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Abstract

Finite-horizon sequential experimental design
(SED) arises naturally in many contexts, includ-
ing hyperparameter tuning in machine learning
among more traditional settings. Computing the
optimal policy for such problems requires solv-
ing Bellman equations, which are generally in-
tractable. Most existing work resorts to severely
myopic approximations by limiting the decision
horizon to only a single time-step, which can
underweight exploration in favor of exploita-
tion. We present BINOCULARS: Batch-Informed
Nonmyopic Choices, Using Long-horizons for
Adaptive, Rapid SED, a general framework for de-
riving efficient, nonmyopic approximations to the
optimal experimental policy. Our key idea is sim-
ple and surprisingly effective: we first compute a
one-step optimal batch of experiments, then select
a single point from this batch to evaluate. We real-
ize BINOCULARS for Bayesian optimization and
Bayesian quadrature — two notable SED problems
with radically different objectives — and demon-
strate that BINOCULARS significantly outperforms
myopic alternatives in real-world scenarios.

1. Introduction

Many real-world problems can be framed as finite-horizon
sequential experimental design (SED), wherein an agent
adaptively designs a prespecified number of experiments
seeking to maximize some data-dependent utility function.
The optimal policy for SED can be formulated as dynamic
programming (DP), which balances the inherent tradeoff
between exploitation (immediately advancing the goal) and
exploration (learning for the future). However, this opti-
mal policy is intractable even for simple problems (Powell,
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2010). Common approximation schemes include rollout,
Monte Carlo tree search (Bertsekas, 2017; Powell, 2010), or
simply artificially limiting the horizon, known as a myopic
approximation.

In this work, we propose a novel method for efficient and
nonmyopic SED, called BINOCULARS: Batch-Informed
Nonmyopic Choices, Using Long-horizons for Adaptive,
Rapid SED. BINOCULARS is inspired by the fact that the
optimal batch (or non-adaptive) design is an approximation
to the optimal sequential (or adaptive) design. In fact, the
optimal adaptive and non-adaptive designs are exactly the
same in some notable cases where the data utility does not
depend on the observed outcomes, such as maximizing in-
formation gain for a fixed Gaussian process (GP) (Krause
and Guestrin, 2007). Even when this is not the case, we
show that the optimal batch expected utility is a lower bound
of the optimal sequential expected utility. Furthermore, it is
always as tight as the one-step optimal policy’s implied ex-
pected utility. Motivated by this insight, BINOCULARS iter-
atively computes an optimal batch of designs, then chooses
one point from this batch. While many existing methods
construct batch policies by simulating a sequential policy
(Ginsbourger et al., 2010; Desautels et al., 2014; Jiang et al.,
2018), BINOCULARS goes the other way and “reduces” se-
quential design to batch design.

BINOCULARS is a general framework applicable to any SED
problem. In this paper, we realize this framework on two
important yet fundamentally different SED tasks: Bayesian
optimization (BO) (Kushner, 1964; Mockus, 1974; Shahriari
et al., 2016) and Bayesian quadrature (BQ) (Larkin, 1972;
Diaconis, 1988; O’Hagan, 1991). In BO, an agent repeatedly
queries an expensive function seeking its global optimum,
whereas in BQ the goal is to estimate an intractable integral
of the function.

For both problems, many popular policies are myopic: ex-
amples include expected improvement (EI) for BO (Mockus,
1974) and uncertainty sampling (UNCT) for BQ (Gunter
et al., 2014). These are all one-step optimal for maximiz-
ing particular utility functions in expectation. While they
are computationally efficient and give reasonable empiri-
cal results, they are liable to suffer from myopia and over-
exploitation. Nonmyopic alternatives have recently been
applied to BO (Gonzélez et al., 2016b; Lam et al., 2016; Yue
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Figure 1: An illustration of our proposed nonmyopic method applied to BO. (a) A function in [—1; 1] drawn from a GP where the two end
points are known to be zero. (b) and (c) show two iterations of BO with the EI acquisition function. (d) EIL, 2-EI and 2-step-EI curves with
their respective maximizers. (e) and (f) show two iterations of BO where the first point is chosen from the two points maximizing 2-EI,
and the second one is chosen by maximizing EI (conditioned on the observation in iteration one).

and Al Kontar, 2019): while results are promising, these are
typically costly to compute.

Our contributions can be summarized as follows: (1) We
propose a general framework for efficient and nonmyopic
SED with finite horizons, inspired by the close connection be-
tween optimal sequential and batch designs. (2) We realize
the framework on two important SED problems: Bayesian
optimization and Bayesian quadrature. This represents
the first nonmyopic policy proposed for BQ. (3) We con-
duct thorough experiments demonstrating that the proposed
method significantly outperforms the myopic baselines and
is competitive with (if not better than) state-of-the-art non-
myopic alternatives, while being much more efficient.

2. BINOCULARS

We first illustrate the intuition behind BINOCULARS and
provide explicit mathematical justification. We then realize
BINOCULARS for two specific SED scenarios: BO and BQ.
Throughout this work, we make extensive use of Gaussian
processes (GPs): a GP defines a probability distribution
over functions, where the joint distribution of the function’s
values at finitely many locations is multivariate normal; for
more details, see (Rasmussen and Williams, 2006).

Intuition. Consider the BO example in Fig. 1, where we
wish to maximize a one-dimensional objective function over
an interval, conditioned on initial observations at the bound-
ary. Suppose we have two more function evaluations left.
The myopic EI policy would greedily pick the middle point
first, followed by a point bisecting the left half of the do-
main. The resulting choices completely ignore the right half
of the domain, which is where the maximum happens to lie.

Now consider the following alternative for designing the
observations: we first construct the optimal batch of size
two (2-E1). These points can be determined relatively ef-
ficiently as recursion is not required and reflect a better
approximation of the remainder of the optimization than
just looking one step ahead. We then pick a point from this
batch (how the point is selected will be addressed later) and
use EI to choose the final point given the result. This policy
results in well-distributed queries and better performance.
We can compare these decisions with the optimal (but expen-
sive) policy maximizing the full lookahead expected utility
(2-step-E1 in Fig. 1(d)): our choices are nearly perfect.

2.1. The Optimal Adaptive Policy

Consider a general SED problem with a finite horizon, T.
Let the design space be X, response space be Y; for X 2
X;y2YandD X Y,letp(y j X; D) be a probabilistic
model; and let u(D) be some utility function of observed
data D. Defineu(y j ;D) =u D [ (X;y) u(D) asthe
marginal gain in utility after observing y from experiment X
when D has already been observed. Let Qk(X j D) be the
expected utility of designing experiment X after observing
D when there are K steps remaining, assuming all later
decisions are optimal. Qk(X j D) can be expressed in the
form of a Bellman equation as follows:

Qk(xjD) = Ey[H(yj x; D)l + i
Ey max Qc 1 X'jD LTOGy)g ; (1)

where the expectation is taken with respect to p(y j X; D).
The optimal (expected-case) policy is to observe

X =argmax Q1 (X j Dj); 2)
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where D; is the observed set at iteration The opti- clearly alower bound of the true expected utility

mal policy is intractable for any moderately large hori- h i

zon; in general, the complexity ® jXjTjSjT , where max  E, Q X°jD[f (x;y)g

S=fDjD X Yg ,andinmany settingX and/or XOGXG=T 1

S are unpountable. Thus, we must nd some trac_taple ap- E, max  Q X% D[f (xy)g
proximation to proceed. A common solution is to limit the XOjX =T 1

horizon to some manageable valye.g.” = 1 or 2. This 0.

is called” -step lookaheadand is computationally ef cient By maxQr 1 x'JD[f (xy)g : (V)
but myopicas it severely limits our view of the future: it

does not plan ahead and can thus make suboptimal tradeoffsis is illustrated in Fig. 1(d): 2-stepr corresponds to

between exploration and exploitation. (1), and 2&1 to (6). Note that while the one-step optimal
(myopic) policy also optimizes a lower bound of the true

2.2. Nonmyopic Approximation via the Optimal expected utility, the lower bound {i6) is always at least as
Non-Adaptive Policy tight as the lower bound optimized by the myopic policy.

An interesting open question is the tightness of this bound,

. ) : . closely related to the so-callediaptivity gap(Jiang et al.,
signedsimultaneouslgiven current observatiori3. The 2018'¥<rau3e and Guestrin 2007p) y gan( g

expected marginal utility of the resulting observations is
The similarity between these formulations provides mathe-
Q(X jD) = Ey[u(Y j X; D)I; (3)  Matical justi cation for using6) to approximate the optimal
policy. Note tha{(6) is exactly equal tq1) if the remaining
experiments ever become conditionally independent given
the observed data, in which case there is no advantage to
adaptation.

where the expectation is taken over the joint distribution

decomposin intox; andX ; whereX ; = X nfx;g,
we have (by telescoping sum)

Algorithm 1 BINOCULARS

. _ . Input: design spac , response spacé, modelp(y j
Q(X'JD) = By, [uly, 1% D)1+ i x; D), utility function u(y j x; D), budgetT
Ey, QX jiDI[f (Xj;y)9 : (4) Output: D, a sequence of experiments and observations
fori  OtoT 1do
Compute the optimal batck of sizeT i
Pick an experimemt 2 X and observe responge
AugmentD = D[f (X ;y )g

The derivation of this decomposition can be found in the
supplement. LeK 2 arg maxy Q(X j D) be an optimal
batch of experiments. Foramy 2 X ,

h [ BINOCULARS is summarized in Algorithm 1. The pri-
Ey, QX ;jiD[f (x5;y)9 = _ mary computational cost comes from computing the optimal
h ) ' batch, a high-dimensional optimization problem. For the ex-
r)T(‘anEy,» QX jiDIf (x:¥)9 5 (®)  amples considered below® andsq), this optimization can
be done using gradient-based methods and we show empir-

as otherwise we could construct a batch with higher utility!C2!ly thatBINOCULARS runs much faster than previously
thanQ(X j D). Therefore, given that the expected reward PrOPosed nonmyopic methods (see section 6). Note that

of the entire batch can be decomposed ug#)g choos- while we do use a batch method, it is only as a subroutine.
ing any experiment 2 X is equivalent to solving the Algorithm 1 is forsequentiabxperimental design: in each
following optimization:x 2 argmax, B (x j D) where iteration, we only observe the outcome of one experiment.

B(xjD)= Eu(y]x [?])]Jr i 3. BINOCULARS for Bayesian Optimization

max  E, Q X% D[f (xy)g : (6) Consider the _taskx = argmax,,x f (x); in this paper,
XOjX =T 1 we modelf with a Gp. Suppose we have a budget™f
function evaluations. Once the budget has been expended,
Comparing(6) and the Bellman equatiafl), we see two we recommend the point with the highest observed value as
differences: 1) the expectation and maximization are exthe maximizer of . In this setting, our goal is teequentially

is replaced by a non-adaptive counterpart. As s(@hs  thatmaxfy; gis maximized, wherg; = f (x;).
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Let Do be a set of initial observations, angh = observations. Furthermore, when the integrand is known to
maX.y )20 , Y IS the initial best observed value. We de-bepositive(e.g., a likelihood function), it is often a good
ne the utility function as the improvement ovgg: practice tq place &P on some non-linear transformation of
f,suchas f orlog(f) (Osborne et al., 2012; Gunter et al.,
u(Y j X; Do) = inza;((yj Yo i (8) 2014; Chai and Garnett, 2019). As a result, the posteror
]

must be approximated (e.g., by moment matching), which
wherect = max( c;0). De ning the utility as improvement ~ causes the posterior covariance to depend on the observed
allows us to write the expected utility as a Bellman equatiornvalues. In these cases adaptive sampling becomes critical.

with the same form as (1): The adaptive version ofar[Z j X ] is computationally

Elk(x) = El1(x)+ Ey [maxcoEle 1(X°] x;y)]; (9) expensive to evaluate so Gunter et al. (2014) proposed the
) ) ) use ofuncertainty samplinguncT) (Lewis and Gale, 1994;

whereEl ¢ (x) is the expected improvement bfadaptive  gsettles, 2010) as a surrogate, i.e., sequentially evaluating the
decisions starting from, andEl 1(x°] X;y) is an ex-  |ocation with the largest variance. This greedily minimizes
pectation taken over the posterior belieffoéfter further  {he entropy of the integrand instead of the integral.
conditioning on the observatiqx; y) and replacingg by i ) .
max(yo; y). The derivation 0f9) can be found in the supple- F_orn_1all)_/, we use the dlfferent_lgl entropy of the conditional
ment. Observe thatrg max, El1(x) exactly corresponds distributionp(Y j X) as the utility function:
to the populaexpected improveme(g1) policy (Mockus,
1974), which is one-step optimaEl ,(x) is already ana- H p(YjX) = 3log det 2eK (X;X) : (11)
lytically intractable as it requires an expensive numerical
integration: the integrand imax,o El 1(x°j x;y) and en-  Using the chain rule for differential entropy, this quantity
tails global optimization! can be expressed in the same form as (1):

To applyBINOCULARS, we optimize the batchI objective, : .

alsorl)ggwn as-El, via the repcently developed replarameter— H p(YX) =H p&yj Ix;) + i

ization trick and Monte Carlo approximation (Wang et al., Ey, H p(Y jiX jix5y) @ (12)
2016). Then we pick a point from the optimal batch; how to

pick this point is discussed lat@sINOCULARS trivially ex-  Note thatarg max, H (p(y; j Xj)) corresponds to the se-
tends to other utility functions such as knowledge gradiengyyential uncertainjty sampling policy. To apmynOCU-
(Wu and Frazier, 2016), probability of improvement (Kush-| srs for BQ, we must ndarg max, H (p(Y j X)), which
ner, 1964) and predictive entropy (Shah and Ghahramank the mode of a determinantal point processr) (Kulesza

2015) by replacing|-El appropriately. and Taskar, 2012) de ned over= jX j points.® This can
be done using gradient-based optimization. Note that this
4.BINOCULARS for Bayesian Quadrature formulation can be applied to active learningars, where

uncertainty sampling is also a common strategy.
gonsider a non-analytic integral of the for@ = . . . o _
f(x) (x)dx; wheref (x) is a likelihood function and Practical Considerations. Some practical issues arise
(x) is a prior. Such integrals frequently occur in BayesianWhen applyinggINOCULARS to real problems. First, given
inference (e.g., Bayesian model selection and averagingg.n optimal batch, how should one select a point from this
Bayesian quadrature operates by placingreon the in-  Patch? We considered several options: selecting the point

tegrand and then minimizing the posterior varianc& of with the highest expected immediate reward or randomly
selecting a point, either uniformly or proportional to its

_ RR expected immediate reward. Empirically, we found that
Var[Z jX]= Kx(xx9 (x) (x9dxdx% (10) “pest’ and “proportional sampling” perform similarly while

where X = fXxjp;Xz;:::;X7g is a set ofT points that “uniform sampling” performs the worst.

needs to be optimized, andy (x;x9) is the posterior co- Second, given tha&INOCULARS is only an approximation

variance after conditioning on observationsXat If the  to the optimal policy, it is not necessarily true that setting

GP hyperparameters are xed, the optimal design = to the exact remaining budget is the best. In theory, if the
argminy Var[Z j X ] can be precomputed, as the posteriormodel is perfect, then full lookahead is optimal. However,
covariance of &P does not depend on the observed valuesn practice, the model is always wrong and thus planning
f (X); this effectively eliminates the need for sequentialtoo far ahead could actually harm the empirical performance
experimental design in this setting. (Yue and Al Kontar, 2019). Furthermore, smaller values of

However, in general the hyperparameters are not &ed IThjs connection is purely theoretical: our method uses no proper-
priori, but are instead learned iteratively in light of new ties ofbrrs but it is the basis of ousQ naming convention.



BINOCULARS for Ef cient, Nonmyopic Sequential Experimental Design

gresult in more ef cient computation. We empirically study learning ofGps. Krause and Guestrin (2007) derived the

the choice ofy in section 6. adaptivity gap for active learning @fPs under two utility
functions. They also proposed a nonmyopic method for
5. Related Work active learning ofsps which separates the process into an

exploration phase and an exploitation phase. They con-
General introductions to approximate dynamic programsidered different acquisition functions for the exploration
ming (OP) can be found in Bertsekas (2017); Powell (2010).phase; notably, the implicit exploratiorej method is com-
On the subject of nonmyopigo, Osborne et al. (2009) de- parable to the uncertainty sampling baseline in subsection
rived the optimal policy foBo, and demonstrate thatitis 6.2. Hoang et al. (2014) developed a method for active
possible to approximately compute the two-step lookaheatearning ofGps that does away with separate exploration
policy for low-dimensional functions and that it generally and exploitation phases and instead naturally trades off be-
performs better than the one-step policy. Ginsbourger antlveen the two. Their proposed poli¢yBAL, approximates
Le Riche (2010) also derived the optimal policy and gavethe solution to the Bellman formulation of the actige
an explicit example where two-step is better than one- learning problem using a truncated sampling method. They
stepEl in expectation with a desired degree of statisticalanalyzed the theoretical performance of their method and
signi cance. Gonzalez et al. (2016b) proposed a nonmyopialeveloped a pruning-based anytime version of their method.

approximation of the optimal policy, known & ASSES . . . .

. . . . I >  The setting of ouBQ work (integration of non-negative
by simulating future decisions using a batoh method: integrands) and active learning @Ps appear related yet are
Jiang et al. (2017; 2018) proposed a nonmyopic policy for, g g P Y

(batch) active search, which can be understood as a SpecifélJ]ndamentaIIy different. The cited works focus exclusively

; . . o on learning the hyperparameters of the In our setting,
case ofso with cumulative reward, using a similar idea. the use of a transformation to model non-negativity intro-
Lam et al. (2016) proposed to use rollout fap, a classic 9 Y

approximateop method (Bertsekas, 2017). Yue and Al Kon- duces adaptivity beyond the hyperparameters: even if

tar (2019) presented theoretical justi cation for rollout, and the truecP hyper.parameters are "”OW'P“O”’ the n(_)nlm-
. . ; ear transformation causes the approxinteosterior to
gave theoretical and practical guidance on how to choose thg'epend on the observed values
rollout horizon. Ling et al. (2016) proposed a branch-and- '
bound near-optimal policy fagP planning assuming that ]
the reward function is Lipschitz continuous, and applied it6. EXperiments
to BO and active learning. Wu and Frazier (2019) propose
a gradient-based optimization of two-steyp but each eval-
uation of two-steye! still requires a quadrature subroutine

with an expensive integrand: optimization of one-step

C{Ne designed our experiments to broadly test the perfor-
mance and computational costeiNOCULARS relative to
notable myopic and nonmyopic baselines gar andBQ.

We also conducted a thorough exploration of gmeocu-

Of these GLASSESand rollout are most related faNOC-  LARS design choices: the number of steps to look ahead and

ULARS. GLASSESS acquisition function shares almost the how to select a point from the optimal batch.

same form a$6), except the future batck is constructed . :
. S C o . The primary takeaways of our experimental results are that
using a heuristic batch policy, instead of optimized with the X . . .
BINOCULARS outperforms myopic baselines while running

G-E1 objective. The batch policy adds points one by one byonI slightly slower and is at least as good as previousl
optimizing the sequentiadi function penalized at locations y SIghtly 9 P Y

already added to the batch (Gonzélez et al., 2016a), arPJOposed nonmyopic methods while running orders of mag-

the expected utility of the chosen batch is estimated usinaltUOIe faster. This placesan t_he Pa_reto fror_mf the running
. ) me—performance tradeoff in policy design. Furthermore,
expectation propagation.

BINOCULARS clearly demonstratedistinctively nonmyopic
Rolling out two steps using! as the heuristic policy is behavioron bothBo andBQ tasks, two entirely different
exactly equivalent to the two-step lookahead policy, up toseb problems.

guadrature error. Mathematically, the rollout acquisition . .

. . : . We use the following nomenclature to describi@ocu-
function can also be written in a similar form @), except LARS: OUr NoNMVoDi®o method will be denoted asie! s”
X Cis adaptively constructed, depending on sampled values . - yop SHE

. . . or “g.El.b”, whereq s the batch size and “s” represents sam-
of y instead of globally (irrespective gf constructed or . i h . N
L : pling from the batch while “b” means choosing the “best.
optimized as iIFsLASSESandBINOCULARS. Both rollout

. ForBQ, we replace EI” with “ DPP.” In addition to the my-
andGLASSESare very expensive to compute. : .
opic methodsgl anduNCT, we also compare against rollout
While we are unaware of any existing work on nonmyopicfor both tasks andgLAssEsfor Bo.2 Each rollout method

1 i i i 1 H H
BQ, there has been some prior work on nonmyopic aCtIV%We did not compare agains®-equivalent ofGLASSESas no

2The nameBINOCULARS is inspired byGLASSES such method has been published.
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Table 1: AveragesAp over 100 repeats on “hard” synthetic functions.

Rand EI 2ElLb 2ElLs 3Elb 3ElLs 4ElLb 4Els 10.Elb 10.Els 12.Els 15.ElLs
eggholder 0.498 0.613 0.614 0.633 0.604 0.657 0.646.694 0.622 0.704 0.738 0.694
dropwave 0.486 0.439 0.507 0.531 0.4730.552 0.467 0.514 0.397 0.591 0.598 0.585
shubert 0.355 0.408 0.366 0.441 0.394 0.507 0.388 0.484 0.305 0.455 0.479 0.465
rastrigin4  0.374 0.801 0.769 0.775 0.8170.821 0.840 0.805 0.797 0.804 0.793 0.799
ackley?2 0.358 0.821 0.825 0.823 0.8190.869 0.812 0.872 0.801 0.892 0.886 0.888
ackley5 0.145 0.509 0.544 0509 0.601 0550 0.596 0.592636 0.606 0.627 0.626
bukin 0.600 0.849 0.856 0.855 0.872 0.859 0.864 0.865 0.878 0.850 0.829 0.853
shekel5 0.038 0.286 0.311 0.320 0.330 0.343 0.342 0.341374 0.373 0.358 0.395
shekel7 0.045 0.268 0.346 0.313 0.349 0.325 0.352 0.37399 0.358 0.412 0.386
Average 0.322 0.555 0571 0578 0.584 0.609 0590 0.616 0.570.626 0.635 0.632

is denoted asd.rR.n”, where q represents the number of can be found in our attached code. We usedhe measure
steps to roll out, and is the number of samples used to to evaluate the performancear=(y; VYo)=(y Vo),
estimate the expectations encountered in each step. Eaualimerey;'s are maximum observed values andis the true
GLASSESmethod is denoted ag|.G” whereqrepresents the optimal value; we convert all problems to maximization
size of the simulated batch. We uis®RECT (Jones, 2009) problems by negating if necessary.

to optimize thesLASSESand rollout acquisition functions,
following Gonzalez et al. (2016b). For all nonmyopic meth-
ods, when the remaining budget g , we setg= r. Thus
the nal decision is always made (optimally) with one-step
lookahead.

Synthetic Functions In this section, we focus on demon-
strating the superior performance of our method aver

on nine “hard” benchmark functions. These nine functions
are selected by rst running experiments on 31 functfons
with 30 repeats (see Table 1 in the supplement). We then
For all experiments, we start wittd randomly-sampled select the ones whee terminates with averageap < 0.9.
observations and perfor@0d further iterations, wherd  We believe nonmyopic methods are more advantageous on
is the function's dimensionality. Unless otherwise notedgchallenging functions; by rst identifying these hard prob-
all results presented are aggregated over 100 repeats wildms, we will gain more insight into the various policies. To
different random initializations. For all tabulated results,put theBo performance into perspective, we also include a
the best method is indicated in bold and the entries notomparison against a random baseline, “Rand.”

signi cantly worse than the best (under a one-sided paire

Wilcoxon signed-rank test with = 0:05) are in blue italics. drable 1 shows the averagep at termination. For the

results in Table 1, the-values of the bessINOCULARS
variant for each function against in descendingorder

are 0.065, 0.025, 0.0030, 3.0e-5, ... Thus, after applying
We implemented our nonmyopio policy and all base- the Bonferroni correction to account for the 10 variants of
lines usingBoTorch ,* which contains ef cientl andg-el ~ BINOCULARS (p = 10), the best variant of our method
implementations. We present experiments for two rollout®mains signi cantly better thami for 7 out of the 9 “hard”
variants: “2r.10” and “3R.3.” As we will see, rolling out  functions. After applying the Holm-Bonferroni correction
with horizon two is already very expensive even for just tento our aggregated results, every varianBofOCULARS

y samples. Gauss—Hermite quadrature is used for rollout g&mains signi cantly better thaai at the = 0:05level

in Lam et al. (2016). We also present experiments for twoand all but 2E1.b at the = 0:01level.

; .y wq ~n 5 ) )
GLASSESvariants: “26" and “3.6". We summarize the results as follows: (1) 4lE1.s variants

We useGPs with a constant mean and a Maté&m ARD ker-  perform signi cantly better thai on average, with 121.s

nel to model the objective function, the defaulBinTorch . being the best and outperformiggby a large margin. (2)
We tune hyperparameters every iteration by maximizing thelhe d.El.s variants are consistently better than ¢&.b
marginal likelihood using -BFGS-B. We also maximize the Variants (for better spacing we did not show results for

O-El acquisition function with.-BFGs-B. Complete details 12El.b and 151.b). (3) The performance of our method
generally improves as we increageup to 12.

6.1. BO Results

*https://github :com/pytorch/botorch . .

5With help from the authors of (Gonzalez et al., 2016b), we im-Perhaps more interestingly, we can clearly observe the non-
plemented an advanced versionmfassesin BoTorch , using ~ myopic behavior of 1Z1.s as shown in Figure 2: it is ini-
guasi Monte Carlo instead of expectation propagation to estimate———
the expected improvement of the batch, a standard practice fohttps://www
computing @! in state of the arBo packages such &oTorch . optimization

:sfu :ca/~ssurjano/
:html
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Table 2: AveragesAP over 50 repeats on real functions.

El 2.El.s 3.Els 4ElLs 6.Els 8Els 2G 3.G 2.R10 3.R3
SVM 0.738 0.913 0.940 0.911 0.937 0.834 0.881 0.898 0.930 0.928
LDA 0.956 1.000 0.996 0.993 0.982 0.995 1.000 0.999 0.999 1.000
LogReg 0.963 0.998 1.000 0.999 0.999 1.000 0.989 0.911 0.965 0.948
NN Boston 0.470 0.467 0.478 0.460 0502 0.4670.455 0.512 0.503 0.482
NN Cancer 0.665 0.627 0.654 0.686 0.700 0.68®.806 0.755 0.708 0.698

Robot pushing3d  0.928 0.960 0.962 0.957 0.962 0.961 0.955 0.951 0.955 0.954
Robot pushing4d 0.730 0.726 0.695 0.695 0.736 0.697 0.765 0.786 0.770 0.745
Average 0.779 0.813 0.818 0.815 0.831 0.806 0.836 0.830 0.833 0.822

0.005 is negligible; th@-value under a one-sided paired
signed-rank test for 81.s against % is 0:4257.

We now focus on comparing the time cost of the tested
methods. Figure 3 shows the averaye versus average
time per iteration; the average is taken over 350 experiments
(seven functions with 50 repeats each); error bars are also
plotted. We again see that our methods are not signi cantly
different from rollout andsLASSESIn terms ofGAP per-
formance, but are considerably faster in terms of average
time cost per iteration (note the log scale on the time axis).
Clearly, our method lies on the Pareto front in terms of
computational cost and performance.

Figure 2: Averag&AP over nine synthetic functions demonstrating
the nonmyopic behavior of 12..s.

tially outperformed by the myopiel as it explores the space.
However, our method catches updpbat 20% of the bud-

get (on average) as it transitions to exploiting its ndings
until nally, it outperformsEel by a large margin. This be-
havior indicates that our method seamlessly navigates the
exploration/exploitation tradeoff without the need for any
external intervention.

Real World Functions. In this section, we compare our
method against popular nonmyopic baselines: rollout and

GLASSES We present results on hyperparameter tuningrigure 3: mearsAP with error bars at termination versus time per
functions used by Snoek et al. (2012); Wang and Jegelk#eration (in log scale) averaged over the seven real functions.
(2017); Malkomes and Garnett (2018). These functions

are evaluated on a prede ned grid, so we rst compute all
policies (excepkl) using continuous optimization, then pick
the closest point from the grid.

We also attempted to compare with the recently published
practical two-stejgl method (Wu and Frazier, 2019), which
is intended to be a more ef cient version of oura; the
Table 2 shows the results averaged over 50 repeats. We ondiifference is rst- versus zeroth-order optimization of the ac-
show the “sampling” variants of our method; full results quisition function. Our implementation of rollout supports
can be found in Table 3 in the appendix. First we see agaigradient-based optimization thanks to automatic differentia-
all g.el.s variants outperforrgl by a large margin, with  tion. However, we did not nd it considerably faster than
g = 6 achieving the best results. Comparingi6 with the  usingDIRECT. We leave it to future work to optimize the
nonmyopic baselines, is the best, but the difference of implementation and compare with our method.



