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Abstract
Finite-horizon sequential experimental design
(SED) arises naturally in many contexts, includ-
ing hyperparameter tuning in machine learning
among more traditional settings. Computing the
optimal policy for such problems requires solv-
ing Bellman equations, which are generally in-
tractable. Most existing work resorts to severely
myopic approximations by limiting the decision
horizon to only a single time-step, which can
underweight exploration in favor of exploita-
tion. We present BINOCULARS: Batch-Informed
NOnmyopic Choices, Using Long-horizons for
Adaptive, Rapid SED, a general framework for de-
riving efficient, nonmyopic approximations to the
optimal experimental policy. Our key idea is sim-
ple and surprisingly effective: we first compute a
one-step optimal batch of experiments, then select
a single point from this batch to evaluate. We real-
ize BINOCULARS for Bayesian optimization and
Bayesian quadrature – two notable SED problems
with radically different objectives – and demon-
strate that BINOCULARS significantly outperforms
myopic alternatives in real-world scenarios.

1. Introduction
Many real-world problems can be framed as finite-horizon
sequential experimental design (SED), wherein an agent
adaptively designs a prespecified number of experiments
seeking to maximize some data-dependent utility function.
The optimal policy for SED can be formulated as dynamic
programming (DP), which balances the inherent tradeoff
between exploitation (immediately advancing the goal) and
exploration (learning for the future). However, this opti-
mal policy is intractable even for simple problems (Powell,
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2010). Common approximation schemes include rollout,
Monte Carlo tree search (Bertsekas, 2017; Powell, 2010), or
simply artificially limiting the horizon, known as a myopic
approximation.

In this work, we propose a novel method for efficient and
nonmyopic SED, called BINOCULARS: Batch-Informed
NOnmyopic Choices, Using Long-horizons for Adaptive,
Rapid SED. BINOCULARS is inspired by the fact that the
optimal batch (or non-adaptive) design is an approximation
to the optimal sequential (or adaptive) design. In fact, the
optimal adaptive and non-adaptive designs are exactly the
same in some notable cases where the data utility does not
depend on the observed outcomes, such as maximizing in-
formation gain for a fixed Gaussian process (GP) (Krause
and Guestrin, 2007). Even when this is not the case, we
show that the optimal batch expected utility is a lower bound
of the optimal sequential expected utility. Furthermore, it is
always as tight as the one-step optimal policy’s implied ex-
pected utility. Motivated by this insight, BINOCULARS iter-
atively computes an optimal batch of designs, then chooses
one point from this batch. While many existing methods
construct batch policies by simulating a sequential policy
(Ginsbourger et al., 2010; Desautels et al., 2014; Jiang et al.,
2018), BINOCULARS goes the other way and “reduces” se-
quential design to batch design.

BINOCULARS is a general framework applicable to any SED
problem. In this paper, we realize this framework on two
important yet fundamentally different SED tasks: Bayesian
optimization (BO) (Kushner, 1964; Močkus, 1974; Shahriari
et al., 2016) and Bayesian quadrature (BQ) (Larkin, 1972;
Diaconis, 1988; O’Hagan, 1991). In BO, an agent repeatedly
queries an expensive function seeking its global optimum,
whereas in BQ the goal is to estimate an intractable integral
of the function.

For both problems, many popular policies are myopic: ex-
amples include expected improvement (EI) for BO (Močkus,
1974) and uncertainty sampling (UNCT) for BQ (Gunter
et al., 2014). These are all one-step optimal for maximiz-
ing particular utility functions in expectation. While they
are computationally efficient and give reasonable empiri-
cal results, they are liable to suffer from myopia and over-
exploitation. Nonmyopic alternatives have recently been
applied to BO (González et al., 2016b; Lam et al., 2016; Yue
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Figure 1: An illustration of our proposed nonmyopic method applied to BO. (a) A function in [−1; 1] drawn from a GP where the two end
points are known to be zero. (b) and (c) show two iterations of BO with the EI acquisition function. (d) EI, 2-EI and 2-step-EI curves with
their respective maximizers. (e) and (f) show two iterations of BO where the first point is chosen from the two points maximizing 2-EI,
and the second one is chosen by maximizing EI (conditioned on the observation in iteration one).

and Al Kontar, 2019): while results are promising, these are
typically costly to compute.

Our contributions can be summarized as follows: (1) We
propose a general framework for efficient and nonmyopic
SED with finite horizons, inspired by the close connection be-
tween optimal sequential and batch designs. (2) We realize
the framework on two important SED problems: Bayesian
optimization and Bayesian quadrature. This represents
the first nonmyopic policy proposed for BQ. (3) We con-
duct thorough experiments demonstrating that the proposed
method significantly outperforms the myopic baselines and
is competitive with (if not better than) state-of-the-art non-
myopic alternatives, while being much more efficient.

2. BINOCULARS

We first illustrate the intuition behind BINOCULARS and
provide explicit mathematical justification. We then realize
BINOCULARS for two specific SED scenarios: BO and BQ.
Throughout this work, we make extensive use of Gaussian
processes (GPs): a GP defines a probability distribution
over functions, where the joint distribution of the function’s
values at finitely many locations is multivariate normal; for
more details, see (Rasmussen and Williams, 2006).

Intuition. Consider the BO example in Fig. 1, where we
wish to maximize a one-dimensional objective function over
an interval, conditioned on initial observations at the bound-
ary. Suppose we have two more function evaluations left.
The myopic EI policy would greedily pick the middle point
first, followed by a point bisecting the left half of the do-
main. The resulting choices completely ignore the right half
of the domain, which is where the maximum happens to lie.

Now consider the following alternative for designing the
observations: we first construct the optimal batch of size
two (2-EI). These points can be determined relatively ef-
ficiently as recursion is not required and reflect a better
approximation of the remainder of the optimization than
just looking one step ahead. We then pick a point from this
batch (how the point is selected will be addressed later) and
use EI to choose the final point given the result. This policy
results in well-distributed queries and better performance.
We can compare these decisions with the optimal (but expen-
sive) policy maximizing the full lookahead expected utility
(2-step-EI in Fig. 1(d)): our choices are nearly perfect.

2.1. The Optimal Adaptive Policy

Consider a general SED problem with a finite horizon, T .
Let the design space be X , response space be Y; for x 2
X ; y 2 Y andD � X �Y , let p(y j x;D) be a probabilistic
model; and let u(D) be some utility function of observed
data D. Define u(y j x;D) = u

�
D [ (x; y)

�
� u(D) as the

marginal gain in utility after observing y from experiment x
when D has already been observed. Let Qk(x j D) be the
expected utility of designing experiment x after observing
D when there are k steps remaining, assuming all later
decisions are optimal. Qk(x j D) can be expressed in the
form of a Bellman equation as follows:

Qk(x j D) = Ey[u(y j x;D)] +

Ey

h
max

x0
Qk�1

�
x0 j D [ f(x; y)g

�i
; (1)

where the expectation is taken with respect to p(y j x;D).
The optimal (expected-case) policy is to observe

x� = argmax
x

QT�i(x j Di); (2)
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where D i is the observed set at iterationi . The opti-
mal policy is intractable for any moderately large hori-
zon; in general, the complexity isO

�
jX j T jSjT

�
, where

S = fD j D � X � Yg , and in many settingsX and/or
S are uncountable. Thus, we must �nd some tractable ap-
proximation to proceed. A common solution is to limit the
horizon to some manageable value`, e.g.` = 1 or 2. This
is called`-step lookahead,and is computationally ef�cient
but myopicas it severely limits our view of the future: it
does not plan ahead and can thus make suboptimal tradeoffs
between exploration and exploitation.

2.2. Nonmyopic Approximation via the Optimal
Non-Adaptive Policy

SupposeT experimentsX = f x1; : : : ; xT g must be de-
signedsimultaneouslygiven current observationsD. The
expected marginal utility of the resulting observations is

Q(X j D) = EY [u(Y j X; D)]; (3)

where the expectation is taken over the joint distribution
of Y = f y1; : : : ; yT g, p(Y j X; D). Rewriting (3) by
decomposingX into x j andX � j whereX � j = X n f x j g,
we have (by telescoping sum)

Q(X j D) = Ey j [u(yj j x j ; D)]+

Ey j

h
Q

�
X � j j D [ f (x j ; yj )g

� i
: (4)

The derivation of this decomposition can be found in the
supplement. LetX � 2 arg maxX Q(X j D) be an optimal
batch of experiments. For anyx �

j 2 X � ,

Ey �
j

h
Q

�
X �

� j j D [ f (x �
j ; y�

j )g
� i

=

max
X � j

Ey �
j

h
Q

�
X � j j D [ f (x �

j ; y�
j )g

� i
; (5)

as otherwise we could construct a batch with higher utility
thanQ(X � j D ). Therefore, given that the expected reward
of the entire batch can be decomposed using(4), choos-
ing any experimentx � 2 X � is equivalent to solving the
following optimization:x � 2 arg maxx B (x j D ) where

B (x j D ) = Ey [u(y j x; D)]+

max
X 0:jX 0j= T � 1

Ey

h
Q

�
X 0 j D [ f (x; y)g

� i
: (6)

Comparing(6) and the Bellman equation(1), we see two
differences: 1) the expectation and maximization are ex-
changed in the future utility term and 2) the adaptive utility
is replaced by a non-adaptive counterpart. As such,(6) is

clearly alower bound of the true expected utility:

max
X 0:jX 0j= T � 1

Ey

h
Q

�
X 0 j D [ f (x; y)g

� i

� Ey

�
max

X 0:jX 0j= T � 1
Q

�
X 0 j D [ f (x; y)g

�
�

� Ey

�
max

x 0
QT � 1

�
x0 j D [ f (x; y)g

�
�

: (7)

This is illustrated in Fig. 1(d): 2-step-EI corresponds to
(1), and 2-EI to (6). Note that while the one-step optimal
(myopic) policy also optimizes a lower bound of the true
expected utility, the lower bound in(6) is always at least as
tight as the lower bound optimized by the myopic policy.
An interesting open question is the tightness of this bound,
closely related to the so-calledadaptivity gap(Jiang et al.,
2018; Krause and Guestrin, 2007).

The similarity between these formulations provides mathe-
matical justi�cation for using(6) to approximate the optimal
policy. Note that(6) is exactly equal to(1) if the remaining
experiments ever become conditionally independent given
the observed data, in which case there is no advantage to
adaptation.

Algorithm 1 BINOCULARS

Input: design spaceX , response spaceY, modelp(y j
x; D), utility function u(y j x; D), budgetT
Output: D, a sequence of experiments and observations
for i  0 to T � 1 do

Compute the optimal batchX � of sizeT � i
Pick an experimentx � 2 X � and observe responsey�

AugmentD = D [ f (x � ; y� )g

BINOCULARS is summarized in Algorithm 1. The pri-
mary computational cost comes from computing the optimal
batch, a high-dimensional optimization problem. For the ex-
amples considered below (BO andBQ), this optimization can
be done using gradient-based methods and we show empir-
ically thatBINOCULARS runs much faster than previously
proposed nonmyopic methods (see section 6). Note that
while we do use a batch method, it is only as a subroutine.
Algorithm 1 is forsequentialexperimental design: in each
iteration, we only observe the outcome of one experiment.

3. BINOCULARS for Bayesian Optimization

Consider the task:x � = arg max x 2X f (x); in this paper,
we modelf with a GP. Suppose we have a budget ofT
function evaluations. Once the budget has been expended,
we recommend the point with the highest observed value as
the maximizer off . In this setting, our goal is tosequentially
select a setX = f x1; x2; : : : ; xT g of T points fromX such
thatmaxf yj g is maximized, whereyj = f (x j ).
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Let D0 be a set of initial observations, andy0 =
max(x;y )2D 0 y is the initial best observed value. We de-
�ne the utility function as the improvement overy0:

u(Y j X; D0) =
�

max
x j 2 X

yj � y0

�
+ ; (8)

wherec+ = max( c;0). De�ning the utility as improvement
allows us to write the expected utility as a Bellman equation
with the same form as (1):

EI k (x) = EI 1(x) + Ey [maxx 0EI k � 1(x0 j x; y)] ; (9)

whereEI k (x) is the expected improvement ofk adaptive
decisions starting fromx, andEI k � 1(x0 j x; y) is an ex-
pectation taken over the posterior belief off after further
conditioning on the observation(x; y) and replacingy0 by
max(y0; y). The derivation of(9) can be found in the supple-
ment. Observe thatarg maxx EI 1(x) exactly corresponds
to the popularexpected improvement(EI) policy (Mo�ckus,
1974), which is one-step optimal;EI 2(x) is already ana-
lytically intractable as it requires an expensive numerical
integration: the integrand ismaxx 0 EI 1(x0 j x; y) and en-
tails global optimization!

To applyBINOCULARS, we optimize the batchEI objective,
also known asq-EI, via the recently developed reparameter-
ization trick and Monte Carlo approximation (Wang et al.,
2016). Then we pick a point from the optimal batch; how to
pick this point is discussed later.BINOCULARS trivially ex-
tends to other utility functions such as knowledge gradient
(Wu and Frazier, 2016), probability of improvement (Kush-
ner, 1964) and predictive entropy (Shah and Ghahramani,
2015) by replacingq-EI appropriately.

4. BINOCULARS for Bayesian Quadrature

Consider a non-analytic integral of the formZ =R
f (x)� (x) dx; wheref (x) is a likelihood function and

� (x) is a prior. Such integrals frequently occur in Bayesian
inference (e.g., Bayesian model selection and averaging).
Bayesian quadrature operates by placing aGP on the in-
tegrand and then minimizing the posterior variance ofZ :

Var[Z j X ] =
RR

K X (x; x 0)� (x)� (x0) dx dx0; (10)

whereX = f x1; x2; : : : ; xT g is a set ofT points that
needs to be optimized, andK X (x; x 0) is the posterior co-
variance after conditioning on observations atX . If the
GP hyperparameters are �xed, the optimal designX � =
argminX Var[Z j X ] can be precomputed, as the posterior
covariance of aGP does not depend on the observed values
f (X ); this effectively eliminates the need for sequential
experimental design in this setting.

However, in general the hyperparameters are not �xeda
priori , but are instead learned iteratively in light of new

observations. Furthermore, when the integrand is known to
bepositive(e.g., a likelihood function), it is often a good
practice to place aGP on some non-linear transformation of
f , such as

p
f or log(f ) (Osborne et al., 2012; Gunter et al.,

2014; Chai and Garnett, 2019). As a result, the posteriorGP

must be approximated (e.g., by moment matching), which
causes the posterior covariance to depend on the observed
values. In these cases adaptive sampling becomes critical.

The adaptive version ofVar[Z j X ] is computationally
expensive to evaluate so Gunter et al. (2014) proposed the
use ofuncertainty sampling(UNCT) (Lewis and Gale, 1994;
Settles, 2010) as a surrogate, i.e., sequentially evaluating the
location with the largest variance. This greedily minimizes
the entropy of the integrand instead of the integral.

Formally, we use the differential entropy of the conditional
distributionp(Y j X ) as the utility function:

H
�
p(Y j X )

�
= 1

2 log
�

det
�
2�e K (X; X )

� �
: (11)

Using the chain rule for differential entropy, this quantity
can be expressed in the same form as (1):

H
�
p(Y j X )

�
= H

�
p(yj j x j )

�
+

Ey j

h
H

�
p(Y� j jX � j ; x j ; yj )

� i
: (12)

Note thatarg maxx j
H (p(yj j x j )) corresponds to the se-

quential uncertainty sampling policy. To applyBINOCU-
LARS for BQ, we must �ndarg maxX H (p(Y j X )) , which
is the mode of a determinantal point process (DPP) (Kulesza
and Taskar, 2012) de�ned overq = jX j points.1 This can
be done using gradient-based optimization. Note that this
formulation can be applied to active learning ofGPs, where
uncertainty sampling is also a common strategy.

Practical Considerations. Some practical issues arise
when applyingBINOCULARS to real problems. First, given
an optimal batch, how should one select a point from this
batch? We considered several options: selecting the point
with the highest expected immediate reward or randomly
selecting a point, either uniformly or proportional to its
expected immediate reward. Empirically, we found that
“best” and “proportional sampling” perform similarly while
“uniform sampling” performs the worst.

Second, given thatBINOCULARS is only an approximation
to the optimal policy, it is not necessarily true that settingq
to the exact remaining budget is the best. In theory, if the
model is perfect, then full lookahead is optimal. However,
in practice, the model is always wrong and thus planning
too far ahead could actually harm the empirical performance
(Yue and Al Kontar, 2019). Furthermore, smaller values of

1This connection is purely theoretical: our method uses no proper-
ties ofDPPs but it is the basis of ourBQ naming convention.
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q result in more ef�cient computation. We empirically study
the choice ofq in section 6.

5. Related Work

General introductions to approximate dynamic program-
ming (DP) can be found in Bertsekas (2017); Powell (2010).
On the subject of nonmyopicBO, Osborne et al. (2009) de-
rived the optimal policy forBO, and demonstrate that it is
possible to approximately compute the two-step lookahead
policy for low-dimensional functions and that it generally
performs better than the one-step policy. Ginsbourger and
Le Riche (2010) also derived the optimal policy and gave
an explicit example where two-stepEI is better than one-
stepEI in expectation with a desired degree of statistical
signi�cance. González et al. (2016b) proposed a nonmyopic
approximation of the optimal policy, known asGLASSES,
by simulating future decisions using a batchBO method.2

Jiang et al. (2017; 2018) proposed a nonmyopic policy for
(batch) active search, which can be understood as a special
case ofBO with cumulative reward, using a similar idea.
Lam et al. (2016) proposed to use rollout forBO, a classic
approximateDP method (Bertsekas, 2017). Yue and Al Kon-
tar (2019) presented theoretical justi�cation for rollout, and
gave theoretical and practical guidance on how to choose the
rollout horizon. Ling et al. (2016) proposed a branch-and-
bound near-optimal policy forGP planning assuming that
the reward function is Lipschitz continuous, and applied it
to BO and active learning. Wu and Frazier (2019) proposed
a gradient-based optimization of two-stepEI, but each eval-
uation of two-stepEI still requires a quadrature subroutine
with an expensive integrand: optimization of one-stepEI.

Of these,GLASSESand rollout are most related toBINOC-
ULARS. GLASSES's acquisition function shares almost the
same form as(6), except the future batchX 0 is constructed
using a heuristic batch policy, instead of optimized with the
q-EI objective. The batch policy adds points one by one by
optimizing the sequentialEI function penalized at locations
already added to the batch (González et al., 2016a), and
the expected utility of the chosen batch is estimated using
expectation propagation.

Rolling out two steps usingEI as the heuristic policy is
exactly equivalent to the two-step lookahead policy, up to
quadrature error. Mathematically, the rollout acquisition
function can also be written in a similar form as(6), except
X 0 is adaptively constructed, depending on sampled values
of y instead of globally (irrespective ofy) constructed or
optimized as inGLASSESandBINOCULARS. Both rollout
andGLASSESare very expensive to compute.

While we are unaware of any existing work on nonmyopic
BQ, there has been some prior work on nonmyopic active

2The nameBINOCULARS is inspired byGLASSES.

learning ofGPs. Krause and Guestrin (2007) derived the
adaptivity gap for active learning ofGPs under two utility
functions. They also proposed a nonmyopic method for
active learning ofGPs which separates the process into an
exploration phase and an exploitation phase. They con-
sidered different acquisition functions for the exploration
phase; notably, the implicit exploration (IE) method is com-
parable to the uncertainty sampling baseline in subsection
6.2. Hoang et al. (2014) developed a method for active
learning ofGPs that does away with separate exploration
and exploitation phases and instead naturally trades off be-
tween the two. Their proposed policy," -BAL , approximates
the solution to the Bellman formulation of the activeGP

learning problem using a truncated sampling method. They
analyzed the theoretical performance of their method and
developed a pruning-based anytime version of their method.

The setting of ourBQ work (integration of non-negative
integrands) and active learning ofGPs appear related yet are
fundamentally different. The cited works focus exclusively
on learning the hyperparameters of theGP. In our setting,
the use of a transformation to model non-negativity intro-
duces adaptivity beyond theGP hyperparameters: even if
the trueGP hyperparameters are knowna priori, the nonlin-
ear transformation causes the approximateGP posterior to
depend on the observed values.

6. Experiments

We designed our experiments to broadly test the perfor-
mance and computational cost ofBINOCULARS relative to
notable myopic and nonmyopic baselines forBO andBQ.
We also conducted a thorough exploration of theBINOCU-
LARS design choices: the number of steps to look ahead and
how to select a point from the optimal batch.

The primary takeaways of our experimental results are that
BINOCULARS outperforms myopic baselines while running
only slightly slower and is at least as good as previously
proposed nonmyopic methods while running orders of mag-
nitude faster. This places iton the Pareto frontof the running
time–performance tradeoff in policy design. Furthermore,
BINOCULARS clearly demonstratesdistinctively nonmyopic
behavioron bothBO andBQ tasks, two entirely different
SED problems.

We use the following nomenclature to describeBINOCU-
LARS: our nonmyopicBO method will be denoted as “q.EI.s”
or “q.EI.b”, whereq is the batch size and “s” represents sam-
pling from the batch while “b” means choosing the “best.”
For BQ, we replace “EI” with “ DPP.” In addition to the my-
opic methods,EI andUNCT, we also compare against rollout
for both tasks andGLASSESfor BO.3 Each rollout method
3We did not compare against aBQ-equivalent ofGLASSESas no
such method has been published.
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Table 1: AverageGAP over 100 repeats on “hard” synthetic functions.

Rand EI 2.EI.b 2.EI.s 3.EI.b 3.EI.s 4.EI.b 4.EI.s 10.EI.b 10.EI.s 12.EI.s 15.EI.s
eggholder 0.498 0.613 0.614 0.633 0.604 0.657 0.6460.694 0.622 0.704 0.738 0.694
dropwave 0.486 0.439 0.507 0.531 0.4730.552 0.467 0.514 0.397 0.591 0.598 0.585
shubert 0.355 0.408 0.366 0.441 0.394 0.507 0.388 0.484 0.305 0.455 0.479 0.465
rastrigin4 0.374 0.801 0.769 0.775 0.8170.821 0.840 0.805 0.797 0.804 0.793 0.799
ackley2 0.358 0.821 0.825 0.823 0.8190.869 0.812 0.872 0.801 0.892 0.886 0.888
ackley5 0.145 0.509 0.544 0.509 0.601 0.550 0.596 0.5920.636 0.606 0.627 0.626
bukin 0.600 0.849 0.856 0.855 0.872 0.859 0.864 0.865 0.878 0.850 0.829 0.853
shekel5 0.038 0.286 0.311 0.320 0.330 0.343 0.342 0.3440.374 0.373 0.358 0.395
shekel7 0.045 0.268 0.346 0.313 0.349 0.325 0.352 0.3700.399 0.358 0.412 0.386
Average 0.322 0.555 0.571 0.578 0.584 0.609 0.590 0.616 0.5790.626 0.635 0.632

is denoted as “q.R.n”, whereq represents the number of
steps to roll out, andn is the number of samples used to
estimate the expectations encountered in each step. Each
GLASSESmethod is denoted as “q.G” whereq represents the
size of the simulated batch. We useDIRECT (Jones, 2009)
to optimize theGLASSESand rollout acquisition functions,
following González et al. (2016b). For all nonmyopic meth-
ods, when the remaining budgetr < q , we setq = r . Thus
the �nal decision is always made (optimally) with one-step
lookahead.

For all experiments, we start with2d randomly-sampled
observations and perform20d further iterations, whered
is the function's dimensionality. Unless otherwise noted,
all results presented are aggregated over 100 repeats with
different random initializations. For all tabulated results,
the best method is indicated in bold and the entries not
signi�cantly worse than the best (under a one-sided paired
Wilcoxon signed-rank test with� = 0 :05) are in blue italics.

6.1. BO Results

We implemented our nonmyopicBO policy and all base-
lines usingBoTorch ,4 which contains ef�cientEI andq-EI

implementations. We present experiments for two rollout
variants: “2.R.10” and “3.R.3.” As we will see, rolling out
with horizon two is already very expensive even for just ten
y samples. Gauss–Hermite quadrature is used for rollout as
in Lam et al. (2016). We also present experiments for two
GLASSESvariants: “2.G” and “3.G”.5

We useGPs with a constant mean and a Matérn5=2 ARD ker-
nel to model the objective function, the default inBoTorch .
We tune hyperparameters every iteration by maximizing the
marginal likelihood usingL-BFGS-B. We also maximize the
q-EI acquisition function withL-BFGS-B. Complete details

4https://github :com/pytorch/botorch
5With help from the authors of (González et al., 2016b), we im-
plemented an advanced version ofGLASSESin BoTorch , using
quasi Monte Carlo instead of expectation propagation to estimate
the expected improvement of the batch, a standard practice for
computing qEI in state of the artBO packages such asBoTorch .

can be found in our attached code. We use theGAP measure
to evaluate the performance:GAP = ( yi � y0) =(y� � y0),
whereyi 's are maximum observed values andy� is the true
optimal value; we convert all problems to maximization
problems by negating if necessary.

Synthetic Functions. In this section, we focus on demon-
strating the superior performance of our method overEI

on nine “hard” benchmark functions. These nine functions
are selected by �rst running experiments on 31 functions6

with 30 repeats (see Table 1 in the supplement). We then
select the ones whereEI terminates with averageGAP < 0.9.
We believe nonmyopic methods are more advantageous on
challenging functions; by �rst identifying these hard prob-
lems, we will gain more insight into the various policies. To
put theBO performance into perspective, we also include a
comparison against a random baseline, “Rand.”

Table 1 shows the averageGAP at termination. For the
results in Table 1, thep-values of the bestBINOCULARS

variant for each function againstEI in descendingorder
are 0.065, 0.025, 0.0030, 3.0e-5, . . . Thus, after applying
the Bonferroni correction to account for the 10 variants of
BINOCULARS (p � � = 10), the best variant of our method
remains signi�cantly better thanEI for 7 out of the 9 “hard”
functions. After applying the Holm-Bonferroni correction
to our aggregated results, every variant ofBINOCULARS

remains signi�cantly better thanEI at the� = 0 :05 level
and all but 2.EI.b at the� = 0 :01 level.

We summarize the results as follows: (1) Allq.EI.s variants
perform signi�cantly better thanEI on average, with 12.EI.s
being the best and outperformingEI by a large margin. (2)
The q.EI.s variants are consistently better than theq.EI.b
variants (for better spacing we did not show results for
12.EI.b and 15.EI.b). (3) The performance of our method
generally improves as we increaseq, up to 12.

Perhaps more interestingly, we can clearly observe the non-
myopic behavior of 12.EI.s as shown in Figure 2: it is ini-

6https://www :sfu :ca/~ssurjano/
optimization :html
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Table 2: AverageGAP over 50 repeats on real functions.

EI 2.EI.s 3.EI.s 4.EI.s 6.EI.s 8.EI.s 2.G 3.G 2.R.10 3.R.3
SVM 0.738 0.913 0.940 0.911 0.937 0.834 0.881 0.898 0.930 0.928
LDA 0.956 1.000 0.996 0.993 0.982 0.995 1.000 0.999 0.999 1.000
LogReg 0.963 0.998 1.000 0.999 0.999 1.000 0.989 0.911 0.965 0.948
NN Boston 0.470 0.467 0.478 0.460 0.502 0.4670.455 0.512 0.503 0.482
NN Cancer 0.665 0.627 0.654 0.686 0.700 0.6860.806 0.755 0.708 0.698
Robot pushing 3d 0.928 0.960 0.962 0.957 0.962 0.961 0.955 0.951 0.955 0.954
Robot pushing 4d 0.730 0.726 0.695 0.695 0.736 0.697 0.765 0.786 0.770 0.745
Average 0.779 0.813 0.818 0.815 0.831 0.806 0.836 0.830 0.833 0.822

Figure 2: AverageGAP over nine synthetic functions demonstrating
the nonmyopic behavior of 12.EI.s.

tially outperformed by the myopicEI as it explores the space.
However, our method catches up toEI at � 20% of the bud-
get (on average) as it transitions to exploiting its �ndings
until �nally, it outperformsEI by a large margin. This be-
havior indicates that our method seamlessly navigates the
exploration/exploitation tradeoff without the need for any
external intervention.

Real World Functions. In this section, we compare our
method against popular nonmyopic baselines: rollout and
GLASSES. We present results on hyperparameter tuning
functions used by Snoek et al. (2012); Wang and Jegelka
(2017); Malkomes and Garnett (2018). These functions
are evaluated on a prede�ned grid, so we �rst compute all
policies (exceptEI) using continuous optimization, then pick
the closest point from the grid.

Table 2 shows the results averaged over 50 repeats. We only
show the “sampling” variants of our method; full results
can be found in Table 3 in the appendix. First we see again
all q.EI.s variants outperformEI by a large margin, with
q = 6 achieving the best results. Comparing 6.EI.s with the
nonmyopic baselines, 2.G is the best, but the difference of

0.005 is negligible; thep-value under a one-sided paired
signed-rank test for 6.EI.s against 2.G is 0:4257.

We now focus on comparing the time cost of the tested
methods. Figure 3 shows the averageGAP versus average
time per iteration; the average is taken over 350 experiments
(seven functions with 50 repeats each); error bars are also
plotted. We again see that our methods are not signi�cantly
different from rollout andGLASSESin terms ofGAP per-
formance, but are considerably faster in terms of average
time cost per iteration (note the log scale on the time axis).
Clearly, our method lies on the Pareto front in terms of
computational cost and performance.

Figure 3: meanGAP with error bars at termination versus time per
iteration (in log scale) averaged over the seven real functions.

We also attempted to compare with the recently published
practical two-stepEI method (Wu and Frazier, 2019), which
is intended to be a more ef�cient version of our 2.R.n; the
difference is �rst- versus zeroth-order optimization of the ac-
quisition function. Our implementation of rollout supports
gradient-based optimization thanks to automatic differentia-
tion. However, we did not �nd it considerably faster than
usingDIRECT. We leave it to future work to optimize the
implementation and compare with our method.


