
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders

A. Proofs for Sec 4.1
Proposition 2. For a fixed unit vector z(0), fixed input data x̂ and a network of depth L at random initialization, with a
Lipschitz nonlinearity σ, and in the limit n1, ..., nL−1 →∞, J(x̂)z(0) has the following recursion with z

(`)
i = ẑ(`):

ẑ(1) = σ′(a)b (a, b) ∼ N

(
0,

[
‖x̂‖22
n0

, x̂T z(0)

n0

x̂T z(0)

n0
,
‖z(0)‖22
n0

])
,

ẑ(`+1) = σ′(a)b

(a, b) ∼ N
(

0,

[
E[(α̂(`))2], E[α̂(`)ẑ(`)]
E[α̂(`)ẑ(`)], E[(ẑ(`))2]

])
,

z̃
(L)
i = ẑ(L) ∼ N

(
0,E[(ẑ(L−1))2]

)
,

where

α̂(1) = σ(a) a ∼ N
(

0,
‖x̂‖22
n0

)
,

α̂(`+1) = σ(a) a ∼ N
(

0,E[(α̂(`))2]
)
.

Proof. We will prove this by induction for ` = 1, ..., L− 1.

Basic Step

z
(1)
i = σ′

(
1
√
n0

(W
(0)
i )T x̂

)
1
√
n0

(W
(0)
i )T z(0)

Notice that W
(0)
i ∼ N (0, In0). Thus, we have the following:

a =
1
√
n0

(W
(0)
i )T x̂ ∼ N

(
0,
‖x̂‖22
n0

)
b =

1
√
n0

(W
(0)
i )T z(0) ∼ N

(
0,
‖z(0)‖22
n0

)
a and b are not independent:

E[ab] = E[(
1
√
n0

(W
(0)
i )T x̂)(

1
√
n0

(W
(0)
i )T z(0))] =

1

n0
x̂T E[(W

(0)
i )(W

(0)
i )T ]z(0) =

1

n0
x̂T In0z

(0) =
x̂T z(0)

n0

Note that the result is independent of the index i, we can define ẑ(1) = z
(1)
i . Therefore, the base step has been proven.

Inductive Step

z
(`+1)
i = σ′(

1
√
n`

(W
(`)
i )T α̃(`)(x̂))

1
√
n`

(W
(`)
i )T z(`)

Then,

a =
1
√
n`

(W
(`)
i )T α̃(`)(x̂) ∼ N (0,

1

n`

n∑̀
i=0

((α̃(`)(x̂)i)
2)

With n1, ..., n` →∞, Var(a) = E[(α̂(`))2]. Similarly,

b =
1
√
n`

(W
(`)
i )T z(`)

b ∼ N (0,E[(ẑ(`))2]) if n1, ..., n` →∞
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On the other hand,

E[ab] = E[(
1
√
n`

(W
(`)
i )T α̃(`)(x))(

1
√
n`

(W
(`)
i )T z(`))] =

1

n`
(α̃(`)(x))T E[(W

(`)
i )(W

(`)
i )T ]z(`) =

1

n`
(α̃(`)(x))T z(`)

= E[α̂(`)ẑ(`)] if n1, ..., n` →∞

The recursive definition is now proven up to layer `− 1. Now let’s look at the last layer.

z̃
(L)
i =

1
√
nL−1

W
(L−1)
i z(L−1)

By similar arguments as before, it is easy to show that with n1, ..., nL−1 →∞, z̃
(L)
i ∼ N (0,E[(ẑ(L−1))2]). This concludes

the proof.

Theorem 1. For any data point xi, i ∈ [1, .., n], with probability at least 1−O(n)e−O(n0),

‖J(xi)‖op ≤ c
√
n0τ

where c is a constant and
τ = sup

xi∈X̂, ‖z(0)‖2=1

E[(ẑ(L−1))2|z(0),xi]

Proof. For a fixed unit vector z(0) and fixed input x̂, we know that based on Proposition 2, z̃
(L)
i ∼

N (0,E[(ẑ(L−1))2|z(0), x̂]). Define z as

z =
1

E[(ẑ(L−1))2|z(0), x̂]
‖z̃(L)‖22 = χ2

n0

First, notice that we can have the following tail bound for chi-square distribution (for instance, (Kolar & Liu, 2012))

Pr[|z/n0 − 1| ≥ ε] ≤ exp(− 3

16
n0ε

2)

when ε ∈ [0, 1/2). In this case, let ε = 1
3 . Consider a subset of coordinates M with cardinality |M | ≤ O(n0) (Allen-Zhu

et al., 2018). Taking the ε ball B of this subspace with ε = 1/3, we know what

|B| ≤ 7|M | = e|M |ln7 = eO(n0)

Then, taking the union bound for all unit vectors in B, we know that

∀z0 ∈ B
⋃
z0

Pr[|z/n0 − 1| ≥ 1

3
]

≤ exp(− 1

48
n0) exp(O(n0)) ≤ exp(−O(n0))

Therefore, by the ε-net argument (Tao, 2012), for any unit vector u with only non-zero entries inM , we have with probability
1− exp(−O(n0)),

‖J(x̂)u‖22 ≤ 2n0τ‖u‖22 = C2‖u‖22
For any arbitrary vector v, we can decompose it in the following way: v = u1 + u2 + ...+ uK with K = O(1) where each
ui comes from a different non-overlapping coordinate set M .

‖J(x̂)v‖2 ≤ C
K∑
i=1

‖ui‖2 ≤ C
√
K(

K∑
i=1

‖ui‖22)1/2

≤ O(1)C‖v‖.

Thus, with probability at least 1−O(1) exp(−O(n0)),

‖J(x̂)‖op ≤ O(1)C = O(1)
√

2n0τ

= c
√
n0τ ,

where c is a constant. Taking the union bound over all the data points concludes the proof.
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B. Proofs for Sec 4.2
Lemma 5. Under the setting in Section 3.1 with sigmoid as the activation function,

Θ(L)
∞ (x,x) ≥ 1

4

Proof. For any `, we have

Θ(`+1)
∞ (x,x) = Θ(`)

∞ (x,x)Σ̇(`+1)(x,x) + Σ(`+1)(x,x)

≥ Σ(`+1)(x,x)

= Eg∼N (0,Σ(`))[σ(g(x))2]

= Eg∼N (0,Σ(`))

[(
σ(g(x))− 1

2

)2
]

+
1

4

≥ 1

4

where σ(f(x))− 1
2 moves sigmoid function to the origin such that it is an odd function.

C. Proofs for Sec 4.3
C.1. Main Lemmas

Lemma 2. Suppose there is a 2-layer network. If the activation function is σ(x) = αx, n = n0 and the data matrix is full
rank. Then at NTK limit, J∞(x) = In0 .

Proof.

J∞(x) =
2α2

n0
(X̂− f0(X̂))(

2α2

n0
X̂T X̂)−1X̂T + J0(x)

Notice that J0(x) = α 1√
n1

1√
n0

W(1)W(0) and f0(X̂) = α 1√
n1

1√
n0

W(1)W(0)X̂ = J0(x)X̂.

J∞(x) = J0(x)− f0(X̂)(X̂T X̂)−1X̂T + X̂(X̂T X̂)−1X̂T

= α
1
√
n1

1
√
n0

W(1)W(0) − α 1
√
n1

1
√
n0

W(1)W(0)X̂(X̂T X̂)−1X̂T + X̂(X̂T X̂)−1X̂T

= α
1
√
n1

1
√
n0

W(1)W(0) − α 1
√
n1

1
√
n0

W(1)W(0)In0
+ In0

= In0

Lemma 3. Suppose there is a 2-layer network with activation function σ(x) = αx and given initial weights W(1) ∈ Rn0×n1 ,
W(0) ∈ Rn1×n0 . If the data matrix is full rank with n ≤ n0, then, at the NTK limit (n1 → ∞), J∞(x) has eigenvalue 1
with multiplicity at least n. If at the NTK limit, α is chosen such that ‖J0(x)‖op < 1, then the multiplicity is exactly n and 1
is the largest eigenvalue norm.

Proof. Based on the proof of last section, we know that

J∞(x) = J0(x)− f0(X̂)(X̂T X̂)−1X̂T + X̂(X̂T X̂)−1X̂T

= J0(x)− J0(x)X̂(X̂T X̂)−1X̂T + X̂(X̂T X̂)−1X̂T

In this case,
X̂(X̂T X̂)−1X̂T = V ΣV T
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where V is an orthgonal matrix and

Σ =


1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . . . . .
0 . . . 1 0
. . . . . . . . . . . . . . .
0 0 . . . 0


So

J∞(x) = J0(x)(In0 − V ΣV T ) + V ΣV T

= α
1
√
n1

1
√
n0

W(1)W(0)(In0
− V ΣV T ) + V ΣV T

Interestingly, (Id − V ΣV T ) and V ΣV T contain orthogonal eigenvectors. For convenience, let {vi}ni=1 be the set of
eigenvectors of V ΣV T with eigenvalue 1. Furthermore, let V‖ = span({vi}ni=1) and V⊥ = span({vi}ni=1)⊥. Because we
are in the linear region, J∞(x) and J0(x) do not depend on x. We’ll use J∞ to refer J∞(x) and J0 as J0(x).

• For any vector v‖ ∈ V‖,
J0(In0

− V ΣV T )v‖ = 0

and
J∞v

‖ = v‖

Thus, all vectors in {vi}ni=1 are eigenvetors of J∞ with eigenvalue 1 regardless of the choice of α.

• On the other hand, let v be any complex vector such that

v = Re(v) + iIm(v)

If v is an eigenvector of J∞ with eigenvalue λ = a+ ib, then

J∞Re(v) = aRe(v)− bIm(v)

J∞Im(v) = bRe(v) + aIm(v)

Let’s first decompose Re(v) and Im(v).

Re(v) = v⊥r + v‖r

Im(v) = v⊥i + v
‖
i

where v⊥r , v
⊥
i ∈ V⊥ and v‖r , v

‖
i ∈ V‖.

J∞(v⊥r + v‖r ) = J0v
⊥
r + v‖r = (av⊥r − bv⊥i ) + (av‖r − bv

‖
i )

J∞(v⊥i + v
‖
i ) = J0v

⊥
i + v

‖
i = (bv⊥r + av⊥i ) + (bv‖r + av

‖
i )

By adding and subtracting two equations,

J0(v⊥r + v⊥i ) + v‖r + v
‖
i =

[
(a+ b)v⊥r + (a− b)v⊥i

]
+

[
(a+ b)v‖r + (a− b)v‖i

]
J0(v⊥r − v⊥i ) + v‖r − v

‖
i =

[
(a− b)v⊥r − (a+ b)v⊥i

]
+

[
(a− b)v‖r − (a+ b)v

‖
i

]
When α is chosen such that ‖J0‖ < 1,

‖(a+ b)v⊥r + (a− b)v⊥i ‖2 < ‖v⊥r + v‖r‖2
‖(a− b)v⊥r − (a+ b)v⊥i ‖2 < ‖v⊥r − v‖r‖2
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Then,

(a2 + b2)‖v⊥r ‖22 + (a2 + b2)‖v⊥i ‖22 < ‖v⊥r ‖22 + ‖v⊥i ‖22
|λ|2 = a2 + b2 < 1

This suggests that any complex eigenvector with components from V⊥ would have eigenvalue with norm smaller than
1.

Lemma 4. Suppose there is a 2-layer network with activation function σ(x) = αx+β, given initial weights W(1) ∈ Rn0×n1 ,
W(0) ∈ Rn1×n0 and every data point has the same norm r (i.e. ∀i ∈ [n] ‖x‖2 = r). If the data matrix is full rank with
n ≤ n0, then, at the NTK limit n1 →∞, J∞(x) has eigenvalues 1 with multiplicity at least n− 1. If at the NTK limit, α
and β are chosen such that

‖J0(x)‖op = 1−∆,

∥∥∥∥ 1
√
n1

W(1)1n1

∥∥∥∥
2

<
βn0∆

2rα2
,

where 0 < ∆ ≤ 1, then the multiplicity is exactly n− 1 and 1 is the largest eigenvalue norm.

Proof. First of all, let B be an all-one matrix

J∞(x) =

(
X̂− f0(X̂)

)
K̃−1 ∂kx

∂x
+ J0(x)

=

(
X̂− f0(X̂)

)(
2α2

n0
X̂T X̂ + β2B

)−1(
2α2

n0
X̂T

)
+ J0(x)

=

(
X̂− f0(X̂)

)(
X̂T X̂ +

n0β
2

2α2
B

)−1

X̂T + J0(x)

= J0(x) + X̂

(
X̂T X̂ +

n0β
2

2α2
B

)−1

X̂T − (
α

√
n1n0

W(1)W(0)X̂ + β
1
√
n1

W(1)1n1
1Tn )

(
X̂T X̂ +

n0β
2

2α2
B

)−1

X̂T

= J0(x) + X̂

(
X̂T X̂ +

n0β
2

2α2
B

)−1

X̂T − (J0(x)X̂ + β
1
√
n1

W(1)1n11
T
n )

(
X̂T X̂ +

n0β
2

2α2
B

)−1

X̂T

Because in the linearized region, J∞(x) and J0(x) do not depend on x. We’ll use J∞ to refer J∞(x) and J0 as J0(x). For
simplicity, we’ll also use c = n0β

2

2α2 .

Based on Lemma 6,

X̂

(
X̂T X̂ + cB

)−1

X̂T = V ΛV T

where Λ = diag(1, ..., 1︸ ︷︷ ︸
n−1

, λ̂, 0, ..., 0︸ ︷︷ ︸
n0−n

) where 0 < λ̂ < 1. Now,

J∞ = J0(In0 − V ΛV T ) + V ΛV T − β 1
√
n1
W (1)1n11

T
n

(
X̂T X̂ + cB

)−1

X̂T

From Corollary 7, we know that the following two vectors are eigenvectors of V ΛV T with eigenvalue λ̂,

X̂(X̂T X̂ + cB)−11n X̂(X̂T X̂)−11n

Furthermore,

X̂(X̂T X̂ + cB)−11n = λ̂X̂(X̂T X̂)−11n



Associative Memory in Iterated Overparameterized Sigmoid Autoencoders

And
λ̂ =

1

1 + cg

where
g = trace(B(X̂T X̂)−1) = ‖X̂(X̂T X̂)−11n‖22

Let û be a rescaled unit vector of X̂(X̂T X̂)−11n, then

J∞û = J0(1− λ̂)û+ λ̂û−√gλ̂β 1
√
n1
W (1)1n1

û

‖J∞û‖2 = ‖J0(1− λ̂)û+ λ̂û−√gλ̂β 1
√
n1

W(1)1n1
û‖2

≤ ‖J0‖op‖(1− λ̂)û‖2 + ‖λ̂û‖2 + ‖√gλ̂β 1
√
n1

W(1)1n1 û‖2

= (1− λ̂)‖J0‖op + λ̂+
√
gλ̂‖β 1

√
n1

W(1)1n1
‖2

< (1− λ̂)(1−∆) + λ̂+
√
gλ̂
β2n0∆

2rα2

≤ (1− λ̂)(1−∆) + λ̂+ gλ̂
β2n0∆

2α2
(Lemma 9)

=
(1−∆)cg + 1 + gβ2n0∆

2α2

1 + cg
= 1

Therefore, J∞ will shrink every vectors orthogonal to the eigenvectors in V with eigenvalue 1. By the same arguments in
the proof of Lemma 3, we can conclude the proof.

C.2. Useful Lemmas

Lemma 6. Suppose X ∈ Rk×m is a full-rank matrix with k ≥ m and m ≥ 2. Let c be an arbitrary positive constant and
B an all-one matrix. Consider the following real symmetric matrix,

X(XTX + cB)−1XT

It can be characterized by having eigenvalue 1 with multiplicity m− 1, eigenvalue 0 with multiplicity k −m and another
eigenvalue λ such that 0 < λ < 1.

Proof. By (Miller, 1981), if P and P +Q are invertible, and Q has rank 1, then let g′ = trace(QP−1), we know that g′ 6= 1,
and

(P +Q)−1 = P−1 − 1

1 + g′
P−1QP−1

First of all, it is easy to see that (XTX + cB)−1 is invertible. This is because XTX is positive definite and cB is positive
semi-definite.

Since B is a rank one matrix,

(XTX + cB)−1 = (XTX)−1︸ ︷︷ ︸
I1

− c

1 + cg
(XTX)−1B(XTX)−1︸ ︷︷ ︸

I2

where g = trace(B(XTX)−1).

Let’s consider the singular value decomposition of XT = UΣV T

• XTX = UΣ2UT and (XTX)−1 = UΣ−2UT . So

XI1X
T = X(XTX)−1XT = V ΣUTUΣ−2UTUΣV T = V ΛmV

T

where Λm = diag(1, ..., 1︸ ︷︷ ︸
m

, 0, ..., 0︸ ︷︷ ︸
k−m

)
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•

XT I2X =
c

1 + cg
M =

c

1 + cg
X(XTX)−1B(XTX)−1XT

The first thing to notice is that B = 11T where 1 is a vector of ones. Therefore,

M = X(XTX)−1B(XTX)−1XT = X(XTX)−111T (XTX)−1XT = aaT

where a = X(XTX)−11.

This implies that M is a rank one matrix with singular value ‖a‖2. But we also know the following:

‖a‖2 = aTa = trace(aaT ) = trace(M)

= trace(X(XTX)−1B(XTX)−1XT ) = trace(XTX(XTX)−1B(XTX)−1)

= trace(B(XTX)−1) = g > 0

The last strict inequality comes from the fact that X is full rank so that X(XTX)−1 has no zero singular value.
Furthermore,

XI1X
Ta = X(XTX)−1XTa

= X(XTX)−1XTX(XTX)−11 = X(XTX)−11
= a

Because a is not a zero vector, it is also one of the eigenvector of XI1X with eigenvalue 1.

And the eigenvalue of XT I2X is the following:

0 <
cg

1 + cg
< 1

The inequalities comes from the fact that c is also non-negative. We’ll denote σ = cg
1+cg . So

XI2X
T = σââT

where â is a rescaled to have unit length.

Now that we have examined two parts separately. Let’s put them together. For convenience, we’ll also denote X(XTX +
cB)−1XT = XI1X

T −XI2X
T = M1 −M2.

Based on the eigen decomposition of M1,

M1 =

m∑
k=1

uku
T
k

with lost of generality, let’s also denote â = u1. Now,

M1 −M2 =

m∑
k=1

uku
T
k − σu1u

T
1

= (1− σ)u1u
T
1 +

m∑
k=2

uku
T
k

Because 0 < σ < 1, X(XTX + cB)−1XT has eigenvalue 1 with multiplicity m− 1, eigenvalue 0 with multiplicity k −m
and another eigenvalue λ such that 0 < λ < 1.

Corollary 7. Following the setup in Lemma 6, we could also know that XT (XTX)−11 is an eigenvector with with
eigenvalue λ and (

X(XTX + cB)−1XT

)
X(XTX)−11 = X(XTX + cB)−11 = λX(XTX)−11
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Corollary 8. Suppose X ∈ Rk×m is a full-rank matrix with k ≥ m and m ≥ 2. Let c be an arbitrary non-negative constant
and B an all-one matrix.

‖X(XTX + cB)−1XT ‖op = 1

Remark 2. c can also takes on negative values as long as cg is not close to −1.

Lemma 9. Suppose X ∈ Rk×m is a full-rank matrix with k ≥ m and B an all-one matrix. If

‖X·,i‖2 = r ∀i ∈ [m]

Then,

trace(B(XTX)−1) ≥ 1

r2

Proof. First of all,

trace(B(XTX)−1) ≥ trace(1T (XTX)−11)

≥ ‖1‖22
1

‖XTX‖op
=

m

‖XTX‖op

On the hand,

‖XTX‖op = ‖XT ‖2op ≤ ‖XT ‖2f ≤ trace(XTX) ≤ r2m

Therefore,

trace(B(XTX)−1) ≥ 1

r2

D. Proofs for Sec 4.4
D.1. Derivation for the Approximated NTK

The closed form NTK of erf (Lee et al., 2019; Williams, 1997) can be written with the following two components:

T (Σ, erf, erf)(x, x̂) =
2

π
arcsin

(
Σ(x, x̂)√

(Σ(x,x) + 0.5)(Σ(x̂, x̂) + 0.5)

)
T (Σ, ˙erf, ˙erf)(x, x̂) =

4

π
det(I + 2Σ)−

1
2 =

4

π

1√
(1 + 2Σ(x,x)(1 + 2Σ(x̂, x̂))− 4Σ(x, x̂)2)

Here, we can approximate sigmoid function σs by erf function:

σs(x) ≈ σŝ(x) =
1

2
erf(

1

2
x) +

1

2

Then,

T (Σ, σŝ, σŝ)(x, x̂) = Eu,v∼N (0,Σ)[σŝ(u)σŝ(v)] = E[
1

4
erf(

1

2
u)erf(

1

2
v)] + E[

1

4
erf(

1

2
u) +

1

4
erf(

1

2
v)] +

1

4

=
1

4
E[erf(

1

2
u)erf(

1

2
v)] +

1

4

=
1

4
T (

1

4
Σ, erf, erf)(x, x̂) +

1

4

T (Σ, σŝ, σŝ)(x, x̂) =
1

4
+

1

2π
arcsin

(
Σ(x, x̂)√

(Σ(x,x) + 2)(Σ(x̂, x̂) + 2)

)
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and

T (Σ, σ̇ŝ, σ̇ŝ)(x, x̂) = Eu,v∼N (0,Σ)[σ̇ŝ(u)σ̇ŝ(v)] =
1

16
E[ ˙erf(

1

2
u) ˙erf(

1

2
v)]

=
1

16
T (

1

4
Σ, ˙erf, ˙erf)(x, x̂)

T (Σ, σ̇ŝ, σ̇ŝ)(x, x̂) =
1

2π

1√
(2 + Σ(x,x)(2 + Σ(x̂, x̂))− Σ(x, x̂)2)

Based on the definition of NTK, we can derive the following for σŝ

Θ1
∞(x̂,x) = Σ1(x̂,x) =

1

n0
x̂Tx

Θ2
∞(x̂,x) = Θ1

∞(x̂,x)T (Θ1
∞, σ̇ŝ, σ̇ŝ)(x, x̂) + T (Θ1

∞, σŝ, σŝ)(x, x̂)

Let’s look at the first part

Θ1
∞(x̂,x)T (Θ1

∞, σ̇ŝ, σ̇ŝ)(x, x̂) =
1

2π

1√
(2 + 1

n0
xTx)(2 + 1

n0
x̂T x̂)− ( 1

n0
x̂Tx)2)

[
1

n0
x̂Tx]

=
1

2π

x̂Tx√
(2n0 + xTx)(2n0 + x̂T x̂)− (x̂Tx)2)

and the second part

T (Θ1
∞, σŝ, σŝ)(x, x̂) =

1

4
+

1

2π
arcsin

( 1
n0

x̂Tx√
( 1
n0

xTx + 2)( 1
n0

x̂T x̂ + 2)

)

=
1

4
+

1

2π
arcsin

(
x̂Tx√

(xTx + 2n0)(x̂T x̂ + 2n0)

)

D.2. Detailed Discussion of ∂kx

∂x

Without loss of generality, we will focus on ∂kx

∂x |x1
,

∂kx
∂x

=

ΘL
∞(x1,x)
∂x
. . .

ΘL
∞(xn,x)
∂x


where

∂ΘL
∞(x̂,x)

∂x
=
∂T (Θ1

∞, σŝ, σŝ)(x̂,x))

∂x︸ ︷︷ ︸
Ig1 (x̂,x)

+
∂Θ1
∞(x̂,x))T (Θ1

∞, σ̇ŝ, σ̇ŝ)(x̂,x))

∂x︸ ︷︷ ︸
Ig2 (x̂,x)

Let’s look at each row separately, and break this down into two parts.

• Ig1 (x̂,x)

After deriving the derivative, we get this:

Ig1 (x̂,x) =
1

2π

1√
1−A2

x̂

[
(x̂T x̂ + 2n0)(xTx + 2n0)

]
− x

[
(x̂T x̂ + 2n0)xT x̂

]
[
(x̂T x̂ + 2n0)(xTx + 2n0)

] 3
2

A =
x̂Tx√

(xTx + 2n0)(x̂T x̂ + 2n0)



Associative Memory in Iterated Overparameterized Sigmoid Autoencoders

Since we are only interested in J∞(x1) and each row of ∂kx

∂x , we’ll examine Ig1 (xi,x1).

Ig1 (xi,x1) =
1

2π

r2 + 2n0√
(r2 + 2n0)2 − (r2ρi1)2

xi(r
2 + 2n0)2 − x1

[
(r2 + 2n0)r2ρi1

]
(r2 + 2n0)3

=
1

2π

1√
(r2 + 2n0)2 − (r2ρi1)2

xi(r
2 + 2n0)− x1r

2ρi1
r2 + 2n0

It is easy to see that Ig1 (xi,x1)→ 0 as r grows regardless of ρi1.

• Ig2 (x̂,x)

We know that

Ig2 (x̂,x) =
1

2π

x̂

[
(xTx + 2n0)(x̂T x̂ + 2n0)− (x̂Tx)2

]
− x̂Tx

[
(2n0 + x̂T x̂)x− (x̂Tx)x̂

]
[
(xTx + 2n0)(x̂T x̂ + 2n0)− (x̂Tx)2

] 3
2

Again, let’s examine Ig2 (xi,x1).

Ig2 (xi,x1) =
1

2π

(r2 + 2n0)2xi − r2ρi1(2n0 + r2)x1[
(r2 + 2n0)2 − r4ρ2

i1

] 3
2

‖Ig2 (xi,x1)‖22 =
1

4π2

r2

[
(r2 + 2n0)4 + r4ρ2

i1(2n0 + r2)2 − 2r2ρ2
i1(2n0 + r2)3

]
[
(r2 + 2n0)2 − r4ρ2

i1

]3

=
1

4π2

16n4
0 + r2

[
n3

0(32− 16ρ2
i1) + r2

[
n2

0(24− 20ρ2
i1) + r2

[
n0(8− 8ρ2

i1) + r2(1− ρ2
i1)
]]]

[
r4(1− ρ2

i1) + 4n0r2 + 4n2
0

]3

Based on the equation for ‖Ig2 (xi,x1)‖22, we know that if ρ2
i1 6= 1, ‖Ig2 (xi,x1)‖22 eventually decays to zero with larger

r. But ‖Ig2 (xi,x1)‖22 converges to a constant if ρ2
i1 = 1. For simplicity, in this section, we do not assume there is any

parallel input. Therefore, we can see that all the other terms will go to zero except Ig2 (x1,x1). It is worth noting that if
ρi1 is close to one, the norm will see a spike before going down to zero. But in practice, the data is more than likely to
be well separated with small |ρij |. The discussion here is illustrated in Figure. D.1.

Combining the above analysis on the two components of gradient, it is easy to see that with large r,

∂kx
∂x
|x1
≈


ΘL

∞(x1,x)
∂x |x1

0
. . .
0



‖∂kx
∂x
|x1‖op ≈ ‖

ΘL
∞(x1,x)

∂x
|x1‖2 ≈ ‖

1

2π

2n0(r2 + 2n0)

(4n0r2 + 4n2
0)

3
2

x1‖2 =
1

2π

2n0r(r
2 + 2n0)

(4n0r2 + 4n2
0)

3
2

≈ 1

8π
√
n0
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Figure D.1: ρ, r vs Norm of Gradient Component 2

D.3. Parallel Inputs Analysis

In the previous section, we assume that there are no parallel inputs. But this assumption is not necessary. In fact, given
training data {xi}n1 , w.l.o.g, let’s impose x1 = −x2. Based on the results we have in Section 4.4, we can still derive a
similar approximation for the NTK regression solution.

• K̃

Fisrt of all,

K1
ij = T (Θ1

∞, σŝ, σŝ)(xi,xj) =
1

4
+

1

2π
arcsin

(
r2ρi,j

(r2 + 2n0)

)
If ρi,j = 1, then K1

ij is going to converge to 1
2 as r grows bigger. But if ρi,j = −1, this term is going to zero.

Therefore, K̃ can be approximated by this block diagonal matrix.

K̃ ≈


B1 . . . 0
0 B2 0
. . . . . . . . .
0 . . . B2


where

B1 =

[
Ik + 1

2 −Ik
−Ik Ik + 1

2

]
B2 = Ik +

1

2
Ik =

1

2π

r2√
4n2

0 + 4n0r2
≈ r

4π
√
n0

The inverse of K̃, is the following, as r grows large:

K̃−1 ≈


B−1

1 . . . 0
0 1

Ik+ 1
2

0

. . . . . . . . .
0 . . . 1

Ik+ 1
2

 ≈

B−1

1 . . . 0

0
4π
√
n0

r 0
. . . . . . . . .

0 . . .
4π
√
n0

r


where

B−1
1 =

1

Ik + 1
4

[
Ik + 1

2 Ik
Ik Ik + 1

2

]
• ∂kx

∂x

Based on the discussion from Section 4.4,

∂kx
∂x
|x1 ≈


ΘL

∞(x1,x)
∂x |x1

−ΘL
∞(x1,x)
∂x |x1

. . .
0

 =


Jkx1

−Jkx1

. . .
0
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where

Jk =
1

2π

2n0(r2 + 2n0)

(4n0r2 + 4n2
0)

3
2

≈ 1

8π
√
n0

1

r

Finally,

(
X̂− f0(X̂)

)
K̃−1 ∂kx

∂x
≈ X̂K̃−1 ∂kx

∂x
≈ X̂


B−1

1 . . . 0
0 1

Ik+ 1
2

0

. . . . . . . . .
0 . . . 1

Ik+ 1
2



Jkx1

−Jkx1

0
. . .
0



= X̂



1
2Jk
Ik+ 1

4

x1

−
1
2Jk
Ik+ 1

4

x1

0
. . .
0

 = 2
1
2Jk

Ik + 1
4

x1x
T
1

Thus,

‖
(

X̂− f0(X̂)

)
K̃−1 ∂kx

∂x
‖op ≈

r2Jk

Ik + 1
4

=
r2 1

8π
√
n0

1
r

r
4π
√
n0

=
1

2

By similar argument, as r →∞, we have

‖J∞(x)‖op ≤
1

2
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(a) 2 training points (b) 5 training points (c) 8 training points

Figure E.1: Eigenvalue distribution of 2-layer sigmoid network trained with input dimension 10

(a) 5 training points (b) 20 training points (c) 40 training points

Figure E.2: Convergence success rate vs input norm: random data with input dimension 32

E. Additional Simulations
E.1. Multiple Points: Linear Region

In this section, we first illustrate the eigenvalue distribution in the linear region. Here, we trained 2 layer sigmoid networks
with input dimension 10 and hidden size 1000 for 2, 5 and 8 training points. As suggested by Lemma 4, there should be
n− 1 eigenvalues with norm around 1. This is supported by Figure E.1, as there are 10%, 40% and 70% eigenvalues around
that region.

E.2. Basin of Attraction

We test basin of attraction by adding Gaussian noises to training examples and check if the modified examples can converge
to the original ones via iterative maps under 50 iterations. The standard deviation of the Gaussian noise is called the noise
radius. The network has 2 layers with hidden size 10000 and input dimension 32. Figure E.3 details experiments for 5, 20
and 40 examples. Not surprisingly, the basin of attraction is larger when there are fewer training examples and larger input
norms since a level of separation between data is required.

(a) 5 training points (b) 20 training points

Figure E.3: Convergence success rate vs input norm: MNIST dataset
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(a) Radius: 1 (b) Radius: 5 (c) Radius: 10

(d) Radius: 15 (e) Radius: 20

Figure E.4: Specturm Change for Sigmoid

E.3. Basin of Attraction on Mnist

We also test basin of attraction experiments on MNIST dataset to check if we can recover real training examples. The images
are prepossessed by subtracting means and rescaled to have different input norms for testing. Similar to the setting before,
Figure 4b also shows that larger input norm gives greater basin of attraction for 5 and 20 examples. Notice that because
MNIST images have large input dimension, they need larger radius to move out of the linear region.

E.4. Sigmoidal Activations

Finally, we show that our results can be extended to different sigmoidal activation functions as well. We chose 2 layer
network with hidden size 10000, input dimension 32 and 20 training examples. As before, only settings that can let network
converges to training loss below 10−7 are included. Figure 5 clearly suggests all the activation functions share similar
curves. Notice that both tanh and erf have large eigenvalue when r is small. This is not a contradiction to our Lemma 3
as their α = σ̇(0) is too large to satisfy the conditions in Lemma 3. The histogram of eigenvalue norm changes for those
activation is shown in Figure E.4, Figure E.5, Figure E.6. It is clear that they all follow the same pattern.
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(a) Radius: 1 (b) Radius: 5 (c) Radius: 10

(d) Radius: 15 (e) Radius: 20

Figure E.5: Specturm Change for Erf

(a) Radius: 1 (b) Radius: 5 (c) Radius: 10

(d) Radius: 15 (e) Radius: 20

Figure E.6: Specturm Change for Sigmoid


