
Supplementary Material for Information-Theoretic Local Minima
Characterization and Regularization

A. Proof of Equation 1 in Section 4
Let us first review the Equation 1 in Section 4:

IS(w0) = ∇2
wL(S, w0) = E

(x,cx)∼S
[∇w ln pw0(cx)∇w ln pw0(cx)T ]

To prove this equation, it suffices to prove the following equality:

−∇2
w``S(w) =

∑
(x,y)∈S

K∑
i=1

yi[∇w ln p(cx = i|x;w)∇w ln p(cx = i|x;w)T ]

For convenience, we change the notation of the local minimum from w0 to w and further denote p(cx = i|x;w) as pxw(i).
Since −∇2

w``S(w) = −
∑

(x,y)∈S
∑K
i=1 yi ∇2

w ln pxw(i), for each (x, y) ∈ S and i ∈ {1, 2, ...,K}, we have:
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Since w0 is a local minimum of full training accuracy, as described in Section 4, and yi = pxw(i) for i ∈ {1, 2, ...,K}, when
taking the double summation, the first term in Equation a becomes:∑

(x,y)∈S

K∑
i=1

∂2

∂wj∂wk
pxw(i) =

∂2

∂wj∂wk

∑
(x,y)∈S

K∑
i=1

pxw(i) =
∂2

∂wj∂wk
N = 0

Then it follows that:

[∇2
w``S(w)]j,k = −

∑
(x,y)∈S

K∑
i=1

yi[∇w ln pxw(i)∇w ln pxw(i)T ]j,k

B. Proof of the Generalization Bound in Section 5.2
Remind that in Section 5.2 we pick a uniform prior P over w ∈ M(w0) and pick the posterior Q of density q(w) ∝
e−|L0−L(S,w)| with L0 =∆ L(S, w0). Then we have the upper bound of the expected generalization loss Ew∼Q[L(D, w)] in
terms of the expected training loss Ew∼Q[L(S, w)] and γ(w0).
Theorem A. Given |S| = N , D, L(S, w) and L(D, w) described in Section 3, a local minimum w0, the volume V of
M(w0) sufficiently small, the Assumption 1 & 2 satisfied, and P,Q defined above, for any δ ∈ (0, 1], we have with
probability at least 1− δ that:

E
w∼Q

[L(D, w)] ≤ E
w∼Q

[L(S, w)] + 2

√
2L0 + 2A+ ln 2N

δ

N − 1
where A =

WV
2
W π

1
W eγ(w0)/W

4πe
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To prove this theorem, let us review the PAC-Bayes Theorem in McAllester (2003):

Theorem B. For any data distribution D and a loss function L(·, ·) ∈ [0, 1], let L(D, w) and L(S, w) be the expected loss
and training loss respectively for the model paramterized by w, with the training set |S| = N . For any prior distribution P
with a model class C as its support, any posterior distribution Q over C (not necessarily Bayesian posterior), and for any
δ ∈ (0, 1], we have with probability at least 1− δ that:

E
w∼Q

[L(D, w)] ≤ E
w∼Q

[L(S, w)] + 2

√
2DKL(Q||P) + ln 2N

δ

N − 1

PAC-Bayes (McAllester) For a data distribution D and a loss L(·, ·) ∈ [0, 1], let L(D, w) and L(S, w) be the expected
loss and the training loss; the training set |S| = N is sampled from D. Given arbitrary prior P and posteriorQ (no need to
be Bayesian posterior) supported on a model class C, and for any δ > 0, we have, with probability at least 1− δ, that

E
w∼Q

[L(D, w)] ≤ E
w∼Q

[L(S, w)] + 2

√
2DKL(Q||P) + ln 2N

δ

N − 1

As eγ(w0) = |IS(w0)|, we can rewrite the generalization bound we want to prove above as:

E
w∼Q

[L(D, w)] ≤ E
w∼Q

[L(S, w)] + 2

√
W · V 2/Wπ1/W

∣∣IS(w0)
∣∣1/W + 4πeL0 + 2πe ln 2N

δ

2πe(N − 1)

As defined in Section 5.2, given the model classM(w0), whose volume is V , for the neural network fw, the uniform
prior P attains the probability density function p(w) = 1

V for any w ∈ M(w0) and the posterior Q has density
q(w) ∝ e−|L(S,w)−L0|. Based on Assumption 2 in Section 5.2 and the observed Fisher information IS(w0), especially the
Equation 2 derived in Section 4, we have:

L(S, w) = L0 +
1

2
(w − w0)TIS(w0)(w − w0) ∀w ∈M(w0)

Denote Σ = [IS(w0)]−1 = [∇2
wL(S, w0)]−1. Then Q is a truncated multivariate Gaussian distribution whose density

function q is:

q(w;w0,Σ) =

√
(2π)−n|Σ|−1 exp{− 1

2 (w − w0)TΣ−1(w − w0)}∫
M(w0)

√
(2π)−n|Σ|−1 exp{− 1

2 (w − w0)TΣ−1(w − w0)} dw

=
exp{− 1

2 (w − w0)TΣ−1(w − w0)}∫
M(w0)

exp{− 1
2 (w − w0)TΣ−1(w − w0)} dw

(b)

Denote the denominator of Equation b as Z and define:

g(w;w0,Σ) =∆ −1

2
(w − w0)TΣ−1(w − w0)} ≤ 0

Then q can also be written as:

q(w;w0,Σ) =
exp{g(w;w0,Σ)}

Z

In order to derive a generalization bound in the form of the PAC-Bayes Theorem, it suffices to prove an upper bound of the
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KL divergence term:

DKL(Q||P) = E
w∼Q

ln
q(w)

p(w)

= − E
w∼Q

ln
1

V
+ E
w∼Q

ln q(w)

= lnV + E
w∼Q

g(w;w0,Σ) + ln
1

Z

≤ lnV + E
w∼Q

0− ln

(∫
M(w0)

exp{g(w;w0,Σ)} dw
)

≤ lnV − ln

(∫
M(w0)

exp{− max
w∈M(w0)

L(S, w)} dw
)

= lnV − ln

(
V · exp{− max

w∈M(w0)
L(S, w)}

)
= lnV − lnV + h = h

where h is the height ofM(w0) defined in Section 5.1. For convenience, we shift down L(S, w) by L0 and denote the
shifted training loss L0(w) =∆ L(S, w)− L0 so that L0(w0) = 0. Then

L0(w) =
1

2
(w − w0)TΣ−1(w − w0) ∀w ∈M(w0)

Furthermore, the following two sets are equivalent

{w ∈ RW : L(S, w) = h} = {w ∈ RW : L0(w) = h− L0}

both of which are the W -dimensional hyperellipsoid given by the equation L0(w) = h− L0, which can be converted to the
standard form for hyperellipsoids as:

(w − w0)T
Σ−1

2(h− L0)
(w − w0) = 1

The volume enclosed by this hyperellipsoid is exactly the volume ofM(w0), i.e., V ; so we have

πW/2

Γ(W2 + 1)

√
2W (h− L0)W |Σ| = V

Solve for h, with the Stirling’s approximation for factorial Γ(n+ 1) ≈
√

2πn
(n
e

)n
, we have

h = L0 +

(
V · Γ(W2 + 1)

)2/W
2π
∣∣Σ∣∣1/W ≈ L0 +

V 2/Wπ1/WW (W+1)/W
∣∣IS(w0)

∣∣1/W
4πe

where Γ(·) denotes the Gamma function. Notice that for modern DNNs we have W � 1, and so W
W+1
W ≈W . We finally

can derive the generalization bound in the form of the PAC-Bayes Theorem as:

E
w∼Q

[L(D, w)] ≤ E
w∼Q

[L(S, w)] + 2

√
W · V 2/Wπ1/W

∣∣IS(w0)
∣∣1/W + 4πeL0 + 2πe ln 2N

δ

2πe(N − 1)

C. Derivation of Equation 6 in Section 5.3
First, let us present the well-known theorem in linear algebra that relates the eigenvalues of a matrix to those of its
sub-matrices.
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Theorem C. Given an n× n real symmetric matrix A with eigenvalues λ1 ≤ ... ≤ λn, for any k < n denote its principal
sub-matrix as B obtained from removing n− k rows and columns from A. Let ν1 ≤ ... ≤ νk be the eigenvalues of B. Then
for any 1 ≤ r ≤ k, we have λr ≤ νr ≤ λr+n−k.

Let {νn}N
′

n=1 be the eigenvalues of 1
W ξt(w0), which is a N ′ ×N ′ sub-matrix of IS′(w0); then

γ̂(w0) =
1

T

T∑
t=1

ln
∣∣ξt(w0)

∣∣ =
1

T

T∑
t=1

ln
∣∣W · 1

W
ξt(w0)

∣∣ = N ′ lnW +
1

T

T∑
t=1

N ′∑
n=1

ln νn

Theorem C gives the relation between νn and λn, defined above and in Section 5.3 as the nth smallest eigenvalues of
1
W ξt(w0) and that of IS′(w0), respectively. For sufficiently large N ′, we can use νn to approximate λn, which ignores the
eigenvalues of IS′(w0) larger than λN ′ . This is reasonable when estimating γ(w0), since in general the majority of the
eigenvalues of the Hessian for DNNs are close to zero with only a few large “outliers”, and so the smallest eigenvalues are
the dominant terms in γ(w0) (Pennington & Worah, 2018; Sagun et al., 2018; Karakida et al., 2019). A specific bound of
the eigenvalues remains an open question, though. In short, we have

∑N ′

n=1 νn ≈
∑N ′

n=1 λ
′
n and consequently:

W

N ′
γ̂(w0) +W ln

1

W
=
W

N ′
γ̂(w0)−W lnW

=
W

N ′

(
γ̂(w0)−N ′ lnW

)
=

1

T

T∑
t=1

W

N ′

N ′∑
n=1

ln νn

≈ 1

T

T∑
t=1

W

N ′

N ′∑
n=1

lnλ′n

Finally we we have

lim
T→∞

1

T

T∑
t=1

W

N ′

N ′∑
n=1

lnλ′n = γ(w0)

D. Details of Calculating the Metrics in Section 7.1
For the following three metrics, we apply estimation by sampling a subset St from the full training set S for T times and
averaging the results.

• Frobenius norm:
∥∥∇2

wL(S, w)
∥∥2

F

• Spectral radius: ρ(∇2
wL(S, w))

• Ours: γ̂(w) = 1
T

∑T
t=1 ln |ξ(St, w0)|

For the Frobenius norm based metric, from Equation 1 & 2 in Section 4 we have:

∥∥∇2
wL(S, w)

∥∥2

F
=
∥∥IS(w)

∥∥2

F
=

1

N

∑
(x,y)∈S

K∑
i=1

∥∥∥(∇w[`x(w0)]i
)(
∇w[`x(w0)]i

)T∥∥∥2

F

We define y = arg max(y). Similar to Equation 4 in Section 5.3, we approximate y by ỹ and so

∥∥∇2
wL(S, w)

∥∥2

F
≈ 1

N

∑
(x,y)∈S

∥∥∥(∇w[`x(w0)]y
)(
∇w[`x(w0)]y

)T∥∥∥2

F
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Summing over the entire Hessian matrix is too expensive as there are W ×W ×N entries in total. We therefore estimate
the quantity by first sampling a subset St ⊂ S and then sampling 100,000 entries of

(
∇w[`x(w0)]y

)(
∇w[`x(w0)]y

)T
. We

perform the estimation T times and average the results, similar to the approach when computing γ̂(w).

Also by Equation 2 and the approximation in Equation 4, the spectral radius of Hessian is equivalent to the squared spectral
norm of 1/

√
NJw[L̃(S, w)]. We also perform estimation (with irrelevant scaling constants dropped) by sampling St for T

times, i.e., via 1
T

∑
t

∥∥Jw[L̃(St, w)]
∥∥2

2
.

Furthermore, in all our experiments that involves samplings St, we set |St| = N ′ = T = 100.

E. Architecture And Training Details in Section 7
Architecture details are as below

• The plain CNN is a 6-layer convolutional neural network similar to the baseline in Lee et al. (2016) yet without the
“mlpconv” layers (resulting in a much fewer number of parameters). Specifically, the 6 layers has numbers of filters
as {64, 64, 128, 128, 192, 192}. We use 3× 3 kernel size and ReLU as the activation function. After the second and
the fourth convolutional layer we insert a 2× 2 max pooling operation. After the last convolutional layer, we apply a
global average pooling before the final softmax classifier.

• For ResNet-20, WRN-28-2-B(3,3), WRN-18-1.5 and DenseNet-BC-k=12, we use the same architecture as in their
original papers, respectively.

The training details are

• For the plain CNN, we initialize the weights according to the scheme in He et al. (2016) and apply l2 regularization of
a coefficient 0.0001. We perform standard data augmentation, the one denoted 4-crop-f in Section 7.1. We use
stochastic gradient descent with Nesterov momentum set to 0.9 and a batch size of 128. We train 200 epochs in total
with the learning rate initially set to 0.01 and then divided by 10 at epoch 100 and 150.

• For ResNet-20, WRN-28-2-B(3,3), WRN-18-1.5 and DenseNet-BC-k=12, we use the same hyper-parameters, training
schemes, data augmentation schemes, optimization methods, etc., as those in their original papers, respectively. An
exception is that for WRN-18-1.5 on ImageNet, we first resize all training images to 128× 128, and then apply random
crop (of size 114× 114), horizontal flip and standard color jittering together with mean channels subtraction as in He
et al. (2016). We adopt single crop (central crop) testing for the down-sampled 128× 128 validation images.
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