Supplementary Material for Information-Theoretic Local Minima Characterization and Regularization

A. Proof of Equation 1 in Section 4

Let us first review the Equation 1 in Section 4:

$$\mathcal{I}_{\mathcal{S}}(w_0) = \nabla_w^2 \mathcal{L}(\mathcal{S}, w_0) = \mathop{\mathbb{E}}_{(x, c_x) \sim \mathcal{S}} [\nabla_w \ln p_{w_0}(c_x) \nabla_w \ln p_{w_0}(c_x)^T]$$

To prove this equation, it suffices to prove the following equality:

$$-\nabla_w^2 \ell \ell_{\mathcal{S}}(w) = \sum_{(x,y)\in\mathcal{S}} \sum_{i=1}^K y_i [\nabla_w \ln p(c_x = i|x; w) \nabla_w \ln p(c_x = i|x; w)^T]$$

For convenience, we change the notation of the local minimum from w_0 to w and further denote $p(c_x = i | x; w)$ as $p_w^x(i)$. Since $-\nabla_w^2 \ell \ell_S(w) = -\sum_{(x,y)\in S} \sum_{i=1}^K y_i \nabla_w^2 \ln p_w^x(i)$, for each $(x,y) \in S$ and $i \in \{1, 2, ..., K\}$, we have:

$$\begin{split} [\nabla_w^2 \ln p_w^x(i)]_{j,k} &= \frac{\partial^2}{\partial w_j \partial w_k} \ln p_w^x(i) \\ &= \frac{\partial}{\partial w_j} \left(\frac{\partial}{\partial w_k} p_w^x(i)}{p_w^x(i)} \right) \\ &= \frac{p_w^x(i) \frac{\partial^2}{\partial w_j \partial w_k} p_w^x(i)}{p_w^x(i)^2} - \frac{\partial}{\partial w_j} p_w^x(i) \frac{\partial}{\partial w_k} p_w^x(i)}{p_w^x(i)} \\ &= \frac{\partial^2}{\partial w_j \partial w_k} p_w^x(i) - \frac{\partial}{\partial w_j} \ln p_w^x(i) \cdot \frac{\partial}{\partial w_k} \ln p_w^x(i) \end{split}$$
(a)

Since w_0 is a local minimum of full training accuracy, as described in Section 4, and $y_i = p_w^x(i)$ for $i \in \{1, 2, ..., K\}$, when taking the double summation, the first term in Equation **a** becomes:

$$\sum_{(x,y)\in\mathcal{S}}\sum_{i=1}^{K}\frac{\partial^2}{\partial w_j\partial w_k}p_w^x(i) = \frac{\partial^2}{\partial w_j\partial w_k}\sum_{(x,y)\in\mathcal{S}}\sum_{i=1}^{K}p_w^x(i) = \frac{\partial^2}{\partial w_j\partial w_k}N = 0$$

Then it follows that:

$$[\nabla_w^2 \ell \ell_{\mathcal{S}}(w)]_{j,k} = -\sum_{(x,y)\in\mathcal{S}} \sum_{i=1}^K y_i [\nabla_w \ln p_w^x(i) \ \nabla_w \ln p_w^x(i)^T]_{j,k}$$

B. Proof of the Generalization Bound in Section 5.2

Remind that in Section 5.2 we pick a uniform prior \mathcal{P} over $w \in \mathcal{M}(w_0)$ and pick the posterior \mathcal{Q} of density $q(w) \propto e^{-|\mathcal{L}_0 - \mathcal{L}(\mathcal{S}, w)|}$ with $\mathcal{L}_0 \triangleq \mathcal{L}(\mathcal{S}, w_0)$. Then we have the upper bound of the expected generalization loss $\mathbb{E}_{w \sim \mathcal{Q}}[\mathcal{L}(\mathcal{D}, w)]$ in terms of the expected training loss $\mathbb{E}_{w \sim \mathcal{Q}}[\mathcal{L}(\mathcal{S}, w)]$ and $\gamma(w_0)$.

Theorem A. Given |S| = N, D, $\mathcal{L}(S, w)$ and $\mathcal{L}(D, w)$ described in Section 3, a local minimum w_0 , the volume V of $\mathcal{M}(w_0)$ sufficiently small, the Assumption 1 & 2 satisfied, and \mathcal{P}, \mathcal{Q} defined above, for any $\delta \in (0, 1]$, we have with probability at least $1 - \delta$ that:

$$\underset{w \sim \mathcal{Q}}{\mathbb{E}}[\mathcal{L}(\mathcal{D}, w)] \leq \underset{w \sim \mathcal{Q}}{\mathbb{E}}[\mathcal{L}(\mathcal{S}, w)] + 2\sqrt{\frac{2\mathcal{L}_0 + 2\mathcal{A} + \ln \frac{2N}{\delta}}{N-1}} \quad where \ \mathcal{A} = \frac{WV^{\frac{2}{W}} \pi^{\frac{1}{W}} e^{\gamma(w_0)/W}}{4\pi e}$$

To prove this theorem, let us review the PAC-Bayes Theorem in McAllester (2003):

Theorem B. For any data distribution \mathcal{D} and a loss function $\mathcal{L}(\cdot, \cdot) \in [0, 1]$, let $\mathcal{L}(\mathcal{D}, w)$ and $\mathcal{L}(\mathcal{S}, w)$ be the expected loss and training loss respectively for the model paramterized by w, with the training set $|\mathcal{S}| = N$. For any prior distribution \mathcal{P} with a model class \mathcal{C} as its support, any posterior distribution \mathcal{Q} over \mathcal{C} (not necessarily Bayesian posterior), and for any $\delta \in (0, 1]$, we have with probability at least $1 - \delta$ that:

$$\mathop{\mathbb{E}}_{w \sim \mathcal{Q}} [\mathcal{L}(\mathcal{D}, w)] \leq \mathop{\mathbb{E}}_{w \sim \mathcal{Q}} [\mathcal{L}(\mathcal{S}, w)] + 2\sqrt{\frac{2D_{\mathrm{KL}}(\mathcal{Q}||\mathcal{P}) + \ln \frac{2N}{\delta}}{N - 1}}$$

PAC-Bayes (McAllester) For a data distribution \mathcal{D} and a loss $\mathcal{L}(\cdot, \cdot) \in [0, 1]$, let $\mathcal{L}(\mathcal{D}, w)$ and $\mathcal{L}(\mathcal{S}, w)$ be the expected loss and the training loss; the training set $|\mathcal{S}| = N$ is sampled from \mathcal{D} . Given arbitrary prior \mathcal{P} and posterior \mathcal{Q} (no need to be Bayesian posterior) supported on a model class \mathcal{C} , and for any $\delta > 0$, we have, with probability at least $1 - \delta$, that

$$\mathop{\mathbb{E}}_{w \sim \mathcal{Q}} [\mathcal{L}(\mathcal{D}, w)] \leq \mathop{\mathbb{E}}_{w \sim \mathcal{Q}} [\mathcal{L}(\mathcal{S}, w)] + 2\sqrt{\frac{2D_{\mathrm{KL}}(\mathcal{Q}||\mathcal{P}) + \ln \frac{2N}{\delta}}{N-1}}$$

As $e^{\gamma(w_0)} = |\mathcal{I}_{\mathcal{S}}(w_0)|$, we can rewrite the generalization bound we want to prove above as:

$$\underset{w\sim\mathcal{Q}}{\mathbb{E}}[\mathcal{L}(\mathcal{D},w)] \leq \underset{w\sim\mathcal{Q}}{\mathbb{E}}[\mathcal{L}(\mathcal{S},w)] + 2\sqrt{\frac{W\cdot V^{2/W}\pi^{1/W} \big| \mathcal{I}_{\mathcal{S}}(w_0) \big|^{1/W} + 4\pi e\mathcal{L}_0 + 2\pi e \ln \frac{2N}{\delta}}{2\pi e(N-1)}}$$

As defined in Section 5.2, given the model class $\mathcal{M}(w_0)$, whose volume is V, for the neural network f_w , the uniform prior \mathcal{P} attains the probability density function $p(w) = \frac{1}{V}$ for any $w \in \mathcal{M}(w_0)$ and the posterior \mathcal{Q} has density $q(w) \propto e^{-|\mathcal{L}(S,w)-\mathcal{L}_0|}$. Based on Assumption 2 in Section 5.2 and the observed Fisher information $\mathcal{I}_S(w_0)$, especially the Equation 2 derived in Section 4, we have:

$$\mathcal{L}(\mathcal{S}, w) = \mathcal{L}_0 + \frac{1}{2} (w - w_0)^T \mathcal{I}_{\mathcal{S}}(w_0) (w - w_0) \quad \forall w \in \mathcal{M}(w_0)$$

Denote $\Sigma = [\mathcal{I}_{\mathcal{S}}(w_0)]^{-1} = [\nabla_w^2 \mathcal{L}(\mathcal{S}, w_0)]^{-1}$. Then \mathcal{Q} is a truncated multivariate Gaussian distribution whose density function q is:

$$q(w; w_0, \Sigma) = \frac{\sqrt{(2\pi)^{-n} |\Sigma|^{-1}} \exp\{-\frac{1}{2} (w - w_0)^T \Sigma^{-1} (w - w_0)\}}{\int_{\mathcal{M}(w_0)} \sqrt{(2\pi)^{-n} |\Sigma|^{-1}} \exp\{-\frac{1}{2} (w - w_0)^T \Sigma^{-1} (w - w_0)\}} dw}$$
$$= \frac{\exp\{-\frac{1}{2} (w - w_0)^T \Sigma^{-1} (w - w_0)\}}{\int_{\mathcal{M}(w_0)} \exp\{-\frac{1}{2} (w - w_0)^T \Sigma^{-1} (w - w_0)\}} dw}$$
(b)

Denote the denominator of Equation **b** as **Z** and define:

$$g(w; w_0, \Sigma) \triangleq -\frac{1}{2} (w - w_0)^T \Sigma^{-1} (w - w_0) \} \le 0$$

Then q can also be written as:

$$q(w; w_0, \Sigma) = \frac{\exp\{g(w; w_0, \Sigma)\}}{\mathbf{Z}}$$

In order to derive a generalization bound in the form of the PAC-Bayes Theorem, it suffices to prove an upper bound of the

KL divergence term:

$$D_{\mathrm{KL}}(\mathcal{Q}||\mathcal{P}) = \underset{w\sim\mathcal{Q}}{\mathbb{E}} \ln \frac{q(w)}{p(w)}$$

$$= -\underset{w\sim\mathcal{Q}}{\mathbb{E}} \ln \frac{1}{V} + \underset{w\sim\mathcal{Q}}{\mathbb{E}} \ln q(w)$$

$$= \ln V + \underset{w\sim\mathcal{Q}}{\mathbb{E}} g(w;w_0,\Sigma) + \ln \frac{1}{\mathbb{Z}}$$

$$\leq \ln V + \underset{w\sim\mathcal{Q}}{\mathbb{E}} 0 - \ln \left(\int_{\mathcal{M}(w_0)} \exp\{g(w;w_0,\Sigma)\} dw \right)$$

$$\leq \ln V - \ln \left(\int_{\mathcal{M}(w_0)} \exp\{-\underset{w\in\mathcal{M}(w_0)}{\max} \mathcal{L}(\mathcal{S},w)\} dw \right)$$

$$= \ln V - \ln \left(V \cdot \exp\{-\underset{w\in\mathcal{M}(w_0)}{\max} \mathcal{L}(\mathcal{S},w)\} \right)$$

$$= \ln V - \ln V + h = h$$

where h is the height of $\mathcal{M}(w_0)$ defined in Section 5.1. For convenience, we shift down $\mathcal{L}(\mathcal{S}, w)$ by \mathcal{L}_0 and denote the shifted training loss $\mathcal{L}_0(w) \triangleq \mathcal{L}(\mathcal{S}, w) - \mathcal{L}_0$ so that $\mathcal{L}_0(w_0) = 0$. Then

$$\mathcal{L}_0(w) = \frac{1}{2} (w - w_0)^T \Sigma^{-1} (w - w_0) \quad \forall w \in \mathcal{M}(w_0)$$

Furthermore, the following two sets are equivalent

$$\{w \in \mathbb{R}^W : \mathcal{L}(\mathcal{S}, w) = h\} = \{w \in \mathbb{R}^W : \mathcal{L}_0(w) = h - \mathcal{L}_0\}$$

both of which are the W-dimensional hyperellipsoid given by the equation $\mathcal{L}_0(w) = h - \mathcal{L}_0$, which can be converted to the standard form for hyperellipsoids as:

$$(w - w_0)^T \frac{\Sigma^{-1}}{2(h - \mathcal{L}_0)} (w - w_0) = 1$$

The volume enclosed by this hyperellipsoid is exactly the volume of $\mathcal{M}(w_0)$, i.e., V; so we have

$$\frac{\pi^{W/2}}{\Gamma(\frac{W}{2}+1)}\sqrt{2^W(h-\mathcal{L}_0)^W|\Sigma|} = V$$

Solve for h, with the Stirling's approximation for factorial $\Gamma(n+1) \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$, we have

$$h = \mathcal{L}_0 + \frac{\left(V \cdot \Gamma(\frac{W}{2} + 1)\right)^{2/W}}{2\pi |\Sigma|^{1/W}} \approx \mathcal{L}_0 + \frac{V^{2/W} \pi^{1/W} W^{(W+1)/W} |\mathcal{I}_{\mathcal{S}}(w_0)|^{1/W}}{4\pi e}$$

where $\Gamma(\cdot)$ denotes the Gamma function. Notice that for modern DNNs we have $W \gg 1$, and so $W^{\frac{W+1}{W}} \approx W$. We finally can derive the generalization bound in the form of the PAC-Bayes Theorem as:

$$\underset{w\sim\mathcal{Q}}{\mathbb{E}}[\mathcal{L}(\mathcal{D},w)] \leq \underset{w\sim\mathcal{Q}}{\mathbb{E}}[\mathcal{L}(\mathcal{S},w)] + 2\sqrt{\frac{W \cdot V^{2/W} \pi^{1/W} \left| \mathcal{I}_{\mathcal{S}}(w_0) \right|^{1/W} + 4\pi e \mathcal{L}_0 + 2\pi e \ln \frac{2N}{\delta}}{2\pi e (N-1)}}$$

C. Derivation of Equation 6 in Section 5.3

First, let us present the well-known theorem in linear algebra that relates the eigenvalues of a matrix to those of its sub-matrices.

Theorem C. Given an $n \times n$ real symmetric matrix A with eigenvalues $\lambda_1 \leq ... \leq \lambda_n$, for any k < n denote its principal sub-matrix as B obtained from removing n - k rows and columns from A. Let $\nu_1 \leq ... \leq \nu_k$ be the eigenvalues of B. Then for any $1 \leq r \leq k$, we have $\lambda_r \leq \nu_r \leq \lambda_{r+n-k}$.

Let $\{\nu_n\}_{n=1}^{N'}$ be the eigenvalues of $\frac{1}{W}\xi^t(w_0)$, which is a $N' \times N'$ sub-matrix of $\mathcal{I}_{\mathcal{S}'}(w_0)$; then

$$\widehat{\gamma}(w_0) = \frac{1}{T} \sum_{t=1}^T \ln \left| \xi^t(w_0) \right| = \frac{1}{T} \sum_{t=1}^T \ln \left| W \cdot \frac{1}{W} \xi^t(w_0) \right| = N' \ln W + \frac{1}{T} \sum_{t=1}^T \sum_{n=1}^{N'} \ln \nu_n$$

Theorem C gives the relation between ν_n and λ_n , defined above and in Section 5.3 as the n^{th} smallest eigenvalues of $\frac{1}{W}\xi^t(w_0)$ and that of $\mathcal{I}_{S'}(w_0)$, respectively. For sufficiently large N', we can use ν_n to approximate λ_n , which ignores the eigenvalues of $\mathcal{I}_{S'}(w_0)$ larger than $\lambda_{N'}$. This is reasonable when estimating $\gamma(w_0)$, since in general the majority of the eigenvalues of the Hessian for DNNs are close to zero with only a few large "outliers", and so the smallest eigenvalues are the dominant terms in $\gamma(w_0)$ (Pennington & Worah, 2018; Sagun et al., 2018; Karakida et al., 2019). A specific bound of the eigenvalues remains an open question, though. In short, we have $\sum_{n=1}^{N'} \nu_n \approx \sum_{n=1}^{N'} \lambda'_n$ and consequently:

$$\frac{W}{N'}\widehat{\gamma}(w_0) + W\ln\frac{1}{W} = \frac{W}{N'}\widehat{\gamma}(w_0) - W\ln W$$
$$= \frac{W}{N'}\Big(\widehat{\gamma}(w_0) - N'\ln W\Big)$$
$$= \frac{1}{T}\sum_{t=1}^T \frac{W}{N'}\sum_{n=1}^{N'}\ln\nu_n$$
$$\approx \frac{1}{T}\sum_{t=1}^T \frac{W}{N'}\sum_{n=1}^{N'}\ln\lambda'_n$$

Finally we we have

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \frac{W}{N'} \sum_{n=1}^{N'} \ln \lambda'_n = \gamma(w_0)$$

D. Details of Calculating the Metrics in Section 7.1

For the following three metrics, we apply estimation by sampling a subset S^t from the full training set S for T times and averaging the results.

- Frobenius norm: $\left\|\nabla^2_w \mathcal{L}(\mathcal{S}, w)\right\|_F^2$
- Spectral radius: $\rho(\nabla^2_w \mathcal{L}(\mathcal{S}, w))$
- Ours: $\widehat{\gamma}(w) = \frac{1}{T} \sum_{t=1}^{T} \ln |\xi(\mathcal{S}^t, w_0)|$

For the Frobenius norm based metric, from Equation 1 & 2 in Section 4 we have:

$$\left\|\nabla_{w}^{2}\mathcal{L}(\mathcal{S},w)\right\|_{F}^{2} = \left\|\mathcal{I}_{\mathcal{S}}(w)\right\|_{F}^{2} = \frac{1}{N}\sum_{(x,y)\in\mathcal{S}}\sum_{i=1}^{K}\left\|\left(\nabla_{w}[\boldsymbol{\ell}_{x}(w_{0})]_{i}\right)\left(\nabla_{w}[\boldsymbol{\ell}_{x}(w_{0})]_{i}\right)^{T}\right\|_{F}^{2}$$

We define $\mathbf{y} = \arg \max(y)$. Similar to Equation 4 in Section 5.3, we approximate y by \tilde{y} and so

$$\left\|\nabla_{w}^{2}\mathcal{L}(\mathcal{S},w)\right\|_{F}^{2} \approx \frac{1}{N} \sum_{(x,y)\in\mathcal{S}} \left\|\left(\nabla_{w}[\boldsymbol{\ell}_{x}(w_{0})]_{\mathbf{y}}\right)\left(\nabla_{w}[\boldsymbol{\ell}_{x}(w_{0})]_{\mathbf{y}}\right)^{T}\right\|_{F}^{2}$$

Summing over the entire Hessian matrix is too expensive as there are $W \times W \times N$ entries in total. We therefore estimate the quantity by first sampling a subset $S^t \subset S$ and then sampling 100,000 entries of $(\nabla_w [\ell_x(w_0)]_y) (\nabla_w [\ell_x(w_0)]_y)^T$. We perform the estimation T times and average the results, similar to the approach when computing $\widehat{\gamma}(w)$.

Also by Equation 2 and the approximation in Equation 4, the spectral radius of Hessian is equivalent to the squared spectral norm of $1/\sqrt{N}\mathbf{J}_w[\tilde{\mathcal{L}}(\mathcal{S},w)]$. We also perform estimation (with irrelevant scaling constants dropped) by sampling \mathcal{S}^t for T times, i.e., via $\frac{1}{T}\sum_t \|\mathbf{J}_w[\tilde{\mathcal{L}}(\mathcal{S}^t,w)]\|_2^2$.

Furthermore, in all our experiments that involves samplings S^t , we set $|S^t| = N' = T = 100$.

E. Architecture And Training Details in Section 7

Architecture details are as below

- The plain CNN is a 6-layer convolutional neural network similar to the baseline in Lee et al. (2016) yet without the "mlpconv" layers (resulting in a much fewer number of parameters). Specifically, the 6 layers has numbers of filters as $\{64, 64, 128, 128, 192, 192\}$. We use 3×3 kernel size and ReLU as the activation function. After the second and the fourth convolutional layer we insert a 2×2 max pooling operation. After the last convolutional layer, we apply a global average pooling before the final softmax classifier.
- For ResNet-20, WRN-28-2-B(3,3), WRN-18-1.5 and DenseNet-BC-k=12, we use the same architecture as in their original papers, respectively.

The training details are

- For the plain CNN, we initialize the weights according to the scheme in He et al. (2016) and apply 12 regularization of a coefficient 0.0001. We perform standard data augmentation, the one denoted 4-crop-f in Section 7.1. We use stochastic gradient descent with Nesterov momentum set to 0.9 and a batch size of 128. We train 200 epochs in total with the learning rate initially set to 0.01 and then divided by 10 at epoch 100 and 150.
- For ResNet-20, WRN-28-2-B(3,3), WRN-18-1.5 and DenseNet-BC-k=12, we use the same hyper-parameters, training schemes, data augmentation schemes, optimization methods, etc., as those in their original papers, respectively. An exception is that for WRN-18-1.5 on ImageNet, we first resize all training images to 128×128 , and then apply random crop (of size 114×114), horizontal flip and standard color jittering together with mean channels subtraction as in He et al. (2016). We adopt single crop (central crop) testing for the down-sampled 128×128 validation images.

References

- He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In *Proceedings of the IEEE conference* on computer vision and pattern recognition, pp. 770–778, 2016.
- Karakida, R., Akaho, S., and Amari, S.-i. Universal statistics of fisher information in deep neural networks: Mean field approach. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pp. 1032–1041, 2019.
- Lee, C.-Y., Gallagher, P. W., and Tu, Z. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. In *Artificial Intelligence and Statistics*, pp. 464–472, 2016.
- McAllester, D. Simplified pac-bayesian margin bounds. In *Learning theory and Kernel machines*, pp. 203–215. Springer, 2003.
- Pennington, J. and Worah, P. The spectrum of the fisher information matrix of a single-hidden-layer neural network. In *Advances in Neural Information Processing Systems*, pp. 5410–5419, 2018.
- Sagun, L., Evci, U., Guney, V. U., Dauphin, Y., and Bottou, L. Empirical analysis of the hessian of over-parametrized neural networks, 2018. URL https://openreview.net/forum?id=rJrTwxbCb.