
What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization?

A. Relation to Mixed Strategy Games
In contrast to pure strategies where each player plays a single action, game theorists have also considered mixed strategies
where each player is allowed to play a randomized action sampled from a probability measure µ ∈ P(X ) or ν ∈ P(Y).
Then, the payoff function becomes an expected value Ex∼µ,y∼νf(x,y). For mixed strategy games, even if function is
nonconvex-nonconcave, the following minimax theorem still holds.

Proposition 32 ((Glicksberg, 1952)). Assume that the function f : X × Y → R is continuous and that X ⊂ Rd1 , Y ⊂ Rd2
are compact. Then

min
µ∈P(X )

max
ν∈P(Y)

E(µ,ν)f(x,y) = max
ν∈P(Y)

min
µ∈P(X )

E(µ,ν)f(x,y).

This implies that the order which player goes first is no longer important in this setting, and there is no intrinsic difference
between simultaneous games and sequential games if mixed strategies are allowed.

Similar to the concept of (pure strategy) Nash equilibrium in Definition 1, we can define mixed strategy Nash equilibrium as

Definition 33. A probability measure (µ?, ν?) is a mixed strategy Nash equilibrium of f , if for any measure (µ, ν) in
P(X )× P(Y), we have

Ex∼µ?,y∼νf(x,y) ≤ Ex∼µ?,y∼ν?f(x,y) ≤ Ex∼µ,y∼ν?f(x,y).

Unlike pure strategy Nash equilibrium, the existence of mixed strategy Nash equilibrium in this setting is always guaranteed
by Glicksberg (1952).

One challenge for finding mixed strategy equilibria is that it requires optimizing over a space of probability measures, which
is of infinite dimension. However, we can show that finding approximate mixed strategy Nash equilibria for Lipschitz
games can be reduced to finding a global solution of a “augmented” pure strategy sequential games, which is a problem of
polynomially large dimension.

Definition 34. Let (µ?, ν?) be a mixed strategy Nash equilibrium. A probability measure (µ†, ν†) is an ε-approximate
mixed strategy Nash equilibrium if:

∀ν′ ∈ P(Y), E(µ†,ν′)f(x,y) ≤ E(µ?,ν?)f(x,y) + ε

∀µ′ ∈ P(Y), E(µ′,ν†)f(x,y) ≥ E(µ?,ν?)f(x,y)− ε.

Theorem 35. Assume that function f is L-Lipschitz, and the diameters of X and Y are at most D. Let (µ?, ν?) be a mixed
strategy Nash equilibrium. Then there exists an absolute constant c, for any ε > 0, such that ifN ≥ c·d2(LD/ε)2 log(LD/ε),
we have:

min
(x1,...,xN )∈XN

max
y∈Y

1

N

N∑
i=1

f(xi,y) ≤ E(µ?,ν?)f(x,y) + ε.

Intuitively, Theorem 35 holds because function f is Lipschitz, Y is a bounded domain, and thus we can establish uniform
convergence of the expectation of f(·,y) to its average over N samples for all y ∈ Y simultaneously. A similar argument
was made in (Arora et al., 2017).

Theorem 35 implies that in order to find a approximate mixed strategy Nash equilibrium, we can solve a large minimax
problem with objective F (X,y) :=

∑N
i=1 f(xi,y)/N . The global minimax solution X? = (x?1, . . . ,x

?
n) gives a empirical

distribution µ̂? =
∑N
i=1 δ(x − x?i )/N , where δ(·) is the Dirac delta function. By symmetry, we can also solve the

corresponding maximin problem to find ν̂?. It can be shown that (µ̂?, ν̂?) is an ε-approximate mixed strategy Nash
equilibrium. That is, approximate mixed strategy Nash can be found by finding two global minimax points.

Proof of Theorem 35. Note that WLOG, the second player can always play pure strategy. That is,

min
µ∈P(X )

max
ν∈P(Y)

Ex∼µ,y∼νf(x,y) = min
µ∈P(X )

max
y∈Y

Ex∼µf(x,y)

Therefore, we only need to solve the problem of RHS. Suppose the minimum over P(X ) is achieved at µ?. First, sample
(x1, . . . ,xN ) i.i.d from µ?, and note maxx1,x2∈X |f(x1,y) − f(x2,y)| ≤ LD for any fixed y. Therefore by Hoeffding
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inequality, for any fixed y:

P

(
1

N

N∑
i=1

f(xi,y)− Ex∼µ?f(x,y) ≥ t

)
≤ e−

Nt2

(LD)2

Let Ȳ be a minimal ε/(2L)-covering over Y . We know the covering number |Ȳ| ≤ (2DL/ε)d. Thus by union bound:

P

(
∀y ∈ Ȳ, 1

N

N∑
i=1

f(xi,y)− Ex∼µ?f(x,y) ≥ t

)
≤ ed log

2DL
ε −

Nt2

(LD)2

Pick t = ε/2 and N ≥ c · d(LD/ε)2 log(LD/ε) for some large absolute constant c, we have:

P

(
∀y ∈ Ȳ, 1

N

N∑
i=1

f(xi,y)− Ex∼µ?f(x,y) ≥ ε

2

)
≤ 1

2

Let y? = arg maxy
1
N

∑N
i=1 f(xi,y), by definition of covering, we can always find a y′ ∈ Ȳ so that ‖y? − y′‖ ≤ ε/(4L).

Thus, with probability at least 1/2:

max
y

1

N

N∑
i=1

f(xi,y)−max
y

Ex∼µ?f(x,y) =
1

N

N∑
i=1

f(xi,y
?)−max

y
Ex∼µ?f(x,y)

≤

[
1

N

N∑
i=1

f(xi,y
?)− 1

N

N∑
i=1

f(xi,y
′)

]
+

[
1

N

N∑
i=1

f(xi,y
′)− Ex∼µ?f(x,y′)

]
+ [Ex∼µ?f(x,y′)−max

y
Ex∼µ?f(x,y)] ≤ ε/2 + ε/2 + 0 ≤ ε

That is, with probability at least 1/2:

max
y∈Y

1

N

N∑
i=1

f(xi,y) ≤ min
µ∈P(X )

max
y∈Y

Ex∼µf(x,y) + ε

This implies:

min
(x1,...,xN )∈XN

max
y∈Y

1

N

N∑
i=1

f(xi,y) ≤ min
µ∈P(X )

max
y∈Y

Ex∼µf(x,y) + ε

Combine with Proposition 32, we finish the proof.

B. Relation to (Evtushenko, 1974)
In this section, we review a notion similar to local minimax proposed by Evtushenko (1974). To distinguish that notion from
our definition (Definition 14), we call it Evtushenko’s minimax property. We remark that Evtushenko’s minimax is not a
truly local property. As a noticable difference, Evtushenko’s definition does not satisfy the first-order and second-order
necessary conditions of the local minimax notion proposed in this paper as in Proposition 18 and Proposition 19.

Evtushenko’s definition of local minimax point can be stated as follows.

Definition 36 ((Evtushenko, 1974)). A point (x?,y?) is said to be a Evtushenko’s minimax point of f , if there exist a
local neighborhoodW of (x?,y?) so that (x?,y?) is a global minimax point (Definition 9) withinW .

First, we remark that Definition 36 is in fact not a local notion. That is, whether a point (x?,y?) is a Evtushenko’s minimax
point relies on the property of function f at points which are far away from (x?,y?).

Proposition 37. There exists a twice differentiable function f , a point (x,y) and its two local neighborhoodsW1,W2

satisfyingW1 ⊂ W2, so that (x,y) is not a Evtushenko’s minimax point for f |W1 but is a Evtushenko’s minimax point for
f |W2 . Here f |W denotes the function f restriced to the domainW .
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Proof. Consider the function f(x, y) = 0.2xy − cos(y) in the region W2 = [−1, 1] × [−2π, 2π] as shown in Figure 2.
Follow the same analysis as in the proof of Proposition 21, we can show that (0,−π) is a global minimax point onW2, thus
a Evtushenko’s minimax point of f |W2 .

On the other hand, considerW1 = [−1, 1]×[−2π, 0]. For any fixed x, the global maximium y?(x) satisfies 0.2x+sin(y?) =
0 where y?(x) ∈ (−3π/2,−π/2). Then for any local neighborhoodW of (0,−π) such thatW ⊂W1, there always exists
an ε > 0 so that (ε, y?(ε)) ∈ W . However, we can verify that

f(0,−π) ≥ f(ε, y?(ε)) = max
y:(ε,y)∈W

f(ε, y)

That is (0,−π) is not a Evtushenko’s minimax point on f |W1
.

This concludes that whether (0,−π) is a Evtushenko’s minimax point depends on the property of function f on setW2−W1

whose elements are all far away from (0,−π). That is, Evtushenko’s minimax property is not a local property.

We further clarify the relation between Evtushenko’s minimax point and our definition of local minimax point (Definition
14) as follows.

Proposition 38. A local minimax point is a Evtushenko’s minimax point, but the reverse is not true.

Proof. If a point (x?,y?) is a local minimax point, according to Definition 14, there exists δ0 > 0 and a function h satisfying
h(δ)→ 0 as δ → 0, such that for any δ ∈ (0, δ0], and any (x,y) satisfying ‖x− x?‖ ≤ δ and ‖y − y?‖ ≤ δ, we have

f(x?,y) ≤ f(x?,y?) ≤ max
y′:‖y′−y?‖≤h(δ)

f(x,y′).

Therefore, we can choose a δ† ∈ (0, δ0] so that h(δ†) ≤ δ0. According to the equation above, (x?,y?) is the global minimax
point in region Bx?(δ†)×By?(h(δ†)) where Bz(r) denote the Euclidean ball around z with radius r. Therefore, (x?,y?) is
a Evtushenko’s minimax point.

The claim that a Evtushenko’s minimax point can be a non local minimax point easily follows from Proposition 21, where a
global minimax point (which is always a Evtushenko’s minimax point) can be a non local minimax point.

Finally, as a consequence of Proposition 38, the sufficient conditions for local minimax points are still sufficient conditions
for Evtushenko’s minimax points. However, the necessary conditions for local minimax points are no longer the necessary
conditions for Evtushenko’s minimax points.

Proposition 39. A Evtushenko’s minimax point can be a non-stationary point, which does not satisfies Eq.(4) even if
∇2

yyf(x,y) ≺ 0.

Proof. Consider the function f(x, y) = −0.03x2 + 0.2xy − cos(y) in the region [−1, 1]× [−2π, 2π] as shown in Figure
2. Follow a similar analysis as in the proof of Proposition 21, we can show that (0,−π) is a global minimax point, thus a
Evtushenko’s minimax point. However, we have gradient and Hessian at (0,−π):

∇f =

(
−0.2π

0

)
, ∇2f =

(
−0.06 0.2

0.2 −1

)
Therefore, (0,−π) is not a stationary point, and despite∇2

yyf(x,y) ≺ 0, Eq.(4) does not hold.

C. Proofs for Section 3.1
In this section, we prove the propositions and theorems presented in Section 3.1.

Definition 14. A point (x?,y?) is said to be a local minimax point of f , if there exists δ0 > 0 and a function h satisfying
h(δ)→ 0 as δ → 0, such that for any δ ∈ (0, δ0], and any (x,y) satisfying ‖x− x?‖ ≤ δ and ‖y − y?‖ ≤ δ, we have

f(x?,y) ≤ f(x?,y?) ≤ max
y′:‖y′−y?‖≤h(δ)

f(x,y′). (3)
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Remark 15. Definition 14 remains equivalent even if we further restrict function h in Definition 14 to be monotonic or
continuous. See Appendix C for more details.

Proof. Let Dgen be the set of local minimax points according to Definition 14. Let Dmon,Dcts be the sets of points if we
further restrict function h in Definition 14 to be monotonic or continuous. We will prove thatDgen ⊂ Dmon ⊂ Dcts ⊂ Dgen,
so that they are all equivalent.

For simplicity of presentation, we denote P(δ, ε) as the property that f(x?,y?) ≤ gε(x) for any x satisfying ‖x− x?‖ ≤ δ.
By its definition, we know if P(δ, ε) holds, then for any δ′ ≤ δ and any ε′ ≥ ε, P(δ′, ε′) also holds.

Dgen ⊂ Dmon: If (x?,y?) ∈ Dgen, we know there exists δ0 > 0 and function h with h(δ)→ 0 as δ → 0 such that for
any δ ∈ (0, δ0], that P(δ, h(δ)) holds. We can construct a function h′(δ) = supδ∈(0,δ] h(δ) for any δ ∈ (0, δ0]. We can
show h′ is a monotonically increasing function, and h′(δ)→ 0 as δ → 0. Since h′(δ) ≥ h(δ) for all δ ∈ (0, δ0], we know
P(δ, h′(δ)) also holds, that is, (x?,y?) ∈ Dmon.

Dmon ⊂ Dcts: For any monotonically increasing function h : (0, δ0] → R with h(δ) → 0 as δ → 0, by a standard
argument in analysis, we can show there exists a continuous function h′ : (0, δ0]→ R so that h′(δ) ≥ h(δ) for all δ ∈ (0, δ0]
and h′(δ)→ 0 as δ → 0. Then, we can use similar arguments as above to finish the proof of this claim.

Dcts ⊂ Dgen: This is immediate by definitions.

Lemma 16. For a continuous function f , a point (x?,y?) is a local minimax point of f if and only if y? is a local maximum
of function f(·,x?), and there exists an ε0 > 0 such that x? is a local minimum of function gε for all ε ∈ (0, ε0] where
function gε is defined as gε(x) := maxy:‖y−y?‖≤ε f(x,y).

Proof. For simplicity of presentation, we denote P(δ, ε) as the property that f(x?,y?) ≤ gε(x) for any x satisfying
‖x− x?‖ ≤ δ. By its definition, we know if P(δ, ε) holds, then for any δ′ ≤ δ and any ε′ ≥ ε, P(δ′, ε′) also holds. Also,
since f is continuous, if a sequence {εi} has a limit, then P(δ, εi) holds for all i implies that P(δ, limi→∞ εi) holds.

The “only if” direction: Supposing (x?,y?) is a local minimax point of f , then there exists δ0 > 0 and a function h
satisfying the properties stated in Definition 14. Let ε0 = δ0. Since h(δ)→ 0 as δ → 0, we know that for any ε ∈ (0, ε0],
there exists δ ∈ (0, δ0] such that h(δ) ≤ ε. Meanwhile, according to Definition 14, P(δ, h(δ)) holds, which implies that
P(δ, ε) holds. Finally, since ε ≤ ε0 = δ0, we have gε(x?) = f(x?,y?); i.e., y? achieves the local maximum. Combining
this with the fact that P(δ, ε) holds, we finish the proof of this direction.

The “if” direction: Since y? is a local maximum of f(·,x?), there exists δy > 0 such that gδy (x?) = f(x?,y?). Let
ε̃0 = min{ε0, δy}. By assumption, there exists a function q such that for any ε ∈ (0, ε̃0] we have q(ε) > 0 and P(q(ε), ε)
holds. Now, define δ0 = q(ε̃0) > 0, and define a function h on (0, δ0] as follows:

h(δ) = inf{ε|ε ∈ (0, ε̃] and q(ε) ≥ δ}.

It is easy to verify that when δ ∈ (0, δ0], the set on the RHS is always non-empty as ε̃0 is always an element of the set, thus
the function h is well-defined on its domain. First, it is clear that h is a monotonically increasing function. Second, we prove
h→ 0 as δ → 0, this is because for any ε′ ∈ (0, ε̃], there is a δ′ = q(ε′) so that for any δ ∈ (0, δ′] we have h(δ) ≤ h(δ′) ≤ ε′.
Finally, we note for any δ ∈ (0, δ0], by definition of h(δ), there exists a sequence {εi} so that limi→∞ εi = h(δ), and
for any i, we have εi ∈ [h(δ), ε̃0] and q(εi) ≥ δ. By assumption, we know P(q(εi), εi) holds, thus P(δ, εi) holds, which
eventually implies P(δ, h(δ)) since limi→∞ εi = h(δ). This finishes the proof.

Proposition 17. Any local Nash equilibrium (Definition 2) is a local minimax point.

Proof. Let h be the constant function h(δ) = 0 for any δ. If (x?,y?) is a local pure strategy Nash equilibrium, then
by definition this implies the existence of δ0 such that for any δ ≤ δ0, and any (x,y) satisfying ‖x− x?‖ ≤ δ and
‖y − y?‖ ≤ δ:

f2(x?,y) ≤ f2(x?,y?) ≤ f(x,y?) ≤ max
y′:‖y′−y?‖≤h(δ)

f2(x,y′).
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D. Proofs for Section 3.2
In this section, we present proofs of the propositions and theorems presented in Section 3.2.

Proposition 18 (First-order Necessary Condition). Assuming that f is continuously differentiable, then any local minimax
point (x,y) satisfies∇xf(x,y) = 0 and∇yf(x,y) = 0.

Proof. Since y is the local maximum of f(x, ·), we have ∇yf(x,y) = 0. Denote local optima δ?y(δx) :=
argmax‖δy‖≤h(δ) f(x + δx,y + δy). By definition we know that ‖δ?y(δx)‖ ≤ h(δ)→ 0 as δ → 0. Thus

0 ≤ f(x + δx,y + δ?y(δx))− f(x,y)

= f(x + δx,y + δ?y(δx))− f(x,y + δ?y(δx)) + f(x,y + δ?y(δx))− f(x,y)

≤ f(x + δx,y + δ?y(δx))− f(x,y + δ?y(δx))

= ∇xf(x,y + δ?y(δx))>δx + o(‖δx‖)
= ∇xf(x,y)>δx + o(‖δx‖)

holds for any small δx, which implies∇xf(x,y) = 0.

Proposition 19 (Second-order Necessary Condition). Assuming that f is twice differentiable, then (x,y) is a local minimax
point implies that∇2

yyf(x,y) � 0. Furthermore, if∇2
yyf(x,y) ≺ 0, then

[∇2
xxf −∇2

xyf(∇2
yyf)−1∇2

yxf ](x,y) � 0. (4)

Proof. Denote A := ∇2
xxf(x,y), B := ∇2

yyf(x,y) and C := ∇2
xyf(x,y). Since y is the local maximum of f(x, ·), we

have B � 0. On the other hand,

f(x + δx,y + δy) = f(x,y) +
1

2
δ>x Aδx + δ>x Cδy +

1

2
δ>y Bδy + o(‖δx‖2 + ‖δy‖2).

Since (x,y) is a local minimax point, by definition there exists a function h such that Eq. (3) holds. Denote h′(δ) =
2‖B−1C>‖δ. We note both h(δ) and h′(δ)→ 0 as δ → 0. In case that B ≺ 0, we know B is invertible, and it is not hard
to verify that argmax‖δy‖≤max(h(δ),h′(δ)) f(x + δx,y + δy) = −B−1C>δx + o(‖δx‖). Since (x,y) is a local minimax
point, we have

0 ≤ max
‖δy‖≤h(δ)

f(x + δx,y + δy)− f(x,y) ≤ max
‖δy‖≤max(h(δ),h′(δ))

f(x + δx,y + δy)− f(x,y)

=
1

2
δ>x (A−CB−1C>)δx + o(‖δx‖2).

This equation holds for any δx, which finishes the proof.

Proposition 20 (Second-order Sufficient Condition). Assume that f is twice differentiable. Any stationary point (x,y)
satisfying∇2

yyf(x,y) ≺ 0 and
[∇2

xxf −∇2
xyf(∇2

yyf)−1∇2
yxf ](x,y) � 0 (5)

is a local minimax point. We call stationary points satisfying (5) strict local minimax points.

Proof. Again denote A := ∇2
xxf(x,y), B := ∇2

yyf(x,y) and C := ∇2
xyf(x,y). Since (x,y) is a stationary point,

and B ≺ 0, it is clear that y is the local maximum of f(x, ·). On the other hand, pick δ†y = B−1C>δx and letting
h(δ) = ‖B−1C>‖δ, we know that when ‖δx‖ ≤ δ, we have ‖δ†y‖ ≤ h(δ), thus

max
‖δy‖≤h(δ)

f(x + δx,y + δy)− f(x,y) ≥f(x + δx,y + δ†y)− f(x,y)

=
1

2
δ>x (A−CB−1C>)δx + o(‖δx‖2) > 0,

which finishes the proof.
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Proposition 21. The global minimax point can be neither local minimax nor a stationary point.

Proof. Consider the function f(x, y) = 0.2xy− cos(y) in the region [−1, 1]× [−2π, 2π] as shown in Figure 2. Clearly, the
gradient is equal to (0.2y, 0.2x+sin(y)). And, for any fixed x, there are only two maxima y?(x) satisfying 0.2x+sin(y?) =
0 where y?1(x) ∈ (−3π/2,−π/2) and y?2(x) ∈ (π/2, 3π/2). On the other hand, f(x, y?1(x)) is monotonically decreasing
with respect to x, while f(x, y?2(x)) is monotonically increasing, with f(0, y?1(0)) = f(0, y?2(0)) by symmetry. It is not
hard to check y?1(0) = −π and y?2(0) = π. Therefore, (0,−π) and (0, π) are two global solutions of the minimax problem.
However, the gradients at both points are not 0, thus they are not stationary points. By Proposition 18 they are also not local
minimax points.

Lemma 22. There exists a twice-differentiable function f and a compact domain, where local minimax points do not exist.

Proof. Consider a two-dimensional function f(x, y) = y2 − 2xy on [−1, 1]× [−1, 1]. Suppose (x?, y?) is a local minimax
point, then at least y? is a local maximum of f(x?, ·), which restricts the possible local minimax points to be within the set
[−1, 1)× {1} or (−1, 1]× {−1}. It is easy to check that no point in either set is local minimax.

Theorem 23. Assume that f is twice differentiable, and for any fixed x, the function f(x, ·) is strongly concave in the
neighborhood of local maxima and satisfies the assumption that all local maxima are global maxima. Then the global
minimax point of f(·, ·) is also a local minimax point.

Proof. Denote A := ∇2
xxf(x,y), B := ∇2

yyf(x,y), C := ∇2
xyf(x,y), gx := ∇xf(x,y) and gy := ∇yf(x,y). Let

(x,y) be a global minimax point. Since y is the global argmax of f(x, ·) and locally strongly concave, we know gy = 0
and B ≺ 0. Let us now consider a second-order Taylor approximation of f around (x,y):

f(x + δx,y + δy) = f(x,y) + g>x δx +
1

2
δ>x Aδx + δ>x Cδy +

1

2
δ>y Bδy + o(‖δx‖2 + ‖δy‖2).

Since by hypothesis, B ≺ 0, we see that when ‖δx‖ is sufficiently small, there is a unique δ?y(δx) so that y + δ?y(δx) is a
local maximum of f(x+ δx, ·), where δ?y(δx) = −B−1C>δx + o(‖δx‖). It is clear that ‖δ?y(δx)‖ ≤ (‖B−1C>‖+ 1)‖δx‖
for sufficiently small ‖δx‖. Let h(δ) = (‖B−1C>‖+ 1)δ, we know for small enough δ:

f(x + δx,y + δ?y(δx)) = max
‖δy‖≤h(δ)

f(x + δx,y + δy).

Finally, since by assumption for any f(x, ·) all local maxima are global maxima and x is the global min of maxy f(x,y),
we know:

f(x,y) ≤ max
y′

f(x + δx,y
′) = f(x + δx,y + δ?y(δx)) = max

‖δy‖≤h(δ)
f(x + δx,y + δy),

which finishes the proof.

E. Proofs for Section 3.3
In this section, we provides proofs for propositions and theorems presented in Section 3.3.

Proposition 25. Point (x,y) is a strict linearly stable point of γ-GDA if and only if for all the eigenvalues {λi} of following
Jacobian matrix,

Jγ =

(
−(1/γ)∇2

xxf(x,y) −(1/γ)∇2
xyf(x,y)

∇2
yxf(x,y) ∇2

yyf(x,y),

)
their real part Re(λi) < 0 for any i.

Proof. Consider GDA dynamics with step size η, then the Jacobian matrix of this dynamic system is I + ηJγ whose
eigenvalues are {1 + ηλi}. Therefore, (x,y) is a strict linearly stable point if and only if ρ(I + ηJγ) < 1, that is
|1 + ηλi| < 1 for all i. When taking η → 0, this is equivalent to Re(λi) < 0 for all i.

Proposition 26 ((Daskalakis and Panageas, 2018)). For any fixed γ, for any twice-differentiable f , Local _Nash ⊂ γ−GDA ,
but there exist twice-differentiable f such that γ−GDA 6⊂ Local _Nash .
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Proof. Daskalakis and Panageas (2018) showed the proposition holds for 1-GDA. For completeness, here we show how
similar proof goes through for γ-GDA for general γ. Let ε = 1/γ, and denote A := ∇2

xxf(x,y), B := ∇2
yyf(x,y) and

C := ∇2
xyf(x,y).

To prove the statement localNash ⊂ γ−GDA , we note by definition, (x,y) is a strict linear stable point of 1/ε-GDA if the
real part of the eigenvalues of Jacobian matrix

Jε :=

(
−εA −εC
C> B

)
satisfy that Re(λi) < 0 for all 1 ≤ i ≤ d1 + d2. We first note that:

J̃ε :=

(
B

√
εC>

−
√
εC −εA

)
= UJεU

−1, where U =

(
0
√
εI

I 0

)
Thus, the eigenvalues of J̃ε and Jε are the same. We can also decompose:

J̃ε = P + Q, where P :=

(
B
−εA

)
,Q :=

(
0

√
εC>

−
√
εC 0

)
If (x,y) is a strict local pure strategy Nash equilibrium, then A � 0,B ≺ 0, then P is a negative definite symmetric matrix,
and Q is anti-symmetric matrix, i.e. Q = −Q>. For any eigenvalue λ if J̃ε, assume w is the associated eigenvector. That
is, J̃εw = λw, also let w = x + iy where x and y are real vectors, and w̄ be the complex conjugate of vector w. Then:

Re(λ) =[w̄>J̃εw + w>J̃εw̄]/2 = [(x− iy)>J̃ε(x + iy) + (x + iy)>J̃ε(x− iy)]/2

=x>J̃εx + y>J̃εy = x>Px + y>Py + x>Qx + y>Qy

Since P is negative definite, that is x>Px + y>Py < 0. Meanwhile, since Q is antisymmtric x>Qx = x>Q>x = 0 and
y>Qy = y>Q>y = 0. This proves Re(λ) < 0, that is (x,y) is a strict linear stable point of 1/ε-GDA.

To prove the statement γ−GDA 6⊂ localNash , since ε is also fixed, we consider function f(x, y) = x2 + 2
√
εxy + (ε/2)y2.

It is easy to see (0, 0) is a fixed point of 1/ε-GDA, and Hessian A = 2, B = ε, C = 2
√
ε. Thus the Jacobian matrix

Jε :=

(
−2ε −2ε3/2

2ε1/2 ε

)
has two eigenvalues ε(−1± i

√
7)/2. Therefore, Re(λ1) = Re(λ2) < 0, which implies (0, 0) is a strict linear stable point.

However B = ε > 0, thus it is not a strict local pure strategy Nash equilibrium.

Proposition 27. For any fixed γ, there exists a twice-differentiable f such that Local _Minimax 6⊂ γ−GDA; there also exists
a twice-differentiable f such that γ−GDA 6⊂ Local _Minimax ∪ Local _Maximin .

Proof. Let ε = 1/γ, and denote A := ∇2
xxf(x,y), B := ∇2

yyf(x,y) and C := ∇2
xyf(x,y).

To prove the first statement localminimax 6⊂ γ−GDA , since ε is also fixed, we consider function f(x, y) = −x2 + 2
√
εxy −

(ε/2)y2. It is easy to see (0, 0) is a fixed point of 1/ε-GDA, and Hessian A = −2, B = −ε, C = 2
√
ε. It is easy to verify

that B < 0 and A − CB−1C = 2 > 0, thus (0, 0) is a local minimax point. However, inspect the Jacobian matrix of
1/ε-GDA:

Jε :=

(
2ε −2ε3/2

2ε1/2 −ε

)
We know the two eigenvalues are ε(1 ± i

√
7)/2. Therefore, Re(λ1) = Re(λ2) > 0, which implies (0, 0) is not a strict

linear stable point.

To prove the second statement γ−GDA 6⊂ localminimax ∪ localmaximin , since ε is also fixed, we consider function f(x,y) =
x21 + 2

√
εx1y1 + (ε/2)y21 − x22/2 + 2

√
εx2y2 − εy22 . It is easy to see (0,0) is a fixed point of 1/ε-GDA, and Hessian

A = diag(2,−1),B = diag(ε,−2ε),C = 2
√
ε · diag(1, 1). Thus the Jacobian matrix

Jε :=


−2ε 0 −2ε3/2 0

0 ε 0 −2ε3/2

2ε1/2 0 ε 0
0 2ε1/2 0 −2ε


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has four eigenvalues ε(−1± i
√

7)/2 (each with multiplicity of 2). Therefore, Re(λi) < 0 for 1 ≤ i ≤ 4, which implies
(0,0) is a strict linear stable point. However, B is not negative definite, thus (0,0) is not a strict local minimax point;
similarly, A is also not positive definite, thus (0,0) is not a strict local maximin point.

Theorem 28 (Asymptotic Behavior of ∞-GDA). For any twice-differentiable f , Local _Minimax ⊂ ∞−GDA ⊂
∞−GDA ⊂ Local _Minimax ∪ {(x,y)|(x,y) is stationary and∇2

yyf(x,y) is degenerate}.

Proof. For simplicity, denote A := ∇2
xxf(x,y), B := ∇2

yyf(x,y) and C := ∇2
xyf(x,y). Let ε = 1/γ. Consider

sufficiently small ε (i.e. sufficiently large γ), we know the Jacobian J of 1/ε-GDA at (x,y) is:

Jε :=

(
−εA −εC
C> B

)
According to Lemma 40, for sufficient ε, Jε has d1 + d2 complex eigenvalues {λi}d1+d2i=1 with following form for sufficient
small ε:

|λi + εµi| = o(ε) 1 ≤ i ≤ d1
|λi+d1 − νi| = o(1), 1 ≤ i ≤ d2 (7)

where {µi}d1i=1 and {νi}d2i=1 are the eigenvalues of matrices A−CB−1C> and B respectively. Now we are ready to prove
the three inclusion statement in Theorem 28 seperately.

First, for∞−GDA ⊂ ∞−GDA always holds by their definitions.

Second, for Local _Minimax ⊂ ∞−GDA statement, if (x,y) is strict local minimax point, then by its definition:

B ≺ 0, and A−CB−1C> � 0

By Eq.(7) the eigenvalue structure of Jε, we know there exists sufficiently small ε0, so that for any ε < ε0, the real part
Re(λi) < 0, i.e. (x,y) is a strict linear stable point of 1/ε−GDA.

Finally, for∞−GDA ⊂ Local _Minimax ∪ {(x,y)|(x,y) is stationary and B is degenerate} statement, if (x,y) is strict
linear stable point of 1/ε−GDA for a sufficiently small ε, then for any i, the real part of eigenvalue of Jε: Re(λi) < 0. By
Eq.(7), if B is invertible, this implies:

B ≺ 0, and A−CB−1C> � 0

Finally, suppose matrix A − CB−1C> has an eigenvalue 0. This means the existence of unit vector w so that (A −
CB−1C>)w = 0. It is not hard to verify then Jε · (w,−B−1C>w)> = 0. This implies Jε has a 0 eigen-value, which
contradicts the fact that Re(λi) < 0 for any i. Therefore, we can conclude A−CB−1C> � 0, and (x,y) is a strict local
minimax point.

Lemma 40. For any symmetric matrix A ∈ Rd1×d1 , B ∈ Rd2×d2 , and any rectangular matrix C ∈ Rd1×d2 , assume B is
nondegenerate. Then, matrix (

−εA −εC
C> B

)
has d1 + d2 complex eigenvalues {λi}d1+d2i=1 with following form for sufficient small ε:

|λi + εµi| = o(ε) 1 ≤ i ≤ d1
|λi+d1 − νi| = o(1), 1 ≤ i ≤ d2

where {µi}d1i=1 and {νi}d2i=1 are the eigenvalues of matrices A−CB−1C> and B respectively.

Proof. By definition of eigenvalues, {λi}d1+d2i=1 are the roots of characteristic polynomial:

pε(λ) := det

(
λI + εA εC
−C> λI−B

)
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We can expand this polynomial as:

pε(λ) = p0(λ) +

d1+d2∑
i=1

εipi(λ), p0(λ) = λd1 · det(λI−B).

Here, pi are polynomials of order at most d1 + d2. It is clear that the roots of p0 are 0 (with multiplicity d1) and {νi}d2i=1.
According to Lemma 41, we know the roots of pε satisfy:

|λi| = o(1) 1 ≤ i ≤ d1 (8)
|λi+d1 − νi| = o(1), 1 ≤ i ≤ d2

Since B is non-degenerate, we know when ε is small enough, λ1 . . . λd1 are very close to 0 while λd1+1 . . . λd1+d2 have
modulus at least Ω(1). To provide the sign information of the first d1 roots, we proceed to lower order characterization.

On the other hand, reparametrize λ = εθ, we have:

pε(εθ) = det

(
εθI + εA εC
−C> εθI−B

)
= εd1det

(
θI + A C
−C> εθI−B

)
Therefore, we know qε(θ) := pε(εθ)/ε

d1 is still a polynomial, and has polynomial expansion:

qε(θ) = q0(θ) +

d2∑
i=1

εiqi(λ), q0(θ) = det

(
θI + A C
−C> −B

)
It is also clear polynomial qε and pε have same roots up to ε scaling. Furthermore, we have following factorization:(

θI + A C
−C> −B

)
=

(
θI + A−CB−1C> C

0 −B

)(
I 0

B−1C> I

)
Since B is non-degenerate, we have det(B) 6= 0, and

q0(θ) = (−1)d2det(B)det(θI + A−CB−1C>)

q0 is d1-order polynomial having roots {µi}d1i=1, which are the eigenvalues of matrices A − CB−1C>. According to
Lemma 41, we know qε has at least d1 roots so that |θi + µi| ≤ o(1). This implies d1 roots of pε so that:

|λi + εµi| = o(ε) 1 ≤ i ≤ d1

By Eq.(8), we know pε has exactly d1 roots which are of o(1) scaling. This finishes the proof.

Lemma 41 (Continuity of roots of polynomials (Zedek, 1965)). Given a polynomial pn(z) :=
∑n
k=0 akz

k, an 6= 0,
an integer m ≥ n and a number ε > 0, there exists a number δ > 0 such that whenever the m + 1 complex numbers
bk, 0 ≤ k ≤ m, satisfy the inequlities

|bk − ak| < δ for 0 ≤ k ≤ n, and |bk| < δ for n+ 1 ≤ k ≤ m

then the roots βk, 1 ≤ k ≤ m of the polynomial qm(z) :=
∑m
k=0 bkz

k can be labeled in such a way as to satisfy with
respect to the zeros αk, 1 ≤ k ≤ n of pn(z) the inequalities

|βk − αk| < ε for 1 ≤ k ≤ n, and |βk| > 1/ε for n+ 1 ≤ k ≤ m

F. Proof for Theorem 31
Theorem 31. Suppose f is `-smooth and L-Lipschitz and define φ(·) := maxy f(·,y). Then the output x̄ of GD with
Max-oracle (Algorithm 2) with step size η = γ/

√
T + 1 will satisfy

E
[
‖∇φ1/2`(x̄)‖2

]
≤ 2 ·

(
φ1/2`(x0)−minφ(x)

)
+ `L2γ2

γ
√
T + 1

+ 4`ε,

where φ1/2` is the Moreau envelope (6) of φ.
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Proof of Theorem 31. The proof of this theorem mostly follows the proof of Theorem 2.1 from (Davis and Drusvyatskiy,
2018). The only difference is that yt in Algorithm 2 is only an approximate maximizer and not exact maximizer. However,
the proof goes through fairly easily with an additional error term.

We first note an important equation for the gradient of Moreau envelope.

∇φλ(x) = λ−1
(
x− argmin

x̃

(
φ(x̃) +

1

2λ
‖x− x̃‖2

))
. (9)

We also observe that since f(·) is `-smooth and yt is an approximate maximizer for xt, we have that any xt from Algorithm 2
and x̃ satisfy

φ(x̃) ≥ f(x̃,yt) ≥ f(xt,yt) + 〈∇xf(xt,yt), x̃− xt〉 −
`

2
‖x̃− xt‖2

≥ φ(xt)− ε+ 〈∇xf(xt,yt), x̃− xt〉 −
`

2
‖x̃− xt‖2. (10)

Let x̂t := argminx φ(x) + `‖x− xt‖2. We have:

φ1/2` (xt+1) ≤ φ(x̂t) + `‖xt+1 − x̂t‖2

≤ φ(x̂t) + `‖xt − η∇xf(xt,yt)− x̂t‖2

≤ φ(x̂t) + `‖xt − x̂t‖2 + 2`η〈∇xf(xt,yt), x̂t − xt〉+ η2`‖∇xf(xt,yt)‖2

≤ φ1/2`(xt) + 2η`〈∇xf(xt,yt), x̂t − xt〉+ η2`‖∇xf(xt,yt)‖2

≤ φ1/2`(xt) + 2η`

(
φ(x̂t)− φ(xt) + ε+

`

2
‖xt − x̂t‖2

)
+ η2`L2,

where the last line follows from (10). Taking a telescopic sum over t, we obtain

φ1/2`(xT ) ≤ φ1/2`(x0) + 2η`

T∑
t=0

(
φ(x̂t)− φ(xt) + ε+

`

2
‖xt − x̂t‖2

)
+ η2`L2T

Rearranging this, we obtain

1

T + 1

T∑
t=0

(
φ(xt)− φ(x̂t)−

`

2
‖xt − x̂t‖2

)
≤ ε+

φ1/2`(x0)−minx φ(x)

2η`T
+
ηL2

2
. (11)

Since φ(x) + `‖x− xt‖2 is `-strongly convex, we have

φ(xt)− φ(x̂t)−
`

2
‖xt − x̂t‖2

≥ φ(xt) + `‖xt − xt‖2 − φ(x̂t)− `‖x̂t − xt‖2 +
`

2
‖xt − x̂t‖2

=
(
φ(xt) + `‖xt − xt‖2 −min

x
φ(x) + `‖x− xt‖2

)
+
`

2
‖xt − x̂t‖2

≥ `‖xt − x̂t‖2 =
1

4`
‖∇φ1/2`(xt)‖2,

where we used (9) in the last step. Plugging this in (11) proves the result.


