∑
i=1

2E

[∥∥∥∥F (i)(θτ+1/2)− F̂ (i)(θτ+1/2)

∥∥∥∥2

∗

]

6
n∑
i=1

2E

[
p

∥∥∥∥p− 1

p
F̂ (i)(θτ+1/2)

∥∥∥∥2

∗
+ (1− p)‖F̂ (i)(θτ+1/2)‖2∗

]
+ 2nσ2

=

n∑
i=1

2

(
1− p+

(1− p)2

p

)
E
[
‖F̂ (i)(θτ+1/2)‖2∗

]
+ 2nσ2

=

n∑
i=1

2

(
1

p
− 1

)
E
[
‖F̂ (i)(θτ+1/2)‖2∗

]
+ 2nσ2

6
2nG2(1− p)

p
+ 2nσ2. (21)

Therefore, by taking the expectation in equation (17) and plugging (18), (19), (20) and (21), we finally get:

E

[
sup
u∈Z

t∑
τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉
]
6 2Ω +

t∑
τ=0

γ2
τn

(
(3− p)G2

p
+ σ2

)
(22)

Applying Lemma 4 to equation (22) yields an upper bound on the functional Nash error shown in equation (23).

E
[
ErrN (θ̂t)

]
6

(
t∑

τ=0

γτ

)−1(
2Ω +

t∑
τ=0

γ2
τn

(
(3n− b)G2

b
+ σ2

))
. (23)

Now, let us set γt constant and optimize the bound (23). Namely, we apply Lemma 5 setting γτ = 1 for all τ ∈ [t], A = 2Ω
and

B = n

(
(3n− b)G2

b
+ σ2

)
.

The optimal value for γτ is

γτ = γ =

√√√√ 2Ω

n
(

(3n−b)G2

b + σ2
)

(t+ 1)
.

and the optimal value of the bound is

E
[
ErrN (θ̂t)

]
6

√√√√8Ωn
(

(3n−b)G2

b + σ2
)

t+ 1
. (24)

The number of iterations t can be expressed in terms of the number of gradient computations k as t(k) = k/(2b). Plugging
this expression into (24), we get

E
[
ErrN (θ̂t(k))

]
=

√
8Ωn

(
3G2n
b + σ2 −G2

)
k
2b + 1

,

which yields equation (14) after simplification.
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Remark 1. For constant stepsizes, equation (24) implies that with an appropriate choice of t and γ we can achieve a value
of the Nash error arbitrarily close to zero at time t. However, from Equation 23 we see that constant stepsizes do not ensure
convergence; the bound has a strictly positive limit. Stepsizes decreasing as 1/

√
τ do ensure convergence, although we do

not make a detailed analysis of this case.

Remark 2. Without using any variance reduction technique, the smooth losses assumption Ass. 2b does not yield a
significant improvement over the bound from Theorem 4. We do not include the analysis of this case.

B.4. Doubly-stochastic mirror-prox with variance reduction—Proof of Theorem 3

B.4.1. ALGORITHM

With the same notations as above, we present a version of Alg. 1 with variance reduction in the mirror framework.

Algorithm 4 Mirror prox with variance reduced player randomness

1: Input: initial point θ0 ∈ Rd, stepsizes (γτ )τ∈[t], mini-batch size over the players b ∈ [n].
2: Set R0 = F̂ (θ0) ∈ Rd
3: for τ = 0, . . . , t do
4: Sample the random matrices Mτ ,Mτ+1/2 ∈ Rd×d.
5: Compute F̃τ+1/2 = Rτ + n

bMτ (F̂ (θτ )−Rτ )

6: Set Rτ+1/2 = Rτ +Mτ (F̂ (θτ )−Rτ )

7: Extrapolation step: θτ+1/2 = Pθτ (γτ F̃τ+1/2).
8: Compute F̃τ+1 = Rτ+1/2 + n

bMτ+1/2(F̂ (θτ+1/2)−Rτ+1/2)

9: Set Rτ+1 = Rτ+1/2 +Mτ+1/2(F̂ (θτ+1/2)−Rτ+1/2)

10: Extra-gradient step: θτ+1 = Pθτ (γτ F̃τ+1).

11: Return θ̂t =
[∑t

τ=0 γτ

]−1∑t
τ=0 γτθτ .

F̂ (θ) is defined as in Alg. 3. The random matrices Mτ ,Mτ+1/2 are also sampled the same way.

In Alg. 4, we leverage information from a table (Rτ )τ∈[t] to produce doubly-stochastic simultaneous gradient estimates
with lower variance than in Alg. 3. The table Rτ is updated when possible.

The following Theorem 5 generalizes Theorem 3 in the mirror setting.

Theorem 5. Assume that for all i between 1 and n, the gradients ∇i`i are L-Lipschitz (Ass. 2b) and bounded by Gi
(Ass. 2a). Assume Alg. 4 is run for t(k) iterations with constant stepsizes γτ = γ, with γ 6

√
2

3nL2 defined as

γ ,

√
2Ω

7σ2n(t(k) + 1)

where p , b/n, k is the number of gradient computations and t(k) = k/(2b) is the corresponding number of iterations.
Then, the convergence rate in expectation at iteration t(k) is

E
[
ErrN (θ̂t(k))

]
6 4

√
7Ωσ2bn

k + 2b
+ h(Ω, σ2, G, L, n, b)

1

(k + 2b)3/2
,

where

h(Ω, σ2, G, L, n, b) , 42L2n2(σ2 +G2)

(
1− b

n

)(
2
(n
b

)3/2

−
(n
b

)1/2
)(

4Ω

7σ2

)3/2

.

Outline of the proof of Theorem 5. We prove intermediate results (Lemma 9, Lemma 10, Lemma 11) and use the same
framework as in the smooth case, based on the work of Juditsky et al. (2011).

Definition 4. For a given j and i (which we omit), let us define Kj as the random variable indicating the highest q ∈ N
strictly lower than j such that M (i)

q/2 is the identity (and Kj = 0 if there exists no such q).
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In other words, Kj is the last step q before j at which the sequence (R
(i)
q/2)q∈N was updated with a new value F̂ (i)(θq/2).

That is, Rj/2,i = F̂ (i)(θKj/2).

Lemma 9. For a given j, j −Kj is a random variable that has a geometric distribution with parameter p and support
between 1 and j, i.e., for all q such that j − 1 > q > 1,

P (Kj = q) = p(1− p)j−1−q,

and P (Kj = 0) = 1−∑j−1
q=1 P (Kj = q) = (1− p)j−1.

Proof. M (i)
q/2 is Bernoulli distributed with parameter p among zero and the identity, for all q.

Lemma 10. The following equalities hold:

E
[
‖F (i)(θτ )− F̃ (i)

τ+1/2‖2?
]

=
2(1− p)

p
E
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]

+ 2σ2,

E
[
‖F̃ (i)

τ+1 − F (i)(θτ+1/2)‖2?
]

=
2(1− p)

p
E
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]

+ 2σ2.

Proof. Using the conditional expectation with respect to the filtration up to wτ ,

E
[
‖F̃ (i)

τ+1 − F (i)(θτ+1/2)‖2?
]

= 2E

∥∥∥∥R(i)
τ+1/2 +

M
(i)
τ+1/2

p
(F̂ (i)(θτ+1/2)−R(i)

τ+1/2)− F̂ (i)(θτ+1/2)

∥∥∥∥2

?


+ 2E

[
‖F̂ (i)(θτ+1/2)− F (i)(θτ+1/2)‖2?

]
= 2E

∥∥∥∥
I − M

(i)
τ+1/2

p

 (R
(i)
τ+1/2 − F̂ (i)(θτ+1/2))

∥∥∥∥2

?

+ 2σ2

= 2E

[
p

∥∥∥∥p− 1

p
(R

(i)
τ+1/2 − F̂ (i)(θτ+1/2))

∥∥∥∥2

?

+ (1− p)‖R(i)
τ+1/2 − F̂ (i)(θτ+1/2)‖2?

]
+ 2σ2

= 2

(
1− p+

(1− p)2

p

)
E
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]

+ 2σ2

=
2(1− p)

p
E
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]

+ 2σ2.

The second equality is derived analogously.

Let us define the change of variables j = 2τ . Parametrized by j, the sequences that we are dealing with are (M
(i)
j/2)j∈N,

(R
(i)
j/2)j∈N and (θj/2)j∈N. In this scope i is a fixed integer between 1 and n.

Lemma 11. Assume that (γτ )τ∈N is non-increasing and upper bounded by γ. Then, the following holds:

t∑
τ=0

γ2
τE
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]
6 6L2γ4n(σ2 +G2)

(
2

p2
− 1

p

)
(t+ 1)

t∑
τ=0

γ2
τE
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
]
6 6L2γ4n(σ2 +G2)

(
2

p2
− 1

p

)
(t+ 1)



Extra-gradient with player sampling

Proof. We can write

E
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]

= E
[
‖R(i)

2τ/2 − F̂ (i)(θ2τ/2)‖2?
]

= E
[
E
[
‖R(i)

2τ/2 − F̂ (i)(θ2τ/2)‖2?
∣∣∣∣K2τ

]]
=

2τ−1∑
q=0

P (K2τ = q)E
[
‖R(i)

2τ/2 − F̂ (i)(θ2τ/2)‖2?
∣∣∣∣K2τ = q

]

=

2τ−1∑
q=1

p(1− p)2τ−1−qE
[
‖F̂ (i)(θq/2)− F̂ (i)(θ2τ/2)‖2?

∣∣∣∣K2τ = q

]
+ (1− p)2τ−1E

[
‖F̂ (i)(θ0)− F̂ (i)(θ2τ/2)‖2?

∣∣∣∣K2τ = 0

]
.

For 0 6 q 6 2τ − 1,

E
[
‖F̂ (i)(θq/2)− F̂ (i)(θ2τ/2)‖2?

∣∣∣∣K2τ = q

]
= E

[
‖F̂ (i)(θq/2)− F (i)(θq/2) + F (i)(θq/2)− F (i)(θ2τ/2) + F (i)(θ2τ/2)− F̂ (i)(θ2τ/2)‖2?

∣∣∣∣K2τ = q

]
= 3E

[
‖F (i)(θq/2)− F (i)(θ2τ/2)‖2?

∣∣∣∣K2τ = q

]
+ 6σ2

6 3L2E
[
‖θq/2 − θ2τ/2‖2?

∣∣∣∣K2τ = q

]
+ 6σ2

6 3L2E


∥∥∥∥∥∥

2τ−1∑
j=q

γj/2F̂ (θq/2)

∥∥∥∥∥∥
2

?

+ 6σ2 = 3L2

2τ−1∑
j=q

γj/2

2

E
[∥∥∥F̂ (θq/2)

∥∥∥2

?

]
+ 6σ2

= 3L2

2τ−1∑
j=q

γj/2

2

2n(σ2 +G2) + 6σ2

Thus,
t∑

τ=0

γ2
τE
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]

=

t∑
τ=0

γ2
τ

2τ−1∑
q=1

p(1− p)2τ−1−q

3L2

2τ−1∑
j=q

γj/2

2

2n(σ2 +G2) + 6σ2


+ γ2

τ (1− p)2τ−1

3L2

2τ−1∑
j=0

γj/2

2

2n(σ2 +G2) + 6σ2


6

t∑
τ=0

γ2
2τ−1∑
q=1

p(1− p)2τ−1−q
(

3L2γ2 (2τ − q)2
2n(σ2 +G2) + 6σ2

)
+ γ2(1− p)2τ−1

(
3L2γ2 (2τ)

2
2n(σ2 +G2) + 6σ2

)
We simplify the right hand side. On the one hand,

6σ2γ2
t∑

τ=0

2τ−1∑
q=1

p(1− p)2τ−1−q + (1− p)2τ−1 = 6σ2γ2(t+ 1)
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On the other hand, we compute

2τ−1∑
q=1

p(1− p)2τ−1−q (2τ − q)2
+ (1− p)2τ−1 (2τ)

2 6
∞∑
q=1

p(1− p)q−1q2

= p

(
(1− p)

∞∑
q=1

(1− p)q−2q(q − 1) +

∞∑
q=1

(1− p)q−1q

)

= p

(
(1− p) d

2

dp2

( ∞∑
q=1

(1− p)q
)
− d

dp

( ∞∑
q=1

(1− p)q
))

= p

(
(1− p) d

2

dp2

(
1− p
p

)
− d

dp

(
1− p
p

))
= p

(
2(1− p)
p3

+
1

p2

)
=

2(1− p)
p2

+
1

p
=

2

p2
− 1

p

Hence,

t∑
τ=0

γ2
τE
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
]

= 6L2γ4n(σ2 +G2)

(
t∑

τ=0

2τ−1∑
q=1

p(1− p)2τ−1−q (2τ − q)2
+ (1− p)2τ−1 (2τ)

2

)

6 6L2γ4n(σ2 +G2)

(
2

p2
− 1

p

)
(t+ 1)

The same argument works for the second inequality.

Proof of Theorem 5. We rewrite equation (17):

〈γτ F̃τ+1, θτ+1/2 − u〉+D(u, θτ+1)−D(u, θτ )

6
γ2
τ

2
‖F̃τ+1 − F̃τ+1/2‖2? −

1

2
‖θτ+1/2 − θτ‖2

6
3γ2
τ

2
‖F̃τ+1 − F (θτ+1/2)‖2? +

3γ2
τ

2
‖F (θτ )− F̃τ+1/2‖2? +

3γ2
τ

2
‖F (θτ+1/2)− F (θτ )‖2?

− 1

2
‖θτ+1/2 − θτ‖2.

We rewrite equation (20). We have ∆τ = F (θτ+1/2)− F̃τ+1 and yτ+1 = Pyτ (γτ∆τ ) with y0 = θ0.

t∑
τ=0

〈γτ∆τ , yτ − u〉 6 D(u, θ0) +

t∑
τ=0

γ2
τ

2
‖∆τ‖2?

= D(u, θ0) +

t∑
τ=0

γ2
τ

2
‖F (θτ+1/2)− F̃τ+1‖2?. (25)

Using equation (25) and the analogous equation to (19), we reach the following inequality:

E

[
sup
u∈Z

t∑
τ=0

〈γτF (θτ+1/2), θτ+1/2 − u〉
]
6 E

[
sup
u∈Z

2D(u, θ0)−D(u, θt+1)−
t∑

τ=0

1

2
‖θτ+1/2 − θτ‖22

]

+ E

[
t∑

τ=0

2γ2
τ‖F̃τ+1 − F (θτ+1/2)‖2? +

3γ2
τ

2
‖F (θτ )− F̃τ+1/2‖2? +

3γ2
τ

2
‖F (θτ+1/2)− F (θτ )‖2?

]
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We use Lemma 9 and Lemma 11 and the Lipschitz property of F to bound the right hand side by:

2Ω + E

[
t∑

τ=0

(
3γ2
τ

2
nL2 − 1

)
‖θτ+1/2)− θτ‖22

]

+ E

[
t∑

τ=0

2γ2
τ

(
2nσ2 +

n∑
i=1

2(1− p)
p

E
[
‖R(i)

τ − F̂ (i)(θτ )‖2?
])

+
3γ2
τ

2

(
2nσ2 +

n∑
i=1

2(1− p)
p

E
[
‖R(i)

τ+1/2 − F̂ (i)(θτ+1/2)‖2?
])]

6 2Ω + E

[
t∑

τ=0

(
3γ2

2
nL2 − 1

)
‖θτ+1/2)− θτ‖22

]
+ 7σ2nγ2(t+ 1)

+
42(1− p)

p
L2γ4n2(σ2 +G2)

(
2

p2
− 1

p

)
(t+ 1)

If we take γ > 0 such that 3γ2

2 nL2 < 1, we can upper bound this expression by

2Ω + 7σ2nγ2(t+ 1) +
42(1− p)

p
L2γ4n2(σ2 +G2)

(
2

p2
− 1

p

)
(t+ 1)

Thus,

E

[
sup
u∈Z

t∑
τ=1

〈γτF (θτ+1/2), θτ+1/2 − u〉
]
6 2Ω + 7σ2nγ2(t+ 1) +

42(1− p)
p

L2γ4n2(σ2 +G2)

(
2

p2
− 1

p

)
(t+ 1).

By Lemma 4, if we pick γt = γ for all t > 0, we obtain

ErrN (θ̂t) 6
2Ω

γ(t+ 1)
+ 7σ2nγ +

42(1− p)
p

L2n2(σ2 +G2)

(
2

p2
− 1

p

)
γ3 =: A/γ +Bγ + Cγ3 (26)

For A,B,C > 0, the value of γ > 0 minimizing A/γ +Bγ + Cγ3 is

γ =

√
−B +

√
B2 + 12AC

6C

Notice that when t >> 0, A << B,C. If we take the first-order Taylor approximation
√

1 + x ≈ 1 + x/2 of the square
root around 1, we obtain

γ =

√√√√−B +B
√

1 + 12AC
B2

6C
≈

√
−B +B

(
1 + 6AC

B2

)
6C

=

√
6AC
B

6C
=

√
A

B
=

√
2Ω

7σ2n(t+ 1)

If we plug this expression into (26), we get

2
√
AB + C

(
A

B

)3/2

= 2

√
14Ωσ2n

t+ 1
+ 42L2n2(σ2 +G2)(1− p)

(
2

p3
− 1

p2

)(
2Ω

7σ2n(t+ 1)

)3/2

Now, let us plug p = b/n and t(k) = k/(2b):

2

√
14Ωσ2n
k
2b + 1

+ 42L2n2(σ2 +G2)

(
1− b

n

)(
2n3

b3
− n2

b2

)(
2Ω

7σ2n( k2b + 1)

)3/2

= 4

√
7Ωσ2bn

k + 2b
+ 42L2n2(σ2 +G2)

(
1− b

n

)(
2
(n
b

)3/2

−
(n
b

)1/2
)(

4Ω

7σ2(k + 2b)

)3/2

= 4

√
7Ωσ2bn

k + 2b
+ h(Ω, σ2, G, L, n, b)

1

(k + 2b)3/2
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C. Spectral convergence analysis for non-constrained 2-player games
We observed in the experimental section that player sampling tended to be empirically faster than full extra-gradient, and
that cyclic sampling had a tendency to be better than random sampling.

To have more insight on this finding, let us study a simplified version of the random two-player quadratic games. Let
A ∈ R2d×2d be formed by stacking the matrices Ai ∈ Rd×2d for each i ∈ [d]. We assume that A is invertible and has a
positive semidefinite symmetric part. For i ∈ {1, 2}, we define the loss of the i-th player `i as

`i(θ
i, θ−i) = θi

>
Aiθ −

1

2
θi
>
Aiiθ

i,

whereAii ∈ Rd and θi ∈ Rdi . Contrary to the random quadratic games setting in §5.1, we do not enforce here any parameter
constraints nor regularization. Therefore, this places us in the extra-gradient (Euclidean) setting. We restrict our attention to
the non-noisy regime.

C.1. Recursion operator for the different sampling schemes

We study the “algorithm operator” A that appears in the recursion θk+4 = A(θk) for the different sampling schemes. k
is the number of gradient computations. We consider steps of 4 evaluation as this corresponds to a single iteration of full
extra-gradient.

Full extrapolation and update. We have∇i`i(θ) = Aiθ. Since A is invertible, θ = 0 is the only Nash equilibrium. The
full extra-gradient updates with constant stepsize are{

θfull
k+2 = θfull

k − γAθfull
k ,

θfull
k+4 = θfull

k − γAθfull
k+2.

(27)

By introducing A(γ)
full := I − γA+ γ2A2, (27) is simply θfull

k+4 = A(γ)
full θ

full
k .

Cyclic sampling. Defining the matrices M1,M2 ∈ R2d×2d

M1 =

[
Id 0d×d

0d×d 0d×d

]
, M2 =

[
0d×d 0d×d
0d×d Id

]
,

the updates becomes 
θcyc
k+1 = θcyc

k − γM1Aθ
cyc
k ,

θcyc
k+2 = θcyc

k − γM2Aθ
cyc
k+1,

θcyc
k+3 = θcyc

k+2 − γM2Aθ
cyc
k+2,

θcyc
k+4 = θcyc

k+2 − γM1Aθ
cyc
k+3.

. (28)

Remark that (28) contains two iterations of Alg. 1; θk+1 and θk+3 are extrapolations and θk+2 and θk+4 are updates.
Defining A(γ)

ij := I − γMiA+ γ2MiAMjA and A(γ)
cyc := Aγ12A

(γ)
21 , we have θcyc

k+4 = A(γ)
cyc θ

cyc
k .

Random sampling. Extra-gradient with random subsampling (b = 1) rewrites as
θrand
k+1 = θrand

k − γMSk+1
Aθrand

k ,

θrand
k+2 = θrand

k − γMSk+2
Aθrand

k+1,

θrand
k+3 = θrand

k+2 − γMSk+3
Aθrand

k+2,

θrand
k+4 = θrand

k+2 − γMSk+3
Aθrand

k+3.

.

where Sk+1, Sk+2, Sk+3, Sk+4 take values 1 and 2 with equal probability and pairwise are independent. Note that we also
enroll two iterations of sampled extra-gradient, as we consider a budget of 4 gradient evaluations. Let Fk = σ(Sk′ : k′ 6 k).



Extra-gradient with player sampling

For extra-gradient with random player sampling, we can write

E
[
θrand
k+4

]
= E

[
A(γ)
Sk+1Sk+3

A(γ)
Sk+2Sk+1

θrand
k

]
= E

[
E
[
A(γ)
Sk+1Sk+3

A(γ)
Sk+2Sk+1

θrand
k

∣∣∣∣Fk]]
= E

[
E
[
A(γ)
Sk+1Sk+3

A(γ)
Sk+2Sk+1

∣∣∣∣Fk] θrand
k

]
= E

[
A(γ)
Sk+4Sk+3

A(γ)
Sk+2Sk+1

]
E
[
θrand
k

]
=

1

16

∑
j1,j2,j3,j4∈{1,2}

A(γ)
j1j2
A(γ)
j3j4

E
[
θrand
k

]
=

1

16

(
4I − 2γA+ γ2A2

)2 E [θrand
k

]
, A(γ)

rand E
[
θrand
k

]
C.2. Convergence behavior through spectral analysis

The following well-known result proved by Gelfand (1941) relates matrix norms with spectral radii.

Theorem 6 (Gelfand’s formula). Let ‖ · ‖ be a matrix norm on Rn and let ρ(A) be the spectral radius of A ∈ Rn (the
maximum absolute value of the eigenvalues of A). Then,

lim
t→∞

‖At‖1/t = ρ(A).

In our case, we thus have the following results, that describes the expected rate of convergence of the last iterate sequence
(θt)t towards 0. It is governed by the spectral radii ρ(A(η)) whenever the later is strictly lower than 1.

Corollary 2. The behavior of θfull
t , θcyc

t and θrand
t is related to the corresponding operators by the following expressions:

lim
t→∞

(
sup

θfull
0 ∈R2d

‖θfull
t ‖2
‖θfull

0 ‖2

)1/t

= ρ
(
A(γ)

full

)
,

lim
t→∞

(
sup

θcyc
0 ∈R2d

‖θcyc
t ‖2
‖θcyc

0 ‖2

)1/t

= ρ
(
A(γ)

cyc

)
,

lim
t→∞

(
sup

θrand
0 ∈R2d

‖E
[
θrand
t

]
‖

2

‖θrand
0 ‖2

)1/t

= ρ
(
A(γ)

rand

)
.

Proof. The proof is analogous for the three cases. Using the definition of operator norm,

lim
t→∞

(
sup

θfull
0 ∈R2d

‖θfull
t ‖
‖θfull

0 ‖

)1/t

= lim
t→∞

 sup
θfull
0 ∈R2d

∥∥∥∥(A(γ)
full

)t
θfull

0

∥∥∥∥
‖θfull

0 ‖


1/t

= lim
t→∞

∥∥∥∥(A(γ)
full

)t∥∥∥∥1/t

,

which is equal to ρ
(
A(γ)

full

)
by Gelfand’s formula.

C.3. Empirical distributions of the spectral radii

Comparing the cyclic, random and full sampling schemes thus requires to compare the values

A?full , min
γ∈R+

ρ(A(γ)
full ), A?cyc , min

γ∈R+
ρ(A(γ)

cyc ), A?rand , min
γ∈R+

ρ(A(γ)
rand), (29)

for all matrix games with positive payoff matrix A ∈ R2d×2d. This is not tractable in closed form. However, we may study
the distribution of these values for random games.
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Figure 6. Spectral radii distribution of the algorithmic operator associated to doubly-stochastic and full extra-gradient, in the non-
constrained bi-linear two-player game setting, for various conditioning and skewness. Random and cyclic sampling yields lower radius
(hence faster rates) for most problem geometry. Cyclic sampling outperforms random sampling in most settings, especially for better
conditioned problems.

Experiment. We sample matrices A in R2d×2d (with d = 3) as the weighted sum of a random positive definite matrix
Asym and of a random skew matrix Askew. We refer to App. D for a detailed description of the matrix sampling method.
We vary the weight α ∈ [0, 1] of the skew matrix and the lowest eigenvalue µ of the matrix Asym. We sample 300 different
games and compute A(η) on a grid of step sizes η, for the three different methods. We thus estimate the best algorithmic
spectral radii defined in (29).

Results and interpretation. The distributions of algorithm spectral radii are presented in Fig. 6. We observe that the
algorithm operator associated with sampling one among two players at each update is systematically more contracting than
the standard extra-gradient algorithm operator, providing a further insight for the faster rates observed in §5.1, Fig. 2. Radius
tend to be smaller for cyclic sampling than random sampling, in most problem geometry. This is especially true in well
conditioned problem (high µ), little-skew problems (skewness α < .5) and completely skew problems α = 1. The later
gives insights to explain the good performance of cyclic player sampling for GANs (§5.2), as those are described by skew
games (zero-sum notwithstanding the discriminator penalty in WP-GAN).

On the other hand, we observe that radii are more spread using cyclic sampling for intermediary skew problerm (α = .75),
hinting that worst-case rates may be better for random sampling.
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Figure 7. 50-player completely skew smooth game with increasing noise (sampling with variance reduction). In the non-noisy setting,
player sampling reduces convergence speed. On the other hand, it provides a speed-up in the high noise regime.

D. Experimental results and details
We provide the necessary details for reproducing the experiments of §5.

D.1. Quadratic games

Generation of random matrices. We sample two random Gaussian matrix G and F in Rnd×nd, where each coefficient
gij , fij ∼ N (0, 1) is sampled independently. We form a symmetric matrix Asym = 1

2 (G + GT ), and a skew matrix
Askew = 1

2 (F − FT ). To make Asym positive definite, we compute its lowest eigenvalue µ0, and update Asym ←
Asym + (µ− µ0)Ind×nd, where µ regulates the conditioning of the problem and is set to 0.01. We then form the final matrix
A = (1− α)Asym + αAskew, where α is a parameter between 0 and 1, that regulates the skewness of the game.

Parameters for quadratic games. Fig. 2 compare rates of convergence for doubly-stochastic extra-gradient and extra-
gradient, for increasing problem complexity. Used parameters are reported in Table 2. Note that the conclusion reported in
§5.1 regarding the impact of noise and the impact of cyclic sampling holds for all configurations we have tested; we designed
increasingly complex experiments for concisely showing the efficiency and limitations of doubly-stochastic extra-gradient.

Grids. For each experiment, we sampled 5 matrices (Ai)i with skewness parameter α. We performed a grid-search on
learning rates, setting η ∈ {10−5, · · · , 1}, with 32 logarithmically-spaced values, making sure that the best performing
learning rate is always strictly in the tested range.

Limitations in skew non-noisy games. As mentioned in the main section, player sampling can hinder performance
in completely skew games (α = 1) with non-noisy losses. Those problems are the hardest and slower to solve. They
corresponds to fully adversarial settings, where sub-game between each pair is zero-sum. We illustrate this finding in Fig. 7,
showing how the performance of player sampling improves with noise. We emphasize that the non-noisy setting is not

Table 2. Parameters used in Fig. 2 for increasing problem complexity.

Figure Players # Exp. Skewness α Noise σ Reg. λ

Fig. 2a 5 Smooth, no-noise 0.9 0 0
Smooth, noisy 0.9 1 0.
Skew, non-smooth, noisy 1. 1 2 · 102

Fig. 2b 50 Smooth, no-noise 0.9 0 0
Non-smooth, noisy 0.9 1 2 · 10−2

Skew, non-smooth, noisy 1. 1 2 · 10−2

Fig. 2c 50 Smooth, skew, lowest-noise 0.95 1 0.
0.95 10 0.

Smooth, skew, highest-noise 0.95 100 0.

Fig. 7 50 Smooth, skew, no-noise 1 0 0.
1 10 0.

Smooth, skew, highest-noise 1 50 0
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relevant to machine learning or reinforcement learning problems.

D.2. Generative adversarial networks

Models and loss. We use the Residual network architecture for generator and discriminator proposed by Gidel et al.
(2019). We use a WGAN-GP loss, with gradient penalty λ = 10. As advocated by (Gidel et al., 2019), we use a 10 times
lower stepsize for the generator. We train the generator and discriminator using the Adam algorithm (Kingma & Ba, 2015),
and its straight-forward extension proposed by (Gidel et al., 2019).

Grids. We perform 5 · 105 generator updates. We average each experiments with 5 random seeds, and select the best
performing generator learning rate η ∈ {2 · 10−5, 5 · 10−5, 8 · 10−5, 1 · 10−4, 2 · 10−4}, which turned out to be 5 · 10−5 for
both subsampled and non-subsampled extra-gradient.


