
Computational-Statistical Tradeoffs in Inferring Combinatorial Structures of Ising Model

Appendix

A. Proof of Theorem 3.1: Computational Lower Bound

For fixed parameter ✓ > 0 and a given graph G = (V,E), we denote the vector encoding G as ✓ = (✓e) 2 Rd with ✓e = ✓

for e 2 E(G) and ✓e = 0 otherwise. For an edge set S, we denote its encoding vector similarly as ✓S . Moreover, we use P0

and E0 to denote the probability measure and expectation of ferromagnetic Ising model with no edges, and PS , ES to denote
the probability measure and expectation with encoding vector ✓S .

For statistical query oracle, for any S 2 E and any q 2 QA , when |ES [q(X)] � E0[q(X)]| is larger than the statstical
deviation of the oracle, it would be possible to tell ✓S from ✓0. Based on this intuition, we define

C(q) =
�
S 2 E : |ES [q(X)]� E0[q(X)]| � ⌧q,S

 
,

where ⌧q,S is defined in (3) with expectations taken under PS . The following lemma from (Fan et al., 2018) states that when
T · supq2QA

|C(q)| < |E|, there would be an oracle that none of the T rounds can distirbutish PS from P0.

Lemma A.1. For any algorithm A that queries the oracle r for at most T rounds, if T · supq2QA
|C(q)| < |E|, then there

exists a statistical oracle r defined in definition 2.1 s.t.

lim inf
n!1

Rn({✓0}, {✓S}S2E ,A ,O, T ) � 1.

By the above lemma, it suffices to show that T · supq2QA
|C(q)|/|E| is asyptotically smaller than 1. To bound the term

|C(q)|, we split it to the following two sets

C+(q) =
�
S 2 E : ES [q(X)]� E0[q(X)] > ⌧q,S

 
,

C�(q) =
�
S 2 E : ES [q(X)]� E0[q(X)] < �⌧q,S

 
.

Then we have an upper bound for supq2QA
|C+(q)|, which is also presented in (Fan et al., 2018):

Lemma A.2. For any query function q, we have

1

|C+(q)|2
X

S,S02C+(q)

E0


dPS

dP0

dPS0

dP0
(X)

�
> 1 +

2 log(T/⇠)

3n
.

Therefore it remains to upper bound the likelihood ratio E0

h
dPS
dP0

dPS0
dP0

(X)
i
, for which we have the following lemma.

Lemma A.3. For edge sets S and S
0

with |V (S)|, |V (S0)|  s, if the parameter ✓ � 0 satisfies ✓ < 1/(4s), we have an

upper bound for the likelihood ratio

E0


dPS

dP0

dPS0

dP0
(X)

�
 exp

�
3|VS,S0 |2✓2

�
,

where PS , PS0 is the corresponding simple zero-field Ising probability measure with parameter ✓ for S and S
0
.

Proof of Lemma A.3. Recall that V (S) denotes the vertex set of edge set S. In problems that interest us, we assume
G0 = {(V,?}, and |V (S)| = s for all s 2 E . Let Z0, ZS(✓) and ZS0(✓) denote the partition function for P0, PS and PS0 ,
respectively. Therefore the likelihood ratio is

E0


dPS

dP0

dP0
S

dP0
(X)

�
=

Z
2
0

ZSZS0
E0 exp

✓ X

(u,v)2S

✓uvxuxv +
X

(s,t)2S0

✓stxsxt

◆

=
Z

2
0

ZSZS0
E0 exp

✓ X

(u,v)2S\S0

2✓uvxuxv +
X

(s,t)2S4S0

✓stxsxt

◆
.
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For simplicity, we reparametrize as µuv with µuv = 2✓uv if (u, v) 2 S \ S
0 and µuv = ✓uv otherwise. Therefore by

definition of ZS and ZS0 ,

E0


dPS

dP0

dP0
S

dP0
(X)

�
=

Z
2
0

ZSZS0
E0 exp

⇣ X

(u,v)2S[S0

�uvxuxv

⌘

=
E0 exp

�P
(u,v)2S[S0 �uvxuxv

�

E0 exp
�P

(u,v)2S ✓uvxuxv

�
E0 exp

�P
(u,v)2S0 ✓uvxuxv

� .

We first look at the term E0

⇥
exp

�P
(u,v)2S ✓uvxuxv

�⇤
for general e✓ and S. Using Taylor expansion of exponential

function we know

E0


exp

⇣ X

(u,v)2S

✓uvxuxv

⌘�
= 1 + E0

 1X

k=1

1

k!

⇣ X

(u,v)2S

✓uvxuxv

⌘k
�
.

Here the crossterms are

1

k!

⇣ X

(u,v)2S

✓uvxuxv

⌘k
=

1

k!

X

P|E(S)|
i=1 ki=k

✓
k1
u1v1 · · · ✓

k|E(S)|
usvs x

n1
1 · · ·xns

s · k!
Q|E(S)|

i=1 ki!

=
X

P|E(S)|
i=1 ki=k

✓
k1
e1

k1!
· · ·

✓
k|E(S)|
e|E(S)|

(k|E(S)|)!
x
n1
1 · · ·xns

s ,

where nu =
P

v,ej=(u,v)2E(S) kj is the total times that xu appears in the correlation terms xuxv .

Note that under P0, all vertices xi are independent of each other and have expectation zero. Therefore E0[x
n1
1 · · ·xns

s ] = 1
if all ni’s are even, and E0[x

n1
1 · · ·xns

s ] = 0 otherwise. Let vector k = (k1, . . . , k|E(S)|) denote the vector of powers for
each ✓uv in term ✓

k1
u1v1 · · · ✓

k|E(S)|
usvs , in a given order. Define K to be the set of vectors

K =

⇢
(k1, . . . , k|E(S)|)

���
X

v:ej=(u,v)2E(S)

kj is even for all u 2 V (S)

�
,

which correspond to terms with nonzero expectations. Therefore

E0

"
exp

✓ X

(u,v)2S

✓uvxuxv

◆#
=
X

k2K

✓
k1
e1

k1!
· · ·

✓
k|E(S)|
e|E(S)|

k|E(S)|!
.

Each term of the form ✓
k1
u1v1 · · · ✓

k|E(S)|
usvs corresponds to a graph where there could be multiple edges between any pair of

vertices. Note that the graph with no edges also belong to this set. For k 2 K, it corresponds to a graph where each node has
even degree.

For clarity we define some notations. We call a graph where there are multiple edges between pairs of vertices as a general

praph, and denote the set of general graphs over edge set S as GS . We call a graph where there is at most one edge between
each pair of nodes as simple graph, and denote the set of simple graphs over edge set S as SS .

We reduce a general graph eG to a simple graph G by canceling the edge (u, v) if it appears for even times and preserve
it otherwise. Therefore we have a mapping f : GS 7! SS . Given eG 2 GS , f( eG) 2 SS is called its simple version. Vice
versa, eG is the general version of f( eG). Clearly, for a general graph, its simple version is deterministic but a simple graph
have infinitely many general versions. Also note that if v 2 E(GS) has even degree, after the mapping f , it still has even
degree, and likewise for those vertices with odd degree. For a graph G 2 GS , we denote its preimage as f�1(G), which is
an infinite set. The vector k, after the mapping, is in fact modulus 2 for each element.

Now return to our analysis. Each k 2 K corresponds to a general graph, where we do not distinguish k from the general
graph, and since f does not change the parity of vertex degree, after the mapping the corresponding k still belongs to K. For
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brevity we define the subset of SS that each vertex has even degree to be DS , then

E0

"
exp

✓ X

(u,v)2S

✓uvxuxv

◆#
=
X

k2K

✓
k1
e1

k1!
· · ·

✓
k|E(S)|
e|E(S)|

k|E(S)|!
=

X

G2DS

X

k2GS ,f(k)=G

✓
k1
e1

k1!
· · ·

✓
k|E(S)|
e|E(S)|

k|E(S)|!
.

For each G 2 DS , all its general versions k 2 GS can be obtained by adding even amounts of edges between each pair of
nodes. Therefore

E0

"
exp

✓ X

(u,v)2S

✓uvxuxv

◆#
=

X

G2DS

Y

ej2E(G)

✓ 1X

lj=0

✓
2lj+1
ej

(2lj + 1)!

◆ Y

ej2S\E(G)

✓ 1X

lj=0

✓
2lj
ej

(2lj)!

◆
,

which, by Taylor expansion can be written as

E0

"
exp

✓ X

(u,v)2S

✓uvxuxv

◆#
=

X

G2DS

✓ Y

(u,v)2E(G)

sinh(✓uv)
Y

(u,v)2S\E(G)

cosh(✓uv)

◆

=

✓ Y

(u,v)2E(S)

cosh(✓uv)

◆✓ X

G2DS

Y

(u,v)2E(G)

tanh(✓uv)

◆
.

Plugging the above result into the likelihood we get

E0


dPS

dP0

dP0
S

dP0
(X)

�
=

Q
(u,v)2S[S0 cosh(�uv)⇣Q

(u,v)2S cosh(✓uv)
⌘⇣Q

(u,v)2S0 cosh(✓uv)
⌘ (17)

⇥
P

G2DS[S0

Q
(u,v)2G tanh(�uv)⇣P

G2DS

Q
(u,v)2E(G) tanh(✓uv)

⌘⇣P
G2DS0

Q
(u,v)2E(G) tanh(✓uv)

⌘ . (18)

In our setting where ✓uv = ✓ � 0, Equation (17) is actually
Q

(u,v)2S[S0 cosh(�uv)⇣Q
(u,v)2S cosh(✓uv)

⌘⇣Q
(u,v)2S0 cosh(✓uv)

⌘ =
Y

(u,v)2S\S0

cosh(2✓uv)

cosh(✓uv)2
=

✓
2
�
e
2✓ + e

�2✓
�

e2✓ + e�2✓ + 2

◆|S\S0|
.

And since e
2✓ + e

�2✓ = 2 + 4✓2 +O(✓4), we have

2
�
e
2✓ + e

�2✓
�

e2✓ + e�2✓ + 2
=

4 + 8✓2 +O(✓4)

4 + 4✓2 +O(✓4)
 1 + 2✓2  exp(2✓2).

Therefore
Q

(u,v)2S[S0 cosh(�uv)⇣Q
(u,v)2S cosh(✓uv)

⌘⇣Q
(u,v)2S0 cosh(✓uv)

⌘  exp
�
2|S \ S

0|✓2
�
 exp

�
|VS,S0 |2✓2

�
. (19)

It remains to bound the second term in Equation (18). We obtain an upper bound by deleting edges in S [S
0 and then bound

the remaining term for the case S [ S
0 = ?. Before dealing with Equation (18), we first consider the general case

W(S) :=
X

G2DS

Y

(u,v)2G

tanh(�uv) =
X

G2DS

W (G), (20)

where for a simple graph G with edge parameter (�uv) we define its weight as W (G) =
Q

(u,v)2E(G) tanh(�uv). For
brevity, denote tuv := tanh(�uv).

We are interested in how Equation (20) would change if we delete (or inversely add) an edge in S. Suppose we add an edge
(u, v) into S where u, v 2 V (S). Denote eS = S [ {(u, v)}. Then

W(eS) = W(S) +
X

G2D eS\DS

W (G) = W(S) +
X

G2D eS ,(u,v)2E(G)

W (G).
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Thus it remains to upper bound the new components: the sum of weights of those simple graphs containing the edge (u, v).
To properly categorize the simple graphs in DeS\DS , note that for any simple graph G with even vertex degrees, it can be
separated into the union of several cycles. The separation may be not unique, but for all eG 2 DeS with (u, v) 2 eG, the edge
(u, v) must be contained in some cycle C of length l + 2, l � 1. The cycle can be represented by a sequence of vertices
C = (u, v, u1, . . . , ul) with no repetition. If we cancel all edges in cycle C from G, we would end up with a graph G 2 DS ,
since the edge (u, v) is deleted, and the degree of all vertices are still even. We further look at the cycle C. In fact, it consists
of edge (u, v) and a path P = {(u, v), (v, u1), . . . , (ul�1, ul), (ul, u)} connecting u and v, where all edges in P belongs to
S. We denote the set of all paths connecting u and v in S as Puv(S), and denote W (P ) =

Q
e2P te. In this way, we obtain

a map
m : D(eS)\D(S) ! D(S)⇥ Puv(S) : eG 7! (G,P ),

where G is obtained from eG by deleting a cycle C = (u, v) [ P . The cycle to be deleted may be not unique, but we can fix
it for each eG 2 D(eS)\D(S) beforehand. In this way, for each eG 2 D(eS)\D(S), we have

W ( eG) =W (G) ·
Y

e2E(C)

te = tuv ·W (G) ·
Y

e2P

te = tuv ·W (G)W (P ),

where C is the canceled cycle and m( eG) 2 DS . Moreover, the map m is injective, since when given G 2 D(eS)\D(S) and
C 2 Puv(S), the preimage e(G) is obviously determined. Since all parameters for the edges are nonnegative,

X

eG2D eS ,(u,v)2E( eG)

W ( eG) =tuv ·
X

eG2D eS ,(u,v)2E( eG)

W (m1(G)) ·W (m2(G))

tuv ·
⇣ X

G2DS

W (G)
⌘⇣ X

P2Puv(S)

W (P )
⌘

=tuv · W(S) ·
⇣ X

P2Puv(S)

W (P )
⌘
.

Hence
W(eS)  W(S)

⇣
1 + tuv

X

P2Puv(S)

W (P )
⌘
. (21)

We proceed to bound the summation in Equation (21). Note that (u, v) /2 S, so the length of any path in Puv(S) is at least 2.
Suppose 0  tuv  t for some fixed t and any (u, v) 2 S, then

X

P2Puv(S)

W (P ) =
1X

l=2

X

P2Puv(S),|P |=l

W (P ) 
1X

l=2

X

P2Puv(S),|P |=l

t
l =

1X

l=2

Nuv(S, l) · tl.

Here Nuv(S, l) = |{P 2 Puv(S) : P is of length l}| the number of paths connecting u and v in S with length l.

We upper bound Equation (21) by comparing the sequence Nuv(S, l) to a geometric sequence. Suppose there exists some
↵uv(S), �uv(S) such that t · �uv(S) < c for some c < 1, then

Nuv(S, l)  ↵uv(S) · �uv(S)l

for all l � 2, then we have

W(eS) W(S)
⇣
1 + tuv

X

P2Puv(S)

W (P )
⌘
 W(S)

⇣
1 +

↵uv(S)�uv(S)2t3

1� �uv(S)t

⌘
.

We could choose ↵uv(S) and �uv(S) to be a uniform value over all S. Specifically, a path in S of length l consist of
consecutive edges connecting u, v and (l � 1) other distinct vertices in V (S). Therefore we have Nuv(S, l)  |V (S)|l�1.
Therefore we could fix ↵uv(S) = 1/|V (S)| and �uv(S) = |V (S)|. Hence if t · |V (S)| < c1 < 1, we will have

W(eS)  W(S)
⇣
1 +

↵uv(S)�uv(S)2t3

1� �uv(S)t

⌘
 W(S)

⇣
1 +

|V (S)|t3
1� |V (S)|t

⌘
 W(S)

�
1 + ct

2
�
, (22)
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where c > 0 is a constant.

Based on Equation (22), we could upper bound Equation (18) as follows. At each time, we delete an edge e = (u, v) with
u, v 2 VS,S0 , then if for all u, v 2 V (S) \ V (S0), tanh(�uv)  t and t · |S [ S

0|  c1 for some 0 < c1 < 1, we have
X

G2DS[S0

Y

(u,v)2G

tanh(�uv) = W(S [ S
0)  W(S 4 S

0) · (1 + ct
2)|S\S0|

,

for some constant c > 0. Here S 4 S
0 denotes the set obtained from S [ S

0 by deleting all aforementioned edges. In this
way, S 4 S

0 contains no edge with vertices all in VS,S0 .

It is obvious that the number of such edges (u, v) with u, v 2 VS,S0 is less than |VS,S0 |2/2, therefore
X

G2DS[S0

Y

(u,v)2G

tanh(�uv)  W(S 4 S
0) exp(c|VS,S0 |2t2).

For brevity we denote eS := S\S0 and eS0 := S
0\S. Since deleting an edge reduces the summation of the weights of all its

simple graph with even node degrees, we have
P

G2DS[S0

Q
(u,v)2G tanh(�uv)⇣P

G2DS

Q
(u,v)2E(G) tanh(✓uv)

⌘⇣P
G2DS0

Q
(u,v)2E(G) tanh(✓uv)

⌘

 W(eS 4 eS0)

W(eS) · W(eS0)
· exp(c|VS,S0 |2t2) = W(eS [ eS0)

W(eS) · W(eS0)
· exp(c|VS,S0 |2t2). (23)

In our case, we can choose t = tanh(2✓)  2✓ for 0  ✓  1/(4s). Then we could set c1 = 1/2 and c = 1. Thus it
remains to bound the term W(eS[eS0)

W(eS)·W(eS0)
for disjoint eS and eS0. We consider the general case for S \ S

0 = ?.

For future use, for edge sets S, S0 with S \ S
0 = ? and {(u, v) 2 S [ S

0|u, v 2 V (S) \ V (S0)} = ?, we denote
D(S, S0) = D(S [ S

0) and the set

F(S, S0) :=
�
G 2 D(S, S0) |G contains no cycle C ⇢ S or C ⇢ S

0 
,

with ? 2 F(S, S0) and
H(S, S0) :=

n
G =

[

j

Cj |Cj are cycles, Cj ⇢ S or Cj ⇢ S
0
o
,

with ? 2 H(S, S0). This means that for all possible loops in G 2 F(S, S0) (since the way we separate loops in G may be
not unique), they can not consist merely of edges in S or S0. And for G 2 H(S, S0), G can be decomposed into the union of
cycles in S or in S

0, i.e. for any G 2 H(S, S0), it can be decomposed as G = G1 [G2 where G1 2 D(S) and G2 2 DS0 .
It corresponds to a mapping

m
0 : H(S, S0) ! D(S)⇥D(S0). (24)

Clearly m
0 is bijection. Also, recall that for any simple graph G with even vertex degrees, it can be decomposed into the

union of several cycles C1, . . . , Cr with no overlapping edges in a certain way. For G 2 D(S [ S
0), we decompose it into

as many loops in H(S, S0) as possible. Therefore G = G1 [ G2 where G1 \ G2 = ?, meanwhile G1 2 F(S, S0) and
G2 2 H(S, S0). In this way we obtain a mapping

m
00 : D(S, S0) ! F(S, S0)⇥H(S, S0) (25)

if we prefix the way we decompose a certain G. It is obvious that m00 is injective.

Since S \ S
0 = ?, we have �uv = ✓uv for all (u, v) 2 S [ S

0. Therefore for brevity we denote

R(S, S0) :=
W(S 4 S

0)

W(S) · W(S0)
=

P
G2D(S,S0) W (G)

⇣P
G2D(S) W (G)

⌘⇣P
G2D(S0) W (G)

⌘

=

P
G=G1tG22D(S,S0),

G12F(S,S0),G22H(S,S0)

W (G1)W (G2)

⇣P
G2D(S) W (G)

⌘⇣P
G2D(S0) W (G)

⌘ ,
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where t denotes nonoverlapping union. Clearly the sum over the weights W (G1)W (G2) where G = G1 tG2 2 D(S, S0)
with G1 2 F(S, S0), G2 2 H(S, S0) is bounded by the sum of W (G1)W (G2) of all pairs G1 2 F(S, S0), G2 2 H(S, S0).
Therefore

R(S, S0) 

⇣P
G12F(S,S0) W (G1)

⌘⇣P
G22H(S,S0) W (G2)

⌘

⇣P
G2D(S) W (G)

⌘⇣P
G2D(S0) W (G)

⌘

=

⇣P
G12F(S,S0) W (G1)

⌘⇣P
G22H(S,S0) W (m0(G2)1)W (m0(G2)2)

⌘

⇣P
G2D(S) W (G)

⌘⇣P
G2D(S0) W (G)

⌘ .

Here the second term in the numerator, the summation of the products of the weights of two graphs m0(G2)1 and m
0(G2)2

can be bounded by the product of the summations of all such graph weights, i.e.

R(S, S0) 

⇣P
G12F(S,S0) W (G1)

⌘⇣P
G2D(S) W (G))

⌘⇣P
G2D(S0) W (G))

⌘

⇣P
G2D(S) W (G)

⌘⇣P
G2D(S0) W (G)

⌘ =
X

G2F(S,S0)

W (G). (26)

Note that in this way, G0 = ? 2 F(S, S0) with W (G0) = 1. So it remains to bound Equation (26).

Before dealing with Equation (26), we first look at some properties of elements in F(S, S0). For clarity, we call a cycle
C with C \ S 6= ? and C \ S

0 6= ? a mixed loop, and denote the set of all such cycle as M(S, S0). Note that for
M 2 M(S, S0), we can separate it into several paths in either S or S0, with the endpoints of each path belonging to VS,S0 .
It means

M =
�
[jP

S
j

�
[
�
[j P

S0

j

�
,

where P
S
j 2 Puv(S) and P

S0

j 2 Puv(S0) with u, v 2 VS,S0 . Since there are no edges (u, v) such that u, v 2 VS,S0 , all PS
j

and P
S0

j are of length l � 2. We pick out the endpoints of these paths sequentially as {u1, . . . , ur} ⇢ VS,S0 , where the path
connecting u1 and u2 belongs to S.

Each mixed cycle M can be cut into two paths connecting u1 and u2 with length � 2. Therefore, for each graph
F =

S
Mj 2 F(S, S0) with cycles Mj’s having no overlapping edges, each mixed cycle Mj can be cut into two paths in

the aforementioned way. On the other side, given u, v 2 VS,S0 , for any F 2 F(S, S0), there can be at most one mixed cycle
in F that is cut off at u, v, since otherwise there would be two non-overlapping paths in S that connects u and v that forms a
cycle in S. This contradicts with the fact that there is no cycle contained entirely in S. Therefore

X

F2F(S,S0)

W (F ) =
X

F2F(S,S0)

Y

F=tMj

W (Mj)

=
X

F2F(S,S0)

⇣ Y

F=tMj

Mj=Pj1[Pj2

W (Pj1)W (Pj2)
⌘
, (27)

where the weight of each mixed cycle Mj is decomposed as the product of the weights of two sub-paths, where Pj1, Pj2 2
Puv(S 4 S

0).

Similar to former arguments, the right-handed summation in Equation (27) of the products of two sub-paths can be bounded
by the product of summations of such sub-paths, i.e.

X

F2F(S,S0)

W (F ) 
Y

(u,v)2VS,S0⇥VS,S0


1 +

⇣ X

P12Puv(S4S0)

W (P1)
⌘
·
⇣ X

P22Puv(S4S0)

W (P2)
⌘�

,

where the upper bound is obtained by considering all graphs in F(S, S0) that contain a mixed cycle which cuts at u, v. And
the 1 in the product corresponds to the case when no mixed cycle cuts at u, v. Similar to previous statements, since paths
P1 2 Puv(S4 S

0) are of length at least 2 since there is no edge with both nodes in S \ S
0, if tij  t for all (i, j) 2 S4 S

0,
we have X

P12Puv(S4S0)

W (P1)  ↵uv(S 4 S
0)�uv(S 4 S

0)2t2. (28)
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Still in our case of eS4 eS0, we can choose parameters in Equation (28) to be �uv(S4S
0) = 2s � |S4S

0| and �uv = 1/(2s).
Therefore if 0 < t  1/(4s), we will have

X

F2F(S,S0)

W (F ) 
Y

(u,v)2VS,S0⇥VS,S0


1 +

⇣
↵uv(S 4 S

0) · �uv(S 4 S
0)t2

1� �uv(S 4 S0)t

⌘2
�

=


1 +

⇣2st2

1/2

⌘2
�|VS,S0 |2/2


⇥
1 + t

2
⇤|VS,S0 |2/2  exp

�
|VS,S0 |2t2

�
. (29)

Combining Equations (23), (26), (29), we have that if ✓  1/(4s), we have
P

G2DS[S0

Q
(u,v)2G tanh(�uv)⇣P

G2DS

Q
(u,v)2E(G) tanh(✓uv)

⌘⇣P
G2DS0

Q
(u,v)2E(G) tanh(✓uv)

⌘  exp
�
2|VS,S0 |2✓2

�
. (30)

Then combining Equations (19) and (30), we have that

E0


dPS

dP0

dP0
S

dP0
(X)

�
 exp

�
3|VS,S0 |2✓2

�
,

which completes the proof.

By Lemma A.3, since exp(x)  1 + 2x for x  1/2 and 3|VS,S0 |2✓2  3s2✓2 < 1/2, we have

E0


dPS

dP0

dP0
S

dP0
(X)

�
 exp

�
3|VS,S0 |2✓2

�
 1 + 6|VS,S0 |2✓2.

Then by Lemma A.2, we have

2 log(T/⇠)

3n
<

1

|C+(q)|2
X

S,S02C+(q)

6|VS,S0 |2✓2  sup
S2E

1

|C+(q)|
X

S02C+(q)

6|VS,S0 |2✓2. (31)

For j = 0, . . . , s and S 2 E , define mj = |{S0 2 E : |V(S, S0)| = s � j}|. Then we have
Ps

j=0 mj = |E| > |C+(q)|.
Then there exists integer l+(q) � 1 s.t.

l+(q)X

j=0

mj > |C+(q)| �
l+(q)�1X

j=0

mj . (32)

For clarity, we define

m
+ = |C+(q)|�

l+(q)�1X

j=0

mj .

Note that h(j) := 6(s � j)2✓2 is a decreasing function of j, and that the term
P

S02C+(q) 6|VS,S0 |2✓2 is the sum of
m1 + · · ·+ml+(q)�1 +m terms, which mj terms equal h(j). Therefore from Equation (31),

2 log(T/⇠)

3n
<

Pl+(q)�1
j=0 h(j) ·mj + h(l+(q)) ·m+

Pl+(q)�1
j=0 mj +m

+


Pl+(q)�1
j=0 h(j) ·mj
Pl+(q)�1

j=0 mj

.

By definition of the vertex overlap ratio ⇣, for i < j we have mi⇣
j �mj⇣

i
< 0 and h(i)� h(j) > 0. Therefore

X

1i<jl+(q)�1

(mi⇣
j �mj⇣

i)[h(i)� h(j)]  0. (33)
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Hence we have
Pl+(q)�1

j=0 h(j) ·mj
Pl+(q)�1

j=0 mj


Pl+(q)�1

j=0 h(j) · ⇣j
Pl+(q)�1

j=0 ⇣j


Pl+(q)�1
j=0 h(j) · ⇣�(s�j)

Pl+(q)�1
j=0 ⇣�(s�j)

. (34)

Note that ⇣ � c
1/2 for d large enough and some constant c < 1. Therefore for x = ⇣

�1  c
�1/2, we have

sX

i=s�l+1

i
2
x
i 

1X

i=1

(i+ 1)(i+ 2)xi  2c̄3(s� l + 3)2xs�l+1
, (35)

where c̄ =
p
c/(

p
c� 1). Combining Equations (33), (34), (35) we obtain

2 log(T/⇠)

3n
 12c̄3(s� l

+(q) + 3)2✓2.

Therefore for d large enough, we have

s� l
+(q) �

r
log(T/⇠)

18c̄3✓2n
� 3. (36)

On the other hand, by the definition of C+(q) in Equation (32),

sup
q2QA

|C+(q)| 
l+(q)X

j=0

mj  ms ·
l+(q)X

j=0

⇣
j�s  ⇣

�[s�l+(q)] · |E|
1� ⇣�1

 2c̄⇣�[s�l+(q)] · |E|. (37)

Combining Equations (36) and (37) we have

sup
q2QA

|C+(q)|  c̄ · |E| · exp

� log(⇣) ·

⇣r log(T/⇠)

18c̄3✓2n
� 3

⌘�
.

Similarly, for C�(q) we have

sup
q2QA

|C�(q)|  c̄ · |E| · exp

� log(⇣) ·

⇣r log(T/⇠)

18c̄3✓2n
� 3

⌘�
.

Therefore

T ·
supq2QA

|C(q)|
|E|  2c̄ · exp


log T �

⇣r log(T/⇠)

18c̄3✓2n
� 3

⌘
· log ⇣

�
.

Then for polynomial computational budget with T  d
⌘ for some fixed ⌘ > 0, we have

T ·
supq2QA

|C(q)|
|E|  exp


log(2c̄) + ⌘ log d�

⇣r log(T/⇠)

18c̄3✓2n
� 3

⌘
· log ⇣

�
.

Let  = [(⌘ + 1) _ 3]�1(18c̄3)�1/2. Under the condition that

✓  
log ⇣

log d+ log ⇣

r
log(1/⇠)

n
,

for d large enough, we have

log(2c̄) + ⌘ log d�
⇣r log(T/⇠)

18c̄3✓2n
� 3

⌘
· log ⇣  �1,

indicating that T · supq2QA
|C(q)|/|E| < 1. Then by Lemma A, there exists an oracle r s.t.

lim infn!1 Rn({✓0}, {✓S}S2E ,A ,O, T ) � 1, which completes the proof of the theorem.
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B. Proof of Computational Upper Bounds

In this section we prove the computational upper bounds for different property testing problems provided in Section 3.2.
They are all attained by the correlation query functions and test function in Equations (9) and (10).

B.1. Proof of Theorem 3.2: General Computational Upper Bound

In this section we prove the general computational upper bound provided in Theorem 3.2. The computational upper bound
for perfect matching in Corollay 3.4 is just an application of it. We also use the Bernstein-type bound the deviation of the
returned query functions qjk = bEXjXk.

Since by FKG inequality in (Alon & Spencer, 2004) or Griffiths second inequality in (Griffiths, 1967), pruning edges reduces
the correlation, for ✓ > 0 and all pairs (u, v) 2 E(G) with 1  u < v  d, the correlation is larger than that of a single
edge, i.e.

E[XuXv] �
e
✓ � e

�✓

e✓ + e�✓
= tanh(✓),

and the variance of correlation for all pairs (u, v) with 1  u < v  d,

Var(XuXv) = 1� (E[XuXv])
2  1.

Therefore by the concentration property of the oracle computational model, with probability at least 1� 2⇠,

max
1u<vd

|quv(X)� E[XuXv]|  max

⇢
2

3n
log

⇣
d(d� 1)

2⇠

⌘
,

s
2

n
log

⇣
d(d� 1)

2⇠

⌘�
, (38)

where the variance terms are substituted with an upper bound 1. Therefore under H0, since log(d)/n = o(1), with
probability at least 1� 2⇠,

max
1u<vd

quv(X) 

s
2

n
log

⇣
d(d� 1)

2⇠

⌘
.

Then according to the test given by Equation (10), we have

sup
✓2C0

P✓[ = 1]  2⇠.

On the other hand, under H1 with some S 2 C1, we know that with probability at least 1� 2⇠, for (j, k) 2 E(S), we have

qjk(X) �E[XjXk]� ⌧q(s, ✓) � tanh(✓)�

s
2

n
log

⇣
d(d� 1)

2⇠

⌘
�

s
2

n
log

⇣
d(d� 1)

2⇠

⌘
,

since for sufficiently small x, tanh(x) � x/2. Therefore

sup
✓2C1

P✓[ = 0]  2⇠, sup
✓2C0

P✓[ = 1] + sup
✓2C1

P✓[ = 0]  4⇠,

which completes the proof.

B.2. Proof of Theorem 3.3: Computational Upper Bound for Clique Detection

In this section we prove the computational upper bound for clique detection problem provided in Theorem 3.3. We first
define some notations. In s-clique detection problem, each S 2 C1 is a graph of s-clique, i.e. V (S) ⇢ [d], V (S) = s,
|S| = s(s�1)/2, which corresponds to parameter vector ✓S = (✓e) where ✓e = ✓ if e 2 S and ✓e = 0 otherwise. Therefore
the probability measure PS is the same for all S 2 C1 up to a permutation of vertices. We can define the expected correlation
as

E2(s, ✓) := PS [XjXk], (j, k) 2 S.

Therefore Var(qij(X)) = 1�E2(s, ✓)2 if (j, ) is an edge in an s-clique. Our proof for Theorem 3.3 depend on the following
lemmas.
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Lemma B.1. For S 2 C1 an s-clique, we have

E2(s, ✓) = 1� 4 ·
Ps

k=0 k(s� k)Ck
s e

�2k(s�k)✓

Ps
k=0 s(s� 1)Ck

s e
�2k(s�k)✓

. (39)

Proof. For s-clique S, without loss of generality we assume S = [s], then by symmetry

E2(s, ✓) =P[XjXk = 1]� P[XjXk = �1]

=1� 2P[XjXk = �1] = 1� 4P[Xj = 1, Xk = �1],

where

P[Xj = 1, Xk = �1] =

P
x2{±1}d,xj=1,xk=�1 exp

�
✓
P

(u,v)2S xuxv

�
P

x2{±1}d exp
�
✓
P

(u,v)2S xuxv

� . (40)

For the numerator in Equation (40), it consists of all terms such that xj = 1, xk = �1. We categorize them by the number
of vertices u 2 [s]\{j, k} that take value of 1. If there are m vertices other than j, k equals 1, the exponential term is

exp

⇢
✓

2

⇣
m(m� 1) + (s�m� 2)(s�m� 3)� 2

⌘�
.

Therefore

X

x2{±1}d,
xj=1,xk=�1

exp
⇣
✓

X

(u,v)2S

xuxv

⌘
=

s�2X

m=0

C
m
s�2 exp

⇢
✓

2

⇣
m(m� 1) + (s�m� 2)(s�m� 3)� 2

⌘�
.

Categorizing terms in the denominator in Equation (40), we have

X

x2{±1}d

exp
⇣
✓

X

(u,v)2S

xuxv

⌘
=

sX

m=0

C
k
s exp

⇢
✓

2

⇣
m(m� 1) + (s�m)(s�m� 2)� 2m(s�m)

⌘�
.

Plugging them into Equation (40), we obtain the desired formula.

Lemma B.2. For E2(s, ✓) defined before with ✓ > 0, we have E2(s, ✓) � ✓.

Proof. By FKG inequality, for simple zero-field ferromagnetic Ising model, deleting an edge reduces the correlation
ES [XjXk]. Therefore the correlation under s-clique is larger than that of 2-clique for s � 2

E2(s, ✓) � E2(2, ✓) = 1� 4 · 2e�2✓

2(1 + 2e�2✓ + 1)
=

1� e
�2✓

1 + e�2✓
� ✓.

Moreover, when the graph is an s-clique, due to the high density of edges, a better lower bound for correlation E2(s, ✓) is
provided by the following lemma.
Lemma B.3. For each � 2 (0, 1/2), there exists some constant c = c(�) > 0 such that for all ✓ � c/s, we have

E2(s, ✓) � 3�2.

Proof. Consider the formula in Equation (39), we have

E2(s, ✓) = 1� 4 ·
Ps

k=0 k(s� k)Ck
s e

�2k(s�k)✓

Ps
k=0 s(s� 1)Ck

s e
�2k(s�k)✓

= 1� 4 ·
Ps

k=0
k(s�k)
s(s�1)C

k
s e

�2k(s�k)✓

Ps
k=0 C

k
s e

�2k(s�k)✓
.

For � 2 (0, 1/2), when |k/s� 1/2| � �, we have

k(s� k)

s(s� 1)
C

k
s e

�2k(s�k)✓  s

s� 1

⇣1
2
� �

⌘⇣1
2
+ �

⌘
C

k
s e

�2k(s�k)✓
,
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and when |k/s� 1/2| < �,

X

| ks�
1
2 |<�

k(s� k)

s(s� 1)
C

k
s e

�2k(s�k)✓  2�s · s

4(s� 1)
C

[s/2]
s exp

�
� 2(

1

2
+ �)(

1

2
� �)s2✓

�
,

where
C

[s/2]
s =

s!

([ s2 ])! · ([
s
2 ])!

.

By Stirling’s approximation, there exists constants c1, c2 s.t.

s! = ⌦
⇣p

2⇡s
�s
e

�s⌘
,

where x = ⌦(y) means there exists some constants c1, c2 > 0 s.t. c1y < x < c2y. Therefore

C
[s/2]
s = ⌦

⇣ p
2⇡s

�
s
e

�s

2⇡ · s
2 ·

�
s
2e

�2
⌘
= ⌦

⇣ 2sp
2⇡s

⌘
.

Therefore

2�s · s

4(s� 1)
C

[s/2]
s exp

�
� 2(

1

2
+ �)(

1

2
� �)s2✓

�
= ⌦

⇣
�sp
2⇡s

exp
�
s log 2� 2(

1

4
� �

2)s2✓
�⌘

.

If ✓ � c/s for some sufficiently large constant c > 0, we have

X

| ks�
1
2 |<�

k(s� k)

s(s� 1)
C

k
s e

�2k(s�k)✓ ! 0, (s ! 1).

Therefore
Ps

k=0 k(s� k)Ck
s e

�2k(s�k)✓

Ps
k=0 s(s� 1)Ck

s e
�2k(s�k)✓

=

P
| ks�

1
2 |<�

k(s�k)
s(s�1)C

k
s e

�2k(s�k)✓

Ps
k=0 C

k
s e

�2k(s�k)✓
+

P
| ks�

1
2 |��

k(s�k)
s(s�1)C

k
s e

�2k(s�k)✓

Ps
k=0 C

k
s e

�2k(s�k)✓

1

4
� �

2 + o(1). (41)

Plugging Equation (41) into Equation (39) we have

E2(s, ✓) � 4�2 + o(1) � 3�2 (42)

for sufficiently large s.

With the above lemmas in hand, we turn to the proof of Theorem 3.3. Under the oracle computational model, the size of
query space is ⌘(QA ) = log

�d
2

�
. Also the bound of query function can be taken to be M = 1. Therefore with probability at

least 1� 2⇠, the realizations returned by the oracle satisfies

|qjk(X)� E[qjk(X)]| = |qjk(X)� ES [XjXk]|  ⌧q(s, ✓),

uniformly for all 1  j < k  d, where

⌧q(s, ✓) = max

⇢
2

3n
log

⇣
d(d� 1)

2⇠

⌘
,

s
2

n
log

⇣
d(d� 1)

2⇠

⌘�
. (43)

Here the variance terms are substituted with their common upper bound 1. Then under H0 where G0 = (V,?), we have
E0[XjXk] = 0 for all 1  j < k  d. Therefore with probablity at least 1� 2⇠, it holds that

�⌧q(s, 0)  min
j 6=k

qjk(X)  max
j 6=k

qjk(X)  ⌧q(s, 0).
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In our setting where log(d)/n = o(1), this means that

sup
✓2C0

P✓[ = 1]  2⇠.

On the other hand, under H1 with some S 2 C1 and corresponding probability measure PS , we know for (j, k) /2 S,
E[XjXk] = 0 and for (j, k) 2 S, E[XjXk] = E2(s, ✓) > 0. Therefore

min
j 6=k

qjk(X)  ⌧q(s, ✓), max
j 6=k

qjk(X) � E2(s, ✓)� ⌧q(s, ✓),

hence with probability at least 1� 2⇠, it holds that

max
j 6=k

qjk(X)�min
j 6=k

qjk(X) � E2(s, ✓)� 2⌧q(s, ✓).

Therefore as long as
E2(s, ✓)� 2⌧q(s, ✓) � 2⌧q(s, 0),

we would have sup✓2C1
P✓[ = 0]  2⇠. By Equation (43), we have

⌧q(s, ✓)  max

⇢
2

3n
log

⇣
d(d� 1)

2⇠

⌘
,

s
2

n
log

⇣
d(d� 1)

2⇠

⌘�
=

s
2

n
log

⇣
d(d� 1)

2⇠

⌘

for sufficiently large (s, d, n) since log(d)/n = o(1). Therefore it suffices to prove that under the conditions in Theorem
3.3, we have E2(s, ✓) � 4⌧q(s, 0).

On one hand, when

✓ � 4

s
2

n
log

⇣
d(d� 1)

2⇠

⌘

for some constant c > 0, we have

E2(s, ✓) � ✓ � 4

s
2

n
log

⇣
d(d� 1)

2⇠

⌘
= 4⌧q(s, 0). (44)

On the other hand, we fix some � > 0 and suppose ✓ � c/s for c = c(�) > 0 as in Lemma B.3, we have

E2(s, ✓) � 3�2 � 4⌧q(s, 0), (45)

for sufficiently large s, since ⌧q(s, 0) ! 0 as d ! 1 in our setting. Combining Equations (44) and (45), we complete the
proof of Theorem 3.3.

B.3. Proof of Theorem 3.4: Computational Upper Bound for Nearest Neighbor Graph Detection

In this section we prove the computational upper bound for s/4-nearest neighbor graph detection in Theorem 3.4. It is
attained by the query functions in Equation (9) and the test function in Equation (10).

By the Bernstein-type bound of deviation provided by oracle model, with probability at least 1� 2⇠,

|qjk(X)� E[qjk(X)]| = |qjk(X)� ES [XjXk]|  ⌧q

uniformly for all 1  j < k  d, where

⌧q = max

⇢
2

3n
log

⇣
d(d� 1)

2⇠

⌘
,

s
2

n
log

⇣
d(d� 1)

2⇠

⌘�
, (46)

where we substitute the variance of qjk(X), which may be different for pairs (j, k), with their common upper bound 1.
Therefore by the same statements as in the proof of computational upper bound for s-clique detection, when log(d)/n = o(1)
we have sup✓2C0

P✓[ = 1]  2⇠.
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On the other hand, for simplicity we assume s/4 is integer. Then in a s/4-nearest neighbor graph, if two vertices are within
(s/4) distance along the circle, they are connected by an edge. Therefore there exists at least an (s/4)-clique. Since deleting
edges reduces the correlation, for (u, v) 2 E(G), we have

ES [XuXv] � E2(s/4, ✓),

where E2(s, ✓) is the correlation for an edge in an s-clique. Therefore by Lemma B.3, when ✓ � c/s for some sufficiently
large constant c, we have

max
1j<kd

qjk(X) � ec� ⌧q,

with constant ec and ⌧q defined in Equation (46). Therefore as s ! 1, for sufficiently large s, we have

sup
✓2C1

P✓[ = 0]  2⇠,

thus completing the proof.

C. Proof of Theorem 3.5: Information Upper Bounds

In this section we prove the general information upper bound in Theorem 3.5 attained by the query functions and test
in Equation (14) and Equation (15) for structures containing � · s2 edges for some constant � > 0. Before bounding
key elements in our proof, we first introduce some quantities and notations based on s-clique case. Suppose G is an
s-clique with V (G) ⇢ [d], V (G) = s, |E(G)| = s(s � 1)/2. Or equivalently we represent G as G ⇢ [d] with |G| = s,
E(G) = {(i, j)|i, j 2 S, i 6= j}. The probability measure is the same for all subsets of [d] with size s up to a permutation
of vertices. We defined 4-correlation in an s-clique as

E4(s, ✓) := PG[Xi1Xi2Xi3Xi4 ], (47)

where {i1, . . . , i4} ⇢ G,
��{i1, . . . , i4}

�� = 4. Recall E2(s, ✓) denotes the correlation for a pair of nodes in s-clique.

We return to any subset S ⇢ [d] with |S| = s in a graph G where |V (G)| = s, E(G) � � · s2. For query function
qS(X) =

�
1
s

P
i2S xi

�2 with S, under H1 we have

EG[qS(X)] = EG

�1
s

X

i2S

xi

�2
=

1

s
+

1

s

X

i,j2S,i 6=j

EG[XiXj ] �
1

s
,

and

VarG[qS(X)] = EG

h�1
s

X

i2S

xi

�4i�
�
EG[qS(X)]

�2  EG

h�1
s

X

i2S

xi

�4i�
�
EG[qS(X)]

�2 � 1

s2
.

Moreover, for S 2 C1 exactly the subset with the desired structure,

EG[qS(X)] = EG(
1

s

X

i2S

xi)
2 =

1

s
+

1

s

X

i,j2S,i 6=j

EG[XiXj ] �
1

s
+ 2�E2(s, ✓).

We consider the term

EG

h�X

i2S

xi

�4i
=

sX

i1,i2,i3,i4=1

EG[Xi1Xi2Xi3Xi4 ]

=s+ 3s(s� 1) +
X

i,j,k
distinct

EG[X
2
i XjXk] + 4

X

i 6=j

EG[X
3
i Xj ] + 24

X

i,j,k,l
distinct

EG[XiXjXkXl]

=3s2 � 2s+ s(s� 1)(6s� 8)E2(s, ✓) + s(s� 1)(s� 2)(s� 3)E4(s, ✓),

where the first s represents those i1, . . . , i4 are identical, and the 3s(s� 1) represents those i1, . . . , i4 that take two distinct
values, with two each value. By Griffiths second inequality in (Griffiths, 1967), increasing any paramter ✓uv increases
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multiple-node correlation. Therefore EG[XjXk]  E2(s, ✓) and EG[XiXjXkXl]  E4(s, ✓) for 4-pairs (i, j, k, l) where
i, j, k, l are distinct. Hence the variances for all qS(X) are bounded by

VarG[qS(X)] = EG

h�1
s

X

i2S

xi

�4i� (EG[qS(X)])2  E4(s, ✓) +
6

s
E2(s, ✓) +

2

s2
.

Then by the concentration property of oracle computational model, with probability at least 1� 2⇠,

max
S⇢[d],|S|=s

��qS(X)� EG[qS(X)]
��  ⌧q(s, ✓).

Here

⌧q(s, ✓) =max

(
2

3n
log

h1
⇠

✓
d

s

◆i
, 2

s
2maxS {VarS [qS(X)]}

n
log

h1
⇠

✓
d

s

◆i)

c ·max

(
s

n
log

� d

s⇠

�
,

s
s

n
·
⇥
E4(s, ✓) +

6

s
E2(s, ✓) +

2

s2

⇤
· log

� d

s⇠

�
)
,

for some constant c > 0, where the variance terms in the Bernstein-type concentration of oracle computational model is
substituted by their common upper bound.

Under H0, all vertices are independent and have expectation zero, hence VarS [qS(X)] = 2(s�1)/s3 and ES [qS(X)] = 1/s,
we have

⌧q(s, 0)  c ·max

⇢
s

n
log

� d

s⇠

�
,

s
1

ns
· log

� d

s⇠

��
.

Therefore our test satisfies
sup
✓2C0

P✓[ = 1]  2⇠.

On the other hand, under H1 with ✓ > 0, with probability at least 1 � 2⇠, uniformly for all S ⇢ [d], |S| = s, we have
qS(X)  ES [qS(X)] + ⌧q(s, ✓), thus

max
S⇢[d],|S|=s

qS(X) � ES2C1 [qS(X)]� ⌧q(s, ✓).

Therefore to prove sup✓2C1
P✓[ = 0]  2⇠, it suffices to prove

EG[qS(X)]� 1

s
� ⌧q(s, ✓) � r(n, d, s, ⇠)

for S 2 C1, when ✓ satisfies the conditions in Theorem 3.5. Thus to show

sup
✓2C1

P✓[ = 0]  2⇠,

it suffices to show

�E2(s, ✓) � 2⌧q(s, ✓) = 2c ·max

(
s

n
log

� d

s⇠

�
,

s
s

n
·
⇥
E4(s, ✓) +

6

s
E2(s, ✓) +

2

s2

⇤
· log

� d

s⇠

�
)
, (48)

and

E2(s, ✓) � 2r(n, d, s, ⇠) = 2c ·max

⇢
s

n
log

� d

s⇠

�
, 2

s
1

ns
log

� d

s⇠

��
. (49)

Since E2(s, ✓) � ✓ by Lemma B.2, when ✓ satisfies the conditions in Theorem 3.5, Equation (49) and the first part of
Equation (48) are satisfied. So it remains to verify

E2(s, ✓) � c ·

s
s

n
·
⇥
E4(s, ✓) +

6

s
E2(s, ✓) +

2

s2

⇤
· log

� d

s⇠

�
,
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for some constant c, i.e.

E2(s, ✓)
2 � c · s

n
log

� d

s⇠

�
·
⇥
E4(s, ✓) +

6

s
E2(s, ✓) +

2

s2

⇤
.

Hence it suffices to show

E2(s, ✓) �
c

n
log

� d

s⇠

�
, (50)

E2(s, ✓) � c

s
s

n
log

� d

s⇠

�
E4(s, ✓), (51)

E2(s, ✓) � c

s
1

sn
log

� d

s⇠

�
, (52)

for some sufficiently large constant c > 0. Here Equations (50) and (52) are naturally satisfied by the conditions since
E2(s, ✓) � ✓. For Equation (51), which is equivalent to

E2(s, ✓)2

E4(s, ✓)
� c · s

n
log

� d

s⇠

�
, (53)

for some constant c > 0. To bound the term in 53, we introduce some lemmas regarding E4(s, ✓).

Lemma C.1. For the aforementioned E4(s, ✓) and s � 4, we have

E4(s, ✓) = 1� 8 ·

Ps�4
k=0 C

k
s�4

h
e
(2k2�2ks+12k+18�6s)✓

i

Ps
k=0 C

k
s exp

�
� 2k(s� k)✓

� � 8 ·

Ps�4
k=0 C

k
s�4

h
e
(2k2�2ks�5k+2�2s)✓

i

Ps
k=0 C

k
s exp

�
� 2k(s� k)✓

� . (54)

Proof of Lemma C.1. By definition, we have

E4(s, ✓) = PS [X1X2X3X4 = 1]� PS [X1X2X3X4 = �1] = 1� 2PS [X1X2X3X4 = �1].

Note that when X1X2X3X4 = �1, there are 3 vertices taking value 1 and one vertex �1, or 3 vertices taking value �1 and
one 1. Therefore

X

x1x2x3x4=�1

exp

✓ X

(u,v)2S

✓xuxv

◆
= 4

X

x1=x2=x3=1,
x4=�1

exp

✓ X

(u,v)2S

✓xuxv

◆
+ 4

X

x1=x2=x3=�1,
x4=1

exp

✓ X

(u,v)2S

✓xuxv

◆
,

where

X

x1=x2=x3=1,
x4=�1

exp

✓ X

(u,v)2S

✓xuxv

◆
=

s�4X

k=0

X

x1=x2=x3=1,x4=�1,
k remaining vertices take value 1

exp

✓ X

(u,v)2S

✓xuxv

◆

=
s�4X

k=0

C
k
s�4 exp

�
(2k2 + s

2
/2� 2ks+ 12k + 18� 13s/2)✓

�
, (55)

and similarly we get

X

x1=x2=x3=�1,
x4=1

exp

✓ X

(u,v)2S

✓xuxv

◆
=

s�4X

k=0

C
k
s�4 · exp

�
(2k2 + s

2
/2� 2ks� 5k + 2� 5s/2)✓

�
. (56)

Plugging in Equations (55) and (56), we get the desired formula.

With this formula in hand, we provide an upper bound for E4(s, ✓) specified by the following lemma.
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Lemma C.2. For s � 4 and ✓ > 0, it always holds that E4(s, ✓)  7s✓.

Proof of Lemma C.2. Since e
x � 1 + x, we have

Ps�4
k=0 C

k
s�4

h
exp

�
(2k2 � 2ks+ 12k + 18� 6s)✓

�i

Ps
k=0 C

k
s exp

�
� 2k(s� k)✓

� +

Ps�4
k=0 C

k
s�4

h
exp

�
(2k2 � 2ks� 5k + 2� 2s)✓

�i

Ps
k=0 C

k
s exp
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� 2k(s� k)✓

�

� 1Ps
k=0 C

k
s

s�4X

k=0

C
k
s�4[1 + (2k2 � 2ks+ 12k + 18� 6s)✓ + 1 + (2k2 � 2ks� 5k + 2� 2s)✓]

= 2�s
⇥
2s�3 + (60� 21s) · 2s�5 · ✓

⇤
.

Therefore

E4(s, ✓)  1� 8 · 2�s
⇥
2s�3 + (60� 21s) · 2s�5 · ✓

⇤
 1

4
(25s� 60)✓  7s✓,

which completes the proof.

We return to our proof of Theorem 3.5. By Lemma C.2 as well as E2(s, ✓) � ✓, we have

E2(s, ✓)2

E4(s, ✓)
� ✓

2

7s✓
=

✓

7s
� c · s

n
log

� d

s⇠

�
,

since ✓ � c·s2
n log( d

s⇠ ) by the assumptions. This completes the proof of Theorem 3.5.

D. Proof of Theorem 3.6: Information Lower Bound for Perfect Matching

To provide an information lower bound for perfect matching, we introduce a sharper upper bound on the total variation of
testing empty graph against perfect matching graphs with s vertices. We borrow some statements in Section 8.3.2 from
(Daskalakis et al., 2016).

Lemma D.1. Assume s is even. For perfect matching problem, we define C0 = {(V,?)} with corresponding probability

measure P0, and C1 = {G = (V,E) : |V | = s, |E| = s/2, G is a perfect matching }. Denote P⌦n
0 to be the probability

measure that draws n samples from P0, and P⌦n
1 the probability measure corresponding to selecting some q from C1

uniformly at random and then drawing n samples from q. Then we have

2d2TV (P⌦n
0 ,P⌦n

1 )  n logEP⌦n
1

hP⌦n
0

P⌦n
1

i
.

Furthermore we have

2d2TV (P⌦n
0 ,P⌦n

1 )  9sn✓4

4
+ log

⇣ 3/2

1� exp
�
3n✓2 � log(3/2)

�
⌘
.

Proof of Lemma D.1. See Section 8.3.2 in (Daskalakis et al., 2016).

Then if
✓  cp

n
^ c

s
(57)

for some sufficiently small constant c, then the total variance is upper bounded by a sufficiently small constant, therefore no
algorithm can distinguish between the two hypotheses with probability larger than some small constant.


