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Abstract
We take a more rigorous look at Relativistic
Generative Adversarial Networks (RGANs) and
prove that the objective function of the discrim-
inator is a statistical divergence for any concave
function f with minimal properties (f(0) = 0,
f ′(0) 6= 0, supx f(x) > 0). We devise addi-
tional variants of relativistic f -divergences. We
show that the Wasserstein distance is weaker than
f -divergences which are weaker than relativis-
tic f -divergences. Given the good performance
of RGANs, this suggests that Wasserstein GAN
does not performs well primarily because of the
weak metric, but rather because of regularization
and the use of a relativistic discriminator. We in-
troduce the minimum-variance unbiased estima-
tor (MVUE) for Relativistic GANs and show that
it does not perform better. We show that the esti-
mator of Relativistic average GANs (RaGANs)
is asymptotically unbiased and that the finite-
sample bias is small; removing this bias does not
improve performance.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow
et al., 2014) are a very popular approach to approximately
generate data from a complex probability distribution using
only samples of data (without any information on the true
data distribution). Most notably, it has been very success-
ful at generating photo-realistic images (Karras et al., 2017;
2018). It consists in a game between two neural networks,
the generator G and the discriminator D. The goal of D is
to classify real from fake (generated) data. The goal ofG is
to generate fake data that appears to be real, thus ”fooling”
D into thinking that fake data is actually real.

There are many GAN variants and most of them con-
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sist of changing the loss function of D. To name a few:
Standard GAN (SGAN) (Goodfellow et al., 2014), Least-
Squares GAN (LSGAN) (Mao et al., 2017), Hinge-loss
GAN (HingeGAN) (Miyato et al., 2018), Wasserstein GAN
(WGAN) (Arjovsky et al., 2017).

For most GAN variants, training D is equivalent to esti-
mating a divergence: SGAN estimates the Jensen–Shannon
divergence (JSD), LSGAN estimates the Pearson χ2 diver-
gence, HingeGAN estimates the Reverse-KL divergence,
and WGAN estimates the Wasserstein distance. Even more
generally, f -GANs (Nowozin et al., 2016) estimate any
f -divergence (which includes most of the popular diver-
gences), while IPM-based GANs (Mroueh & Sercu, 2017)
estimate any Integral probability metric (IPM) (Müller,
1997). Thus, intuitively, GANs can be thought of as es-
timating a diverge and then minimizing it (this is not tech-
nically correct; see Jolicoeur-Martineau (2018b)).

Recently, Jolicoeur-Martineau (2018a) showed that IPM-
based GANs possess a unique type of discriminator which
they call a Relativistic Discriminator (RD). They explained
that one can construct f -GANs while using a RD and that
doing so improves the stability of the training and quality
of generated data. They called this approach Relativistic
GANs (RGANs). They proposed two variants: Relativistic
paired GANs (RpGANs)1 and Relativistic Average GANs
(RaGANs).

Jolicoeur-Martineau (2018a) provided mathematical and
intuitive arguments as to why using a Relativistic Dis-
criminator (RD) may be helpful. However, they did not
prove that the loss functions are mathematically sensi-
ble. Furthermore, the estimators that they used are not the
minimum-variance unbiased estimators (MVUE).

The contributions of this paper are the following:

1. We prove that the objective functions of the dis-
criminator in RGANs are divergences (relativistic f -
divergences).

2. We devise additional variants of Relativistic f -
divergences.

1We added the word ”paired” to better distinguish the variant
with paired real/fake data (originally called RGANs) and the gen-
eral approach called Relativistic GANs (RGANs).
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3. We show that the Wasserstein Distance is weaker than
f -divergences which are weaker than relativistic f -
divergences.

4. We present the minimum-variance unbiased estimator
(MVUE) of RpGANs and show that using it hinders
the performance of the generator.

5. We show that RaGANs are only asymptotically unbi-
ased, but that the finite-sample bias is small. Remov-
ing this bias does not improve the performance of the
generator.

2. Background
For the rest of the paper, we will refer to the ”critic” C(x)
instead of the discriminator D(x). The critic is the dis-
criminator before applying the activation function (D(x) =
a(C(x)), where a is an activation function and C(x) ∈ R).
Intuitively, the critic can be thought of as describing how
realistic x is. In the case of SGAN and HingeGAN, a large
C(x) means that x is realistic, while a small C(x) means
that x is not realistic. We use this notation because Rela-
tivistic GANs are defined in terms of the critic rather than
the discriminator.

2.1. Generative Adversarial Networks

GANs can be defined very generally in the following way:

sup
C:X→R

Ex∼P [f1(C(x))] + Ey∼Q [f2(C(y))] , (1)

sup
G:Z→X

Ex∼P [g1(C(x))] + Ez∼Z [g2(C(G(z)))] , (2)

where f1, f2, g1, g2 : R → R, P is the distribution of
real data with support X , Z is the latent distribution (gen-
erally a multivariate normal distribution), C(x) is the critic
evaluated at x, G(z) is the generator evaluated at z, and
G(z) ∼ Q, where Q is the distribution of fake data. See
Brock et al. (2018) for details on how different choices of Z
performs. The critic and the generator are generally trained
with stochastic gradient descent (SGD) in alternating steps.

Most GANs can be separated in two classes: non-saturating
and saturating loss functions. GANs with the saturating
loss are such that g1=−f1 and g2=−f2, while GANs with
the non-saturating loss are such that g1=f2 and g2=f1. In
this paper, we will assume that the non-saturating loss is
used as it generally works best in practice (Goodfellow
et al., 2014) (Nowozin et al., 2016). Note that g1 generally
has no impact on training since its gradient with respect to
G is zero; we can thus ignore it.

Although not always the case, the most popular GAN loss
functions (SGAN, LSGAN with labels -1/1, HingeGAN,

WGAN) are symmetric (i.e., f2(x) = f1(−x)). For sim-
plicity, in this paper, we restrict ourselves to symmetric loss
functions.

Non-saturating Symmetric GANs (SyGANs) can be repre-
sented more simply as:

sup
C:X→R

Ex∼P [f(C(x))] + Ey∼Q [f(−C(y))] , (3)

sup
G:Z→X

Ez∼Z [f(C(G(z)))] , (4)

for some function f : R → R. For easier optimization, we
generally want f to be concave with respect to the critic.
This is the case in symmetric f -GANs.

In this paper, we restrict our relativistic divergences to sym-
metric cases with concave f . Although this may be some-
what constraining, not making these assumptions would be
very problematic for GANs. By not assuming concavity,
we could have an objective function that diverges to infin-
ity (and thus an infinite divergence). This is particularly
problematic for GANs because early in training, we ex-
pect P and Q to be perfectly separated (because of fully
disjoint supports). This would cause the objective func-
tion to explode towards infinity and thereby causing severe
instabilities. The Kullback–Leibler (KL) divergence is a
good example of such a problematic divergence for GANs.
If a single sample from the support of Q is not part of
the support of P, the divergence will be ∞. Also, note
that the dual form of the KL divergence cannot be repre-
sented as a SyGAN with equation (3) since f1(x) = x and
f2(x) = −ex−1 are not symmetric (Nowozin et al., 2016).

2.2. Integral Probability Metrics

Rather than using a concave function f to ensure a maxi-
mum on the objective function, IPM-based GANs instead
force the critic to respect some constraint so that it does
not grow too quickly. IPM-based GANs are defined in the
following way:

sup
C:X→R
C∈F

Ex∼P [C(x)]− Ey∼Q [C(y)] , (5)

sup
G:Z→X

Ez∼Z [C(G(z))] , (6)

where F is a class of functions such that the IPM is not
infinite. See Mroueh et al. (2017) for an extensive review
of the choices of F .

2.3. Relativistic GANs

Rather than training the critic on real and fake data sepa-
rately, Relativistic GANs tries to maximize the critic’s dif-
ference (CD). In Relativistic paired GANs (RpGANs), the
CD is defined asC(x)−C(y), while in Relativistic average



Relativistic f -divergences

GANs (RaGANs), the CD is defined as C(x) − E
y∼Q

C(y)

(or vice-versa). The CD can be understood as how much
more realistic real data is from fake data. The optimal size
of the CD is determined by the choice of f . With a least-
square loss, the CD must be exactly equal to 1. On the other
hand, with a log-sigmoid loss, the CD is grown to around 2
or 3 (after-which the gradient of f vanishes to zero). This
will be explained in more details in the next section. Again,
we focus only on choices of f that have symmetry (as done
with SyGANs).

Relativistic paired GANs (RpGANs) are defined in the fol-
lowing way:

sup
C:X→R

E
x∼P
y∼Q

[f (C(x)− C(y))] , (7)

sup
G:Z→X

E
x∼P
z∼Z

[f (C(G(z))− C(x))] . (8)

Relativistic average GANs (RaGANs) are defined in the
following way:

sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
+

E
y∼Q

[
f

(
E
x∼P

C(x)− C(y)
)]

, (9)

sup
G:Z→X

E
z∼Z

[
f
(
C(G(z))− E

x∼P
C(x)

)]
+

E
x∼P

[
f

(
E

z∼Pz

C(G(z))− C(x)
)]

. (10)

3. Relativistic Divergences
We define statistical divergences in the following way:

Definition 3.1. Let P and Q be probability distributions
and S be the set of all probability distributions with com-
mon support. A function D : (S, S) → R>0 is a diver-
gence if it respects the following two conditions:

D(P,Q) ≥ 0

D(P,Q) = 0 ⇐⇒ P = Q.

In other words, divergences are distances between proba-
bility distributions. The distribution of real data (P) is fixed
and our goal is to modify the distribution of fake data (Q) so
that the divergence decreases over time through the training
process.

It is important to show that we use a divergence; this en-
sures that it is not possible to obtain a critic which cannot
distinguish real from fake sample (D(P,Q) = 0) when the

two distributions (real and fake) are not the same (P 6= Q).
If we did not have a divergence, it could be possible to
reach a situation where the generator cannot learn (since
the critic returns the same value for real and fake samples)
while the generator still isn’t generating samples from the
real distribution.

3.1. Main Theorem

As discussed in the introduction, in most GANs, the objec-
tive function of the critic at optimum is a divergence. We
show that the objective function of the critic in RpGANs,
RaGANs, and other variants also estimate a divergence.
The theorem is as follows:

Theorem 3.1. Let f : R → R be a concave function
such that f(0) = 0, f is differentiable at 0, f ′(0) 6= 0,
supx f(x) = M > 0, and arg supx f(x) > 0. Let P
and Q be probability distributions with support X . Let
M = 1

2P+ 1
2Q. Then, we have that

DRpf (P,Q) = sup
C:X→R

2 E
x∼P
y∼Q

[f (C(x)− C(y))]

DRaf (P,Q) = sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
+

E
y∼Q

[
f

(
E
x∼P

C(x)− C(y)
)]

DRalff (P,Q) = sup
C:X→R

2 E
x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
DRcf (P,Q) = sup

C:X→R
E
x∼P

[
f
(
C(x)− E

m∼M
C(m)

)]
+

E
y∼Q

[
f
(

E
m∼M

C(m)− C(y)
)]

are divergences.

We ask that the supremum of f(x) is reached at some pos-
itive x (or at∞). This is purely to ensure that a larger CD
can be interpreted as leading to a larger divergence (rather
than the opposite). This does not reduce the generality of
Theorem 3.1. If f(x) is maximized at x < 0, we have that
g(x) = f(−x) is maximized at x > 0 and one can simply
use g instead of f .

We require that f is differentiable at zero and its derivative
to be non-zero. This assumption may not be necessary, but
it is needed for one of our main lemma which we use to
prove that these objective functions are divergences.

Note that DRpf (P,Q) corresponds to RpGANs, DRaf (P,Q)

corresponds to RaGANs, DRalff (P,Q) corresponds to a
simplified one-way version of RaGANs (RalfGANs), and
DRcf (P,Q) corresponds to a new type of RGAN called Rel-
ativistic centered GANs (RcGANs). RalfGANs are not par-
ticularly interesting as they simply represent a simpler ver-
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sion of RaGANs. On the other hand, RcGANs are inter-
esting as they center the critic scores using the mean of the
whole mini-batch (rather than the mean of only real or only
fake mini-batch samples). This divergence also has simi-
larities to the Jensen–Shannon divergence (JSD) since the
JSD is the sum of the KL-divergence between P and M to
the KL-divergence between Q and M.

A logical extension to RcGANs would be to standardize the
critic scores; however, this would not lead to a divergence
given that we could not control the size of the elements
inside f . To make it a divergence, we would need a learn-
able scaling weight (as in batch norm (Ioffe & Szegedy,
2015)), but this would counter the effect of the standard-
ization. Thus, standardizing and scaling would just corre-
spond to an equivalent re-parametrization of DRcf .

A sketch of the proof can be found below; the full proof is
found in Appendix A.

3.2. Sketch of the Proof

Although the four divergences need separate proofs, a sim-
ilar framework is used in each of them. Each proof con-
sists of three steps. For clarity of notation, let Df (P,Q) =
sup

C:X→R
F (P,Q, C, f) be the divergence, where F is any of

the objective functions in Theorem 3.1.

First, we show thatDf (P,Q) ≥ 0. This is easily proven by
taking the simplest possible choice of critic, which does not
depend on the probability distributions, i.e.,Cw(x) = k for
all x. This critic always leads to f(0) and thus to a objective
function equal to 0. This means that

Df (P,Q) = sup
C:X→R

F (P,Q, C, f) ≥ F (P,Q, Cw, f) = 0.

Second, we show that P = Q =⇒ Df (P,Q) = 0.
This step generally relies on Jensen’s inequality (for con-
cave functions) which we use to show that Df (P,P) ≤ 0.
Given that Df (P,P) ≥ 0 and Df (P,P) ≤ 0, we have that
Df (P,P) = 0.

Third, we show that Df (P,Q) = 0 =⇒ P = Q. This
step is by far the most difficult to prove. Instead of show-
ing it directly, we instead prove it by contraposition, i.e.,
we show that P 6= Q =⇒ Df (P,Q) > 0. To prove
this, we use the fact that if P 6= Q, there must be val-
ues of the probability density functions, p(x) and q(x) re-
spectively, such that p(x) > q(x) (and vice versa). Let
T = arg supS P(S) − Q(S), we know that this set is not
empty. Note that when P and Q have probability den-
sity functions p(x) and q(x) respectively, we have that
T = {x|p(x) > q(x)}. To make the proof as simple as

possible, we use the following sub-optimal critic:

C ′(x) =

{
∇ if x ∈ T
0 else,

where ∇ 6= 0. This critic function is very simple, but, as
we will show, there exists a ∇ > 0 such that this leads to
an objective function greater than 0 which means that the
divergence is also greater than 0.

With this critic in mind, our goal is to transform the prob-
lem into the following:

Df (P,Q) = sup
C:X→R

F (P,Q, C, f) ≥ F (P,Q, C ′, f)

≥ L(∇)
> 0,

where L(∇) = af(∇) + bf(−∇), for some a > 0 and
b > 0 s.t. a > b. We have been able to show this with all
divergences.

We want to find a ∇ > 0 large enough so that the positive
term (f(∇)) is big, but small enough so that the negative
term (f(−∇)) is not too big. The main caveat is that, by
concavity, f(∇) ≤ |f(−∇)|. This means that the negative
term is always bigger in absolute value than the positive
term. This is problematic, since a could be be very close
to b and we want af(∇) > bf(−∇) to get L(∇) > 0
which proves that we have a divergence. The solution is to
choose ∇ to be very small. By continuity of the concave
function, if we make ∇ small enough (very close to 0), we
can reach a point where (f(∇) ≈ −f(−∇)). In which
case, if a = b+ ε, we have that

L(∇) = af(∇) + bf(−∇) ≈ af(∇)− bf(∇)
= bf(∇) + εf(∇)− bf(∇)
= εf(∇)
> 0.

In the actual proof, we show that there always exists a δ >
0 small enough such that any ∇ ∈ (0, δ) leads to L(∇) >
0. This concludes the sketch of the proof.

3.3. Subtypes of Divergences

Figure 1 shows three examples of concave f with the nec-
essary properties to be used in relativistic divergences; they
are the concave functions used in SGAN, LSGAN (with la-
bels 1/-1), and HingeGAN. Their respective mathematical
functions are

fS(z) = log( sigmoid(z)) + log(2), (11)

fLS(z) = −(z − 1)2 + 1, (12)
fHinge(z) = −max(0, 1− z) + 1. (13)
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Figure 1. Plots of f with respect to the critic’s difference (CD) us-
ing three appropriate choices of f for relativistic divergences. The
bottom gray line represents f(0) = 0; the divergence is zero if all
CDs are zero. The above gray line represents the maximum of f ;
the divergence is maximized if all CDs leads to that maximum.

Interestingly, we see that they form three different types
of functions. Firstly, we have functions that grow expo-
nentially less as x increases and thus reach their supre-
mum at ∞. Secondly, we have functions that grow to a
maximum and then forever decrease (thus penalizing large
CDs). Thirdly, we have functions that grow to a maximum
and then never change. SGAN is of the first type, LSGAN
is of the second, and HingeGAN is of the third type.

This shows that for all three types, we have that the CD
is only encouraged to grow until a certain point. With the
first type, we never truly force the CD to stop growing, but
the gradients vanish to zero. Thus, SGD effectively pre-
vents the CDs from growing above a certain level (sigmoid
saturates at around 2 or 3).

It is useful to keep in mind that Figure 1 also represents
the concave functions used for SyGANs, in which case f
applies to real and fake data separately (f(x) and f(−y)).

3.4. Weakness of the Divergence

The paper by Arjovsky et al. (2017) on using the Wasser-
stein distance (and other IPMs) for GANs has been ex-
tremely influential. In this paper, the authors suggest
that the Wasserstein distance is more appropriate than f -
divergences for training a critic since it induces the weakest
topology possible. Rather than giving a formal definition
in terms of topologies, we use a simpler definition (as also
done by Arjovsky et al. (2017)):

Definition 3.2. Let P be a probability distribution with sup-
port X , (Pn)n∈N be a sequence of distributions converging
to P, and D1 and D2 be statistical divergences (per defini-
tion 3.1).

We say that D1 is weaker than D2 if we have that:

D2(Pn,P)→ 0 =⇒ D1(Pn,P)→ 0 ∀ (Pn)n∈N ,

but the converse is not true.

We say that D1 is a weakest distance if we have that:

D1(Pn,P)→ 0 ⇐⇒ Pn
D→ P ∀ (Pn)n∈N ,

where D→ represents convergence in distribution.

Thus, intuitively, a weaker divergence can be thought of as
converging more easily. Arjovsky et al. (2017) showed that
the Wasserstein distance is a weakest divergence and that it
is weaker than common f -divergences (as used in f -GANs
and standard GANs). They also showed that the Wasser-
stein distance is continuous with respect to its parameters
and they attributed this property to the weakness of the di-
vergence.

Considering this argument, one would except that RaGANs
would be weaker than RpGANs which would be weaker
than Symmetric GANs since this is generally the order of
their relative performance and stability (however, note that
this is not always true and GANs can perform better than
RaGANs). Instead, we found the opposite relationship:

Theorem 3.2. Let P be a probability distribution with sup-
port S, (Pn)n∈N be a sequence of distributions converging
to P, f : R→ R be a concave function such that f(0) = 0,
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f is differentiable at 0, f ′(0) 6= 0, supx f(x) = M > 0,
and arg supx f(x) > 0. Then, we have that

DWf (P,Q) is weakest,

DWf (P,Q) is weaker than DSyf (P,Q),

DSyf (P,Q) is weaker than DRpf (P,Q),

DRpf (P,Q) is weaker than DRaf (P,Q),

where DW is the Wasserstein distance and DSy is the dis-
tance in Symmetric GANs (see equation 3).

The proof is in Appendix B.

Given the good performance of RaGANs, this suggests that
the argument made by Arjovsky et al. (2017) is insufficient.
It only focuses on a perfect sequence of converging distri-
butions, but the generator training does not guarantee a con-
verging sequence of fake data distributions. It ignores the
complex dynamics and intricacies of the generator train-
ing, which are still not well understood. Furthermore, it as-
sumes an optimal critic which is effectively unobtainable.
In practice, obtaining a semi-optimal critic requires training
the critic for multiple iterations before training the genera-
tor; this significantly increase the computational time.

Furthermore, it has been found that WGAN does not pro-
vide a good approximation of the Wasserstein distance and
that better approximations of the Wasserstein distance lead
to worse GANs (Mallasto et al., 2019). This provides fur-
ther argument towards the idea that the weakness of the
divergence is not a good indicator of a good divergence
for GANs. As previously suggested (Jolicoeur-Martineau,
2018a), we hypothesize that what make WGAN good for
GANs are likely 1) the constraint of the critic (a Lipschitz
critic) and 2) the use of a relativistic discriminator, rather
than the weakness of the divergence.

4. Estimators
4.1. RpGANs

To estimate RpGANs, Jolicoeur-Martineau (2018b) used
the following estimator2:

D̂Rp
f (P,Q) = sup

C:X→R

2

k

k∑
i=1

[f(C(xi)− C(yi))] ,

where x1, . . . , xk and y1, . . . , yk are samples from P and Q
respectively.

Although this is an unbiased estimator of DRpf (P,Q), it is
not the estimator with the minimal variance for a given
mini-batch. Using the two-sample version (Lehmann,

2Note that they actually used 1
k

instead of 2
k

because of how
they defined the divergence.

1951) of the U-statistic theorem (Hoeffding, 1992) and
given that the loss function is symmetric with respect to
its arguments, one can show the following:

Corollary 4.1. Let P and Q be probability distributions
with support X . Let x1, . . . , xk and y1, . . . , yk be i.i.d.
samples from P and Q respectively. Then, we have that

D̂Rp∗
f (P,Q) = sup

C:X→R

2

k2

k∑
i=1

k∑
j=1

[f(C(xi)− C(yj))]

is the minimum-variance unbiased estimator (MVUE) of
DRpf (P,Q).

Although it is the MVUE, this estimator requiresO(k2) op-
erations instead of O(k). In the experiments, we will show
that using this estimator does not lead to good performance.
Given the quadratic scaling and lack of performance gain,
it may not be worth using.

4.2. RaGANs and RalfGANs

The divergences of RaGANs and RalfGANs assume that
one knows the true expectation of the critic of real and fake
data. However, in practice, we can only estimate the ex-
pectation. Although never explicitly mentioned, (Jolicoeur-
Martineau, 2018a) simply replaced all expectations by the
mini-batch mean:

E [C(x)] ≈ 1

k

k∑
i=1

C(xi),

where k is the size of the mini-batch.

Given the non-linear function applied after calculating the
CD, the divergences of RaGANs are biased with finite
batch size k. This means that RaGANs are only asymptoti-
cally unbiased. How large k must be for the bias to become
negligible is unclear.

We attempted to find a close form for the bias with fS ,
fLS , and fHinge (equations 11, 12, 13 and Figure 1), but
we were only able to find a closed form with fLS . The bias
with fLS has a simple form and can be removed, as shown
below:

Corollary 4.2. Let P and Q be probability distributions
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with support X . Then, we have that

sup
C:X→R

1

k

(
σ̂C(x) + σ̂C(y) −

k∑
i=1

[(
C(xi)− µ̂C(y) − 1

)2]

−
k∑
j=1

[(
µ̂C(x) − C(yj)− 1

)2]+ 2,

sup
C:X→R

2

k

(
σ̂C(y) −

k∑
i=1

[(
C(xi)− µ̂C(y) − 1

)2])
+ 1,

inf
C:X→R

1

k

(
1

2
σ̂C(x) +

1

2
σ̂C(y) +

k∑
i=1

[
(C(xi)− µ̂C − 1)

2
]

+

k∑
j=1

[
(µ̂C − C(yj)− 1)

2
]− 2

are unbiased estimator of DRafLS
(P,Q), DRalffLS

(P,Q), and
DRcfLS

(P,Q) respectively. Furthermore,

µ̂C(x) =
1

k

k∑
i=1

C(xi),

µ̂C(y) =
1

k

k∑
i=1

C(yi),

µ̂C =
1

k

k∑
i=1

(
C(xi) + C(yi)

2

)
,

σ̂C(x) =
1

(k − 1)

k∑
i=1

(
C(xi)− µ̂C(x)

)2
,

σ̂C(y) =
1

(k − 1)

k∑
i=1

(
C(yi)− µ̂C(y)

)2
.

See Appendix C for the proof. This means that we can es-
timate the loss functions in RaLSGAN, RalfLSGAN, and
RcLSGAN without bias. In the experiments, we will show
that the bias is negligible with the usual choices of f (equa-
tions 11, 12, 13) and batch size (32 or higher).

5. Experiments
All experiments were done with the spectral GAN archi-
tecture for 32x32 images (Miyato et al., 2018) in Pytorch
(Paszke et al., 2017). We used the standard hyperparam-
eters: learning rate (lr) = .0002, batch size (k) = 32, and
the ADAM optimizer (Kingma & Ba, 2014) with param-
eters (α1, α2) = (.50, .999). We trained the models for
100k iterations with one critic update per generator up-
date. For the datasets, we used CIFAR-10 (50k training
images from 10 categories) (Krizhevsky, 2009), CelebA

(200k of face images from celebrities) (Liu et al., 2015) and
CAT (10k images of cats) (Zhang et al., 2008). All mod-
els were trained using the same seed (seed=1) with a sin-
gle GPU. To evaluate the quality of generated outputs, we
used the Fréchet Inception Distance (FID) (Heusel et al.,
2017). For a review of the different evaluation metrics for
GANs, please see Borji (2018). CAT was preprocessed by
cropping all images to the faces of the cats, removing out-
liers (faces hidden by background), and removing images
smaller than 32x32. CelebA images were center cropped
to 160x160 before being resized to 32x32. See code for de-
tails; the code to reproduce the experiments is available on
https://github.com/AlexiaJM/relativistic-f-divergences.

5.1. Bias

We approximated the bias of RaGANs and RcGANs by es-
timating the real/fake critic mean from 320 samples rather
than the 32 mini-batch samples. For fLS , we were able
to calculate the true value of the bias (in expectation, see
Corollary 4.2). Results on CIFAR-10 are shown in Figure
2.

For RAGANs, the approximation of the relative bias with
fLS was correct from 4k iterations and onwards. For all
choices of f , we observed the same pattern of low approx-
imated relative bias which stabilized after a certain num-
ber of iterations. We suspect that this may be due to the
important instabilities of the first iterations when the dis-
criminator is not optimal. At 15k iterations, all biases were
stabilized. We calculated the average of the bias with dif-
ferent f starting at 15k iterations: .995 for the true relative
bias with fLS , .996 for the approximated relative bias with
fLS , .994 for the approximated relative bias with fS , and
.997 for the approximated relative bias with fHinge.

For RcGANs, the approximation of the bias with fLS was
correct from the very beginning of training. All biases were
relatively stable over time with the exception of fS which
increased linearly over time (up to around 1.05). We cal-
culated the average of the bias with different f : 1.007 for
the true relative bias with fLS , 1.007 for the approximated
relative bias with fLS , 1.03 for the approximated relative
bias with fS , and 1.007 for the approximated relative bias
with fHinge.

Overall, this shows that the bias in the estimators of Ra-
GANs and RcGANs tends to be small. Furthermore, with
the exception of fS , the bias is relatively stable over time.
Thus, accounting for the bias, may not be necessary.

5.2. Divergences

To test the new relativistic divergences proposed (and ver-
ify whether removing the bias in RaGANs is useful), we ran
experiments on CIFAR-10 using fLS , on LSUN bedrooms
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Figure 2. Plots of the relative bias (i.e., the biased estimate di-
vided by the unbiased estimate) of relativistic average and cen-
tered f -divergences estimators over training time on CIFAR-10
with a mini-batch size of 32. Approximations of the bias were
made using 320 independent samples.

using fHinge, and on CAT using fHinge (these choices of
f were arbitrary). Results are shown in Table 1.

Using the MVUE for RpGAN resulted in the generator hav-
ing a worse performance on CIFAR-10 with fLS (β = .37,
p = .72), CelebA with fHinge (β = 2.08, p = .07), and
CAT with fS (β = 4.02, p = .003). Similarly, using
the unbiased estimator made the generator perform sightly
worse for RaLSGAN (β = 2.37, p = .04) and RcLSGAN
(β = 1.33, p = .05). These results are surprising as they
suggest that using noisy or slightly biased estimators may

Table 1. Minimum (and standard deviation) of the FID calculated
at 10k, 20k, ... , 100k iterations using different loss functions (see
equations 11, 12, 13) and datasets.

CIFAR-10 CelebA CAT
Loss fLS fHinge fS

GAN 31.1 (8) 15.3 (52) 15.2 (11)
RpGAN 31.5 (8) 16.7 (4) 12.9 (2)
RpGANMVUE 30.2 (12) 21.9 (3) 18.2 (3)
RaGAN 29.2 (7) 15.9 (5) 12.3 (1)
RaGANunbiased 30.3 (13) - -
RcGAN 31.7 (8) 18.1 (3) 16.5 (7)
RcGANunbiased 32.3 (9) - -

be beneficial.

6. Conclusion
Most importantly, we proved that the objective function
of the critic in RGANs is a divergence. In addition, we
showed that f -divergences are weaker than relativistic f -
divergences. Thus, the weakness of the topology induced
by a divergence alone cannot explain why WGAN per-
forms well. Finally, we took a closer look at the estima-
tors or RGANs and found that 1) the estimator of RpGANs
used by Jolicoeur-Martineau (2018a) is not the minimum-
variance unbiased estimator (MVUE) and 2) the estima-
tors of RaGANs and RalfGANs are slightly biased with fi-
nite batch-sizes. Surprisingly, we found that neither using
the MVUE with RpGANs or using an unbiased estimator
with RaGANs and RalfGANs improved the performance.
On the contrary, using better estimators always slightly de-
creased the quality of generated samples. This suggests that
using noisy estimates of the divergences may be beneficial
as a regularization mechanism. This could be explained by
vanishing gradients when the discriminator becomes closer
to optimality (Arjovsky & Bottou, 2017).

It still remains a mystery as to why RaGANs are better than
RpGANs and the direct mechanism that leads to RGANs
performing in a much more stable matter. Future work
should attempt to better understand the effect of the critic’s
difference on training. Our experiments were limited to the
generation of small images; thus, we encourage further ex-
periments with the MVUE and the unbiased estimator of
RaLSGAN.
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A. Appendices
A. Proving that the objective functions are divergences

Definition A.1. Let P and Q be probability distributions and S be the set of all probability distributions with common
support. A function D : (S, S)→ R>0 is a divergence if it respects the following two conditions:

D(P,Q) ≥ 0

D(P,Q) = 0 ⇐⇒ P = Q.

Definition A.2. A function f is concave on X if and only if

Lemma A.1. Let f be a concave function on X , we have that

∀x1, x2, x3 ∈ X s.t. x1 < x2 ≤ x3 :
f(x3)− f(x1)

x3 − x1
≤ f(x2)− f(x1)

(x2 − x1)

and

∀x1, x2, x3 ∈ X s.t. x1 ≤ x2 < x3 :
f(x3)− f(x2)
(x3 − x2)

≤ f(x3)− f(x1)
x3 − x1

.

Proof. Let α = (x3−x2)
(x3−x1)

.
If x1 < x2 ≤ x3, we have that α ∈ [0, 1).
If x1 ≤ x2 < x3, we have that α ∈ (0, 1).
Either way, by concavity, we have that

f(x2) ≥
(x3 − x2)
(x3 − x1)

f(x1) +

(
1− (x3 − x2)

(x3 − x1)

)
f(x3)

=
(x3 − x2)
(x3 − x1)

f(x1) +
(x2 − x1)
(x3 − x1)

f(x3)

If x1 < x2 ≤ x3, we have that:

f(x2)− f(x1) ≥
(x1 − x2)f(x1) + (x2 − x1)f(x3)

(x3 − x1)
f(x2)− f(x1)
(x2 − x1)

≥ f(x3)− f(x1)
(x3 − x1)

If x1 ≤ x2 < x3, we have that:

f(x2)− f(x3) ≥
(x3 − x2)f(x1) + (x2 − x3)f(x3)

(x3 − x1)
f(x2)− f(x3)
(x3 − x2)

≥ f(x1)− f(x3)
(x3 − x1)

f(x3)− f(x2)
(x3 − x2)

≤ f(x3)− f(x1)
(x3 − x1)

Lemma A.2. Let f : R→ R be a concave function such that f(0) = 0. We have that

∀a, b,∇ s.t. b ≥ a > 0,∇ 6= 0 :
f(∇b)
b
≤ f(∇a)

a
.
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Proof. If∇ > 0 we have that 0 < ∇a ≤ ∇b.
By Lemma A.1 , we have that

f(∇b)− f(0)
∇(b− 0)

≤ f(∇a)− f(0)
∇(a− 0)

⇐⇒ f(∇b)
b
≤ f(∇a)

a

If ∇ < 0, we have that∇b ≤ ∇a < 0.
By Lemma A.1, we have that

f(0)− f(∇a)
∇(0− a)

≤ f(0)− f(∇b)
∇(0− b)

⇐⇒ f(∇a)
∇a

≤ f(∇b)
∇b

⇐⇒ f(∇a)
a

≥ f(∇b)
b

, since∇ < 0

Thus, when∇ 6= 0, we have that

f(∇b)
b
≤ f(∇a)

a

Lemma A.3. Let f : R → R be a concave function such that f(0) = 0, f is differentiable at 0, f ′(0) 6= 0, supx f(x) =
M > 0, and arg supx f(x) > 0. Let L(∇) = af(∇) + bf(−∇), where a > 0, b > 0, and a 6= b.

If a > b, ∃δ > 0, s.t. ∀∇∗ ∈ (0, δ) : L(∇∗) > 0
If a < b, ∃δ > 0, s.t. ∀∇∗ ∈ (−δ, 0) : L(∇∗) > 0.

Proof. By concavity, for all α ∈ (0, 1], we have f(αx∗) ≥ αf(x∗) > 0.
This means that for any ∇ ∈ (0, x∗], we have that f(∇) > 0.

By concavity, for all x, we have that 1
2f(x) +

1
2f(−x) ≤ f(

1
2x−

1
2x) = f(0) = 0.

Thus, for all ∇ ∈ (0, x∗] we have that 0 < f(∇) ≤ −f(−∇).
This means that f(∇) > 0 and f(−∇) < 0.

Let R(x) = g(x)
f(x) , where g(x) = −f(−x).

We can show that:

lim
x→0

R(x) = lim
x→0

g(x)

f(x)

H
= lim
x→0

g′(x)

f ′(x)
= lim
x→0

f ′(−x)
f ′(x)

=
f ′(0)

f ′(0)
= 1.

If ∇ ∈ (0, x∗], by concavity we have that 0 < f(∇) ≤ −f(−∇), thus R(∇) = −f(−∇)
f(∇) ≥ 1.

Let ε = (a′−b′)
b′ , where a′ > b′ > 0.

By the definition of the limit, ∃δ > 0 s.t. ∀x s.t. 0 < |x| < δ, we have

|R(x)− 1| < ε.

Since this is true for all x s.t. 0 < |x| < δ, this is also true for all 0 < ∇∗ < min(x∗, δ).
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This means that

|R(∇∗)− 1| < ε

=⇒ (R(∇∗)− 1) <
(a′ − b′)

b′
, since R(∇) ≥ 1 for all∇ ∈ (0, x∗]

=⇒ R(∇∗) < a′

b′

=⇒ −f(−∇
∗)

f(∇∗)
<
a′

b′

=⇒ a′f(∇∗) + b′f(−∇∗) > 0

If a > b, let a′ = a, b′ = b, and we have af(∇∗) + bf(−∇∗) > 0 for all 0 < ∇∗ < min(x∗, δ).
If a < b, let a′ = b, b′ = a, and we have af(∇∗) + bf(−∇∗) > 0 for all −min(x∗, δ) < ∇∗ < 0.

Theorem A.4. Let f : R→ R be a concave function such that f(0) = 0, f is differentiable at 0, f ′(0) 6= 0, supx f(x) =
M > 0, and arg supx f(x) > 0. Let P and Q be probability distributions with support X . Then, we have that

DRpf (P,Q) = sup
C:X→R

E
x∼P
y∼Q

[f (C(x)− C(y))]

is a divergence.

Proof. Let Cw(x) = k ∀x (worst possible choice of C).
Let C∗(x) = arg sup

C:X→R
E
x∼P
y∼Q

[f (C(x)− C(y))] (best possible choice of C).

#1 Proof that DRpf (P,Q) ≥ 0

DRpf (P,Q) = E
x∼P
y∼Q

[f (C∗(x)− C∗(y))] ≥ E
x∼P
y∼Q

[f (Cw(x)− Cw(y))] = 0.

#2 Proof that P = Q =⇒ DRpf (P,Q) = 0

DRpf (P,Q) = E
x∼P
y∼P

[f (C∗(x)− C∗(y))]

= E
x∼P

[
E
y∼P

[f (C∗(x)− C∗(y)) |x]
]

≤ E
x∼P

[
f

(
E
y∼P

[C∗(x)− C∗(y)|x]
)]

= E
x∼P

[
f

(
C∗(x)− E

y∼P
[C∗(y)]

)]
= E
x∼P

[f (C ′∗(x))] , where C ′∗(x) = C∗(x)− E
y∼P

[C∗(y)]

≤ f
(

E
x∼P

[C ′∗(x)]

)
, by Jensen’s inequality

= f(0)

= 0
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Since DRpf (P,Q) ≥ 0, we have that DRpf (P,Q) = 0.

#3 Proof that DRpf (P,Q) = 0 =⇒ P = Q

We prove this by contraposition (i.e., we prove that P 6= Q =⇒ DRpf (P,Q) 6= 0). To do so, we design a function C ′ that
is better than the worse option (C(x) = k ∀x).

Assume that P 6= Q.

Let T = arg supS P(S)−Q(S) 3.
Let p =

∫
T
dP(x) =⇒ (1− p) =

∫
X\T dP(x).

Let q =
∫
T
dQ(y) =⇒ (1− q) =

∫
X\T dQ(y).

Since P 6= Q, we know that T 6= ∅.
This means that p > 0, q > 0, and p > q.

Let C ′(x) =

{
∇ if x ∈ T
0 else

, where∇ 6= 0.

Let L(∇) = E
x∼P
y∼Q

[f (C ′(x)− C ′(y))].

We have that

L(∇) =
∫
X

∫
X
f (C ′(x)− C ′(y)) dP(x)dQ(y)

=

∫
T

∫
T

f (C ′(x)− C ′(y)) dP(x)dQ(y) +

∫
T

∫
X\T

f (C ′(x)− C ′(y)) dP(x)dQ(y) +∫
X\T

∫
T

f (C ′(x)− C ′(y)) dP(x)dQ(y) +

∫
X\T

∫
X\T

f (C ′(x)− C ′(y)) dP(x)dQ(y)

= (1) + (2) + (3) + (4)

(1)

∫
T

∫
T

f (C ′(x)− C ′(y)) dP(x)dQ(y) =

∫
T

∫
T

f (∇−∇) dP(x)dQ(y) = 0

(2)

∫
T

∫
X\T

f (C ′(x)− C ′(y)) dP(x)dQ(y) = f(∇)
∫
T

dP(x)
∫
X\T

dQ(y) = f(∇)p(1− q)

(3)

∫
X\T

∫
T

f (C ′(x)− C ′(y)) dP(x)dQ(y) = f(−∇)
∫
X\T

dP(x)
∫
T

dQ(y) = f(−∇)q(1− p)

(4)

∫
X\T

∫
X\T

f (C ′(x)− C ′(y)) dP(x)dQ(y) =

∫
X\T

∫
X\T

f (0− 0) dP(x)dQ(y) = 0

This means that L(∇) = af(∇) + bf(−∇), where a = p(1− q) > 0 and b = q(1− p) > 0.
We know that a = p(1− q) > q(1− p) = b.
Thus, by Lemma A.4, we have that ∃∇∗ > 0 s.t. L(∇∗) > 0.

Thus, if we let∇ = ∇∗, we have that
DRpf (P,Q) = E

x∼P
y∼Q

[f (C∗(x)− C∗(y))] ≥ E
x∼P
y∼Q

[f (C ′(x)− C ′(y))] > 0.

Theorem A.5. Let f : R→ R be a concave function such that f(0) = 0, f is differentiable at 0, f ′(0) 6= 0, supx f(x) =

3If P and Q have probability density functions p(x) and q(x) respectively, then T = {x|p(x) > q(x)}.
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M > 0, and arg supx f(x) > 0. Let P and Q be probability distributions with support X . Then, we have that

DRalff (P,Q) = sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
is a divergence.

Proof. Let Cw(x) = k ∀x (worst possible choice of C).

Let C∗(x) = arg sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
(best possible choice of C).

#1 Proof that DRalff (P,Q) ≥ 0

DRalff (P,Q) = E
x∼P

[
f

(
C∗(x)− E

y∼Q
C∗(y)

)]
≥ E
x∼P

[
f

(
Cw(x)− E

y∼Q
Cw(y)

)]
= E
x∼P

[f (k − k)]

= 0.

#2 Proof that P = Q =⇒ DRalff (P,Q) = 0

DRalff (P,Q) = sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
= sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼P
C(y)

)]
, since P = Q

= sup
C′:X→R

s.t. E[C′(x)]=0

E
x∼P

[f (C ′(x))]

= E
x∼P

[f (C ′∗(x))] , where C ′∗ = arg sup
C′:X→R

s.t. E[C′(x)]=0

E
x∼P

[f (C ′(x))]

≤ f
(

E
x∼P

[C ′∗(x)]

)
, by Jensen’s inequality

= f(0)

= 0

Since DRalff (P,Q) ≥ 0, we have that DRalff (P,Q) = 0.

#3 Proof that DRaf (P,Q) = 0 =⇒ P = Q

We prove this by contraposition (i.e., we prove that P 6= Q =⇒ DRaf (P,Q) 6= 0). To do so, we design a function C ′ that
is better than the worse option (C(x) = k ∀x).

Assume that P 6= Q.

Let T = arg supS P(S)−Q(S).
Let p =

∫
T
dP(x) =⇒ (1− p) =

∫
X\T dP(x).

Let q =
∫
T
dQ(y) =⇒ (1− q) =

∫
X\T dQ(y).

Since P 6= Q, we know that T 6= ∅.
This means that p > 0, q > 0, and p > q.
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Let C ′(x) =

{
∇ if x ∈ T
0 else

, where∇ 6= 0.

Let L(∇) = E
x∼P

[
f

(
C ′(x)− E

y∼Q
C ′(y)

)]
.

We have that

L(∇) =
∫
X
f

(
C ′(x)− E

y∼Q
C ′(y)

)
dP(x)

=

∫
X
f

(
C ′(x)−

∫
T

∇dQ(y)

)
dP(x)

=

∫
X
f (C ′(x)−∇q) dP(x)

=

∫
T

f (∇−∇q) dP(x) +
∫
X\T

f (0−∇q) dP(x)

= pf (∇(1− q)) + (1− p)f (−∇q)

Case 1: If q < (1− q), by Lemma A.3, we have that:

f(−∇(1− q))
(1− q)

≤ f(−∇q)
q

=⇒ f(−∇q) ≥ q

(1− q)
f(−∇(1− q))

Thus, L(∇) ≥ pf (∇(1− q)) + (1−p)q
(1−q) f (−∇(1− q)).

Knowing that p > q and (1− p) < (1− q), we have that p > q > q(1−p)
(1−q) .

Thus, by Lemma A.4, we have that ∃∇∗ > 0 s.t. L(∇∗) > 0.

Case 2: If q ≥ (1− q), by Lemma A.3, we have that:

f(∇q)
q
≤ f(∇(1− q))

(1− q)

=⇒ f(∇(1− q)) ≥ (1− q)
q

f(∇q)

Thus, L(∇) ≥ p(1−q)
q f (∇q) + (1− p)f (−∇q).

Knowing that p > q and (1− p) < (1− q), we have that (1− p) < (1− q) < (1−q)p
q .

Thus, by Lemma A.4, we have that ∃∇∗ > 0 s.t. L(∇∗) > 0.

Thus, if we let ∇ = ∇∗, we have that

DRalff (P,Q) = E
x∼P

[
f

(
C∗(x)− E

y∼Q
C∗(y)

)]
≥ E
x∼P

[
f

(
C ′(x)− E

y∼Q
C ′(y)

)]
> 0.

Theorem A.6. Let f : R→ R be a concave function such that f(0) = 0, f is differentiable at 0, f ′(0) 6= 0, supx f(x) =
M > 0, and arg supx f(x) > 0. Let P and Q be probability distributions with support X . Then, we have that

DRaf (P,Q) = sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
+ E
y∼Q

[
f

(
E
x∼P

C(x)− C(y)
)]

is a divergence.



Relativistic f -divergences

Proof. Let Cw(x) = k ∀x (worst possible choice of C).

Let C∗(x) = arg sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
+ E
y∼Q

[
f

(
E
x∼P

C(x)− C(y)
)]

(best possible choice of C).

#1 Proof that DRaf (P,Q) ≥ 0

DRaf (P,Q) = E
x∼P

[
f

(
C∗(x)− E

y∼Q
C∗(y)

)]
+ E
y∼Q

[
f

(
E
x∼P

C∗(x)− C∗(y)
)]

≥ E
x∼P

[
f

(
Cw(x)− E

y∼Q
Cw(y)

)]
+ E
y∼Q

[
f

(
E
x∼P

Cw(x)− Cw(y)
)]

= E
x∼P

[f (k − k)] + E
x∼Q

[f (k − k)]

= 0.

#2 Proof that P = Q =⇒ DRaf (P,Q) = 0

Let C ′(x) = C(x)− E
x∼P

C(x)

DRaf (P,Q) = sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
+ E
y∼Q

[
f

(
E
x∼P

C(x)− C(y)
)]

= sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼P
C(y)

)]
+ E
x∼P

[
f

(
E
x∼P

C(y)− C(x)
)]

= sup
C′:X→R

s.t. E[C′(x)]=0

E
x∼P

[f (C ′(x)) + f (−C ′(x))]

≤ 2 sup
C′:X→R

s.t. E[C′(x)]=0

E
x∼P

[
f

(
1

2
C ′(x)− 1

2
C ′(x)

)]
, by concavity

= 2 sup
C′:X→R

s.t. E[C′(x)]=0

E
x∼P

[f (0)]

= 0

Since DRaf (P,Q) ≥ 0, we have that DRaf (P,Q) = 0.

#3 Proof that DRaf (P,Q) = 0 =⇒ P = Q

We prove this by contraposition (i.e., we prove that P 6= Q =⇒ DRaf (P,Q) 6= 0). To do so, we design a function C ′ that
is better than the worse option (C(x) = k ∀x).

Assume that P 6= Q.

Let T = arg supS P(S)−Q(S).
Let p =

∫
T
dP(x) =⇒ (1− p) =

∫
X\T dP(x).

Let q =
∫
T
dQ(y) =⇒ (1− q) =

∫
X\T dQ(y).

Since P 6= Q, we know that T 6= ∅.
This means that p > 0, q > 0, and p > q.

Let C ′(x) =

{
∇ if x ∈ T
0 else

, where∇ 6= 0.

Let L(∇) = E
x∼P

[
f

(
C ′(x)− E

y∼Q
C ′(y)

)]
+ E
y∼Q

[
f

(
E
x∼P

C ′(x)− C ′(y)
)]

.
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We have that

L(∇) =
∫
X
f

(
C ′(x)− E

y∼Q
C ′(y)

)
dP(x) +

∫
X
f

(
E
x∼P

C ′(x)− C ′(y)
)
dQ(y)

=

∫
X
f

(
C ′(x)−

∫
T

∇dQ(y)

)
dP(x) +

∫
X
f

(∫
T

∇dP(x)− C ′(y)
)
dQ(y)

=

∫
X
f (C ′(x)−∇q) dP(x) +

∫
X
f (∇p− C ′(y)) dQ(y)

=

∫
T

f (∇(1− q)) dP(x) +
∫
X\T

f (−∇q) dP(x) +∫
T

f (∇(p− 1)) dQ(y) +

∫
T

f (∇p) dQ(y)

= pf (∇(1− q)) + (1− p)f (−∇q) + qf (∇(p− 1)) + (1− q)f (∇p)
= pf (∇(1− q)) + (1− p)f (−∇q) + qf (−∇(1− p)) + (1− q)f (∇p)

Case 1: If (1− q) ≥ p, by Lemma A.3, we have that:

f(∇(1− q))
(1− q)

≤ f(∇p)
p

=⇒ f(∇p) ≥ p

(1− q)
f(∇(1− q))

Also, we have that (1− p) ≥ q, thus, by Lemma A.3, we have that:

f(−∇(1− p))
(1− p)

≤ f(−∇q)
q

=⇒ f(−∇q) ≥ q

(1− p)
f(−∇(1− p))

Also, q < p =⇒ (1− q) > (1− p), thus, by Lemma A.3, we have that:

f(−∇(1− q))
(1− q)

≤ f(−∇(1− p))
(1− p)

=⇒ f(−∇(1− p)) ≥ (1− p)
(1− q)

f(−∇(1− q))

Thus,

L(∇) = pf (∇(1− q)) + (1− p)f (−∇q) + qf (−∇(1− p)) + (1− q)f (∇p)
≥ pf (∇(1− q)) + qf (−∇(1− p)) + qf (−∇(1− p)) + pf (∇(1− q))
= 2pf (∇(1− q)) + 2qf (−∇(1− p))

≥ 2pf (∇(1− q)) + 2
q(1− p)
(1− q)

f (−∇(1− q))

Knowing that p > q and (1− p) < (1− q), we have that 2p > 2q > 2q(1−p)
(1−q) .

Thus, by Lemma A.4, we have that ∃∇∗ > 0 s.t. L(∇∗) > 0.

Case 2: If p > (1− q), by Lemma A.3, we have that:

f(∇p)
p

≤ f(∇(1− q))
(1− q)

=⇒ f(∇(1− q)) ≥ (1− q)
p

f(∇p)
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Also, we have that q > (1− p), thus, by Lemma A.3, we have that:

f(−∇q)
q

≤ f(−∇(1− p))
(1− p)

=⇒ f(−∇(1− p)) ≥ (1− p)
q

f(−∇q)

Also, p > q, thus, by Lemma A.3, we have that:

f(−∇p)
p

≤ f(−∇q)
q

=⇒ f(−∇q) ≥ q

p
f(−∇p)

Thus,

L(∇) = pf (∇(1− q)) + (1− p)f (−∇q) + qf (−∇(1− p)) + (1− q)f (∇p)
≥ (1− q)f (∇p) + (1− p)f (−∇q) + (1− p)f (−∇q) + (1− q)f (∇p)
= 2(1− q)f (∇p) + 2(1− p)f (−∇q)

≥ 2(1− q)f (∇p) + 2
q(1− p)

p
f (−∇p)

Knowing that p > q and (1− p) < (1− q), we have that 2(1− q) > 2(1− p) > 2 q(1−p)p .
Thus, by Lemma A.4, we have that ∃∇∗ > 0 s.t. L(∇∗) > 0.

Thus, if we let∇ = ∇∗, we have that

DRaf (P,Q) = E
x∼P

[
f

(
C∗(x)− E

y∼Q
C∗(y)

)]
+ E
y∼Q

[
f

(
E
x∼P

C∗(x)− C∗(y)
)]

≥ E
x∼P

[
f

(
C ′(x)− E

y∼Q
C ′(y)

)]
+ E
y∼Q

[
f

(
E
x∼P

C ′(x)− C ′(y)
)]

> 0.

Theorem A.7. Let f : R→ R be a concave function such that f(0) = 0, f is differentiable at 0, f ′(0) 6= 0, supx f(x) =
M > 0, and arg supx f(x) > 0. Let P and Q be probability distributions with support X . Let M = 1

2P + 1
2Q Then, we

have that
DRcf (P,Q) = sup

C:X→R
E
x∼P

[
f
(
C(x)− E

m∼M
C(m)

)]
+ E
y∼Q

[
f
(

E
m∼M

C(m)− C(y)
)]

is a divergence.

Proof. Let Cw(x) = k ∀x (worst possible choice of C).
Let C∗(x) = arg sup

C:X→R
E
x∼P

[
f
(
C(x)− E

m∼M
C(m)

)]
+ E
y∼Q

[
f
(

E
m∼M

C(m)− C(y)
)]

(best possible choice of C).

#1 Proof that DRcf (P,Q) ≥ 0

Same proof as theorem A.6 #1.

#2 Proof that P = Q =⇒ DRcf (P,Q) = 0

Same proof as theorem A.6 #2.

#3 Proof that DRcf (P,Q) = 0 =⇒ P = Q
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We prove this by contraposition (i.e., we prove that P 6= Q =⇒ DRcf (P,Q) 6= 0). To do so, we design a function C ′ that
is better than the worse option (C(x) = k ∀x).

Assume that P 6= Q.

Make the same assumptions as theorem A.6 #2. The only thing that changes is L(∇).

We instead have that

L(∇) = pf (∇(1− c)) + (1− p)f (−∇c) + qf (−∇(1− c)) + (1− q)f (∇c)
= L1(∇) + L2(∇),

where c = 1
2p+

1
2q,

L1(∇) = pf (∇(1− c)) + qf (−∇(1− c)),
L2(∇) = (1− q)f (∇c) + (1− p)f (−∇c).

Knowing that p > q and (1− q) > (1− p), we can use Lemma A.4 to show that
∃δ1 > 0, s.t. ∀∇∗1 ∈ (0, δ1) : L1(∇∗1) > 0 and ∃δ2 > 0, s.t. ∀∇∗2 ∈ (0, δ2) : L2(∇∗2) > 0.
Thus, let δ = min(δ1, δ2). We have that ∀∇∗ ∈ (0, δ) : L1(∇∗) > 0 and L2(∇∗) > 0.
This means that L(∇) = L1(∇∗) + L2(∇∗) > 0

B. Inequalities between Relativistic Divergences

To prove that D1 is weaker than D2, we can just show that D1(P,Q) ≤ D2(P,Q) since we have that:

D1(Pn,P) ≤ D2(Pn,P)→ 0 =⇒ D1(Pn,P)→ 0.

Theorem A.8. Let f : R→ R be a concave function such that f(0) = 0, f is differentiable at 0, f ′(0) 6= 0, supx f(x) =
M > 0, and arg supx f(x) > 0. Let P and Q be probability distributions with support X . Then, we have that

• DS(P,Q) ≤ DRpf (P,Q)

• DRpf (P,Q) ≤ DRalff (P,Q) and DRpf (P,Q) ≤ DRaf (P,Q)

Proof. Showing that DS(P,Q) ≤ DRpf (P,Q):
Let

C∗S(x) = arg sup
C:X→R

Ex∼P [f(C(x))] + Ez∼Q [f(−C(y))]

and

C∗Rp(x) = arg sup
C:X→R

E
x∼P
y∼Q

[f (C(x)− C(y))] .
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DS(P,Q) = sup
C:X→R

Ex∼P [f(C(x))] + Ez∼Q [f(−C(y))]

= 2 E
x∼P
y∼Q

[
1

2
f (C∗S(x)) +

1

2
f (−C∗S(y))

]

≤ 2 E
x∼P
y∼Q

[
f

(
1

2
C∗S(x)−

1

2
C∗S(y)

)]

= 2 E
x∼P
y∼Q

[f (C ′(x)− C ′(y))] , where C ′(x) =
1

2
C∗S(x)

≤ sup
C:X→R

2 E
x∼P
y∼Q

[f (C(x)− C(y))]

= DRpf (P,Q)

Showing that DRpf (P,Q) ≤ DRalff (P,Q):

DRpf (P,Q) = arg sup
C:X→R

2 E
x∼P
y∼Q

[f (C(x)− C(y))]

= 2 E
x∼P
y∼Q

[
f
(
C∗Rp(x)− C∗Rp(y)

)]
= 2 E

x∼P

[
E
y∼Q

[
f
(
C∗Rp(x)− C∗Rp(y)

)
|x
]]

≤ 2 E
x∼P

[
f

(
E
y∼Q

[
C∗Rp(x)− C∗Rp(y)|x

])]
= 2 E

x∼P

[
f

(
C∗Rp(x)− E

y∼Q

[
C∗Rp(y)

])]
≤ sup
C:X→R

2 E
x∼P

[
f

(
C(x)− E

y∼Q
[C(y)]

)]
= DRalff (P,Q)

Showing that DRpf (P,Q) ≤ DRaf (P,Q):

DRpf (P,Q) = arg sup
C:X→R

2 E
x∼P
y∼Q

[f (C(x)− C(y))]

= 2 E
x∼P
y∼Q

[
f
(
C∗Rp(x)− C∗Rp(y)

)]
= E
x∼P

[
E
y∼Q

[
f
(
C∗Rp(x)− C∗Rp(y)

)
|x
]]

+ E
y∼Q

[
E
x∼P

[
f
(
C∗Rp(x)− C∗Rp(y)

)
|y
]]

≤ E
x∼P

[
f

(
E
y∼Q

[
C∗Rp(x)− C∗Rp(y)|x

])]
+ E
y∼Q

[
f

(
E
x∼P

[
C∗Rp(x)− C∗Rp(y)|y

])]
= E
x∼P

[
f

(
C∗Rp(x)− E

y∼Q

[
C∗Rp(y)

])]
+ E
y∼Q

[
f

(
E
x∼P

[
C∗Rp(x)

]
− C∗Rp(y)

)]
≤ sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼Q
[C(y)]

)]
+ E
y∼Q

[
f

(
E
x∼P

[C(x)]− C(y)
)]

= DRaf (P,Q)
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C. Bias in RalfGANs, RaGANs, and RcGANs

Note that we refer to the second term in RaGANs as ”RaGAN2”. When possible, we calculate the bias for RalfGANs,
RaGAN2s, RaGANs, and RcGANs.

Let
E
x∼P

[C(x)] = µx,

V ar
x∼P

[C(x)] = σ2
x,

E
x∼P

[C(x)2] = σ2
x + µ2

x,

E
y∼Q

[C(y)] = µy ,

V ar
y∼Q

[C(y)] = σ2
y ,

E
y∼Q

[C(y)2] = σ2
y + µ2

y .

In a minibatch of size k, we have that x1, . . . , xk and y1, . . . , yk are iid.
Thus, C(x1), . . . , C(xk) and C(y1), . . . , C(yk) are also iid.
This means that:
E[C(xi)C(xj)] = E[C(xi)]E[C(xj)] = µ2

x ∀i 6= j,
E[C(yi)C(yj)] = E[C(yi)]E[C(yj)] = µ2

y ∀i 6= j.

C.1. SGAN

f(x) = log( sigmoid(x)) + log(2) = − log(1 + e−x) + log(2)

BiasRaSGAN (P,Q) = E

[
f

(
C(x)− 1

k

k∑
i=1

C(yi)

)
− f (C(x)− µy)

]
= E

[
− log

(
1 + e

1
k

∑k
i=1 C(yi)−C(x)

)
+ log(2) + log

(
1 + eµy−C(x)

)
− log(2)

]
= E

[
log

(
1 + eµy−C(x)

1 + e
1
k

∑k
i=1 C(yi)−C(x)

)]
= E

[
log

(
eC(x) + eµy

eC(x) + e
1
k

∑k
i=1 C(yi)

)]
= E

[
log
(
eC(x) + eµy

)
− log

(
eC(x) + e

1
k

∑k
i=1 C(yi)

)]
≈ E

[
C(x) + eµy−C(x) − C(x)− e 1

k

∑k
i=1 C(yi)−C(x)

]
= E

[
eµy − e 1

k

∑k
i=1 C(yi)

eC(x)

]

We cannot find a close form for the bias.

C.2. LSGAN

f(x) = −(x− 1)2 + 1
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D̂iv
RaLSGAN

(P,Q) = E

1
k

k∑
i=1

f

C(xi)− 1

k

k∑
j=1

C(yj)


= E

1
k

k∑
i=1

−
C(xi)− 1

k

k∑
j=1

C(yj)− 1

2

+ 1




= E

1
k

k∑
i=1

−C(xi)2 + 2

k

k∑
j=1

C(xi)C(yj) + 2C(xi)− 2
1

k

k∑
j=1

C(yj)−
1

k2

 k∑
j=1

C(yj)

2



=
1

k

k∑
i=1

−E [C(xi)2]+ 2

k

k∑
j=1

E [C(xi)]E [C(yj)] + 2E [C(xi)]− 2
1

k

k∑
j=1

E [C(yj)]

− 1

k2

k∑
j=1

E[C(yj)2]−
1

k2

k∑
r=1
r 6=j

k∑
j=1

E[C(yj)]E[C(yr)]


=

1

k

k∑
i=1

(
−σ2

x − µ2
x + 2µxµy + 2µx − 2µy −

1

k
(σ2
y + µ2

y)−
(k − 1)

k
µ2
y

)
= −σ2

x − µ2
x + 2µxµy + 2µx − 2µy −

1

k
σ2
y − µ2

y

D̂iv
RaLSGAN2

(P,Q) = E

1
k

k∑
j=1

f

(
1

k

k∑
i=1

C(xi)− C(yj)

)
= E

1
k

k∑
j=1

−(1

k

k∑
i=1

C(xi)− C(yj)− 1

)2

− 1


= E

1
k

k∑
j=1

−C(yj)2 + 2

k

k∑
x=1

C(xi)C(yj)− 2C(yj) + 2
1

k

k∑
i=1

C(xi)−
1

k2

(
k∑
i=1

C(xi)

)2


=
1

k

k∑
j=1

(
−E

[
C(yj)

2
]
+

2

k

k∑
i=1

E [C(xi)]E [C(yj)]− 2E [C(yj)] + 2
1

k

k∑
i=1

E [C(xi)]

− 1

k2

k∑
i=1

E[C(xi)2]−
1

k2

k∑
r=1
r 6=i

k∑
i=1

E[C(xi)]E[C(xr)]


=

1

k

k∑
j=1

(
−σ2

y − µ2
y + 2µxµy − 2µy + 2µx −

1

k
(σ2
x + µ2

x)−
(k − 1)

k
µ2
x

)
= −σ2

y − µ2
y + 2µxµy − 2µy + 2µx −

1

k
σ2
x − µ2

x
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DivRaLSGAN(P,Q) = E [f (C(x)− µy)]

= E
[
− (C(x)− µy − 1)

2 − 1
]

= E
[
−C(x)2 + 2C(x)µy + 2C(x)− 2µy − µ2

y

]
= −σ2

x − µ2
x + 2µxµy + 2µx − 2µy − µ2

y

DivRaLSGAN2(P,Q) = E [f (µx − C(y))]

= E
[
− (µx − C(y)− 1)

2 − 1
]

= E
[
−µ2

x + 2C(y)µx − 2C(y) + 2µx − C(y)2
]

= −σ2
y − µ2

y + 2µxµy − 2µy + 2µx − µ2
x

BiasRaLSGAN(P,Q) = D̂iv
RaLSGAN

(P,Q)−DivRaLSGAN(P,Q)

= −σ2
x − µ2

x + 2µxµy + 2µx − 2µy −
1

k
σ2
y − µ2

y + σ2
x + µ2

x − 2µxµy − 2µx + 2µy + µ2
y

= −1

k
σ2
y

BiasRaLSGAN2(P,Q) = D̂iv
RaLSGAN2

(P,Q)−DivRaLSGAN2(P,Q)

= −σ2
y − µ2

y + 2µxµy − 2µy + 2µx −
1

k
σ2
x − µ2

x + σ2
y + µ2

y − 2µxµy + 2µy − 2µx + µ2
x

= −1

k
σ2
x

BiasRalfLSGAN = BiasRaLSGAN (P,Q) + BiasRaLSGAN2(Q,P)

= −1

k
σ2
y −

1

k
σ2
x

= −1

k

(
σ2
x + σ2

y

)
Let
σ̂2
x = 1

(k−1)
∑k
i=1

(
C(xi)− 1

k

∑k
i=1 C(xj)

)
,

σ̂2
y = 1

(k−1)
∑k
i=1

(
C(yi)− 1

k

∑k
i=1 C(yj)

)
.

We know that σ̂2
x and σ̂2

y are unbiased estimators of σ2
x and σ2

y respectively.
Thus, if we add 1

k σ̂
2
y to the objective function of RalfLSGAN and 1

k (σ̂
2
x + σ̂2

y) to the objective function of RaLSGAN, we
have that the new objective functions are unbiased.
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D̂iv
RcLSGAN

(P,Q) = E

1
k

k∑
i=1

f

C(xi)− 1

2k

k∑
j=1

(C(xj) + C(yj))


= E

1
k

k∑
i=1

−
C(xi)− 1

2k

k∑
j=1

(C(xj) + C(yj))− 1

2

+ 1




= E

1
k

k∑
i=1

−C(xi)2 + 1

k

k∑
j=1

C(xi) (C(xj) + C(yj)) + 2C(xi)−
1

k

k∑
j=1

C(xj)−
1

k

k∑
j=1

C(yj)

− 1

4k2

 k∑
j=1

C(xj) + C(yj)

2



=
1

k

k∑
i=1

−E [C(xi)2]+ 1

k
E
[
C(xi)

2
]
+

1

k

k∑
j=1
j 6=i

E [C(xi)]E [C(xj)] +
1

k

k∑
j=1

E [C(xi)]E [C(yj)]

+2E [C(xi)]−
1

k

k∑
j=1

E [C(xj)]−
1

k

k∑
j=1

E [C(yj)]−
1

4k2

k∑
j=1

E[(C(xj) + C(yj))
2]

− 1

4k2

k∑
r=1
r 6=j

k∑
j=1

E[C(xi) + C(yi)]E[C(xr) + C(yr)]


=

(
1

k
− 1

)(
σ2
x + µ2

x

)
+

(k − 1)

k
µ2
x + µxµy + 2µx − µx − µy

− 1

4k
((σ2

x + µ2
x) + 2µxµy + (σ2

y + µ2
y))−

(k − 1)

4k
(µ2
x + 2µxµy + µ2

y)

=
(1− k)
k

σ2
x + µxµy + µx − µy −

1

4
µ2
x −

1

2
µxµy −

1

4
µ2
y −

1

4k
σ2
x −

1

4k
σ2
y

=
(.75− k)

k
σ2
x −

1

4k
σ2
y −

1

4
µ2
x −

1

4
µ2
y +

1

2
µxµy + µx − µy
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D̂iv
RcLSGAN

(P,Q) = E

1
k

k∑
i=1

−
C(yi)− 1

2k

k∑
j=1

(C(xj) + C(yj)) + 1

2

+ 1




= E

1
k

k∑
i=1

−C(yi)2 + 1

k

k∑
j=1

C(yi) (C(xj) + C(yj))− 2C(yi) +
1

k

k∑
j=1

C(xj) +
1

k

k∑
j=1

C(yj)

− 1

4k2

 k∑
j=1

C(xj) + C(yj)

2



=
1

k

k∑
i=1

−E [C(yi)2]+ 1

k
E
[
C(yi)

2
]
+

1

k

k∑
j=1
j 6=i

E [C(yi)]E [C(yj)] +
1

k

k∑
j=1

E [C(xi)]E [C(yj)]

−2E [C(yi)] +
1

k

k∑
j=1

E [C(xj)] +
1

k

k∑
j=1

E [C(yj)]−
1

4k2

k∑
j=1

E[(C(xj) + C(yj))
2]

− 1

4k2

k∑
r=1
r 6=j

k∑
j=1

E[C(xi) + C(yi)]E[C(xr) + C(yr)]


=

(
1

k
− 1

)(
σ2
y + µ2

y

)
+

(k − 1)

k
µ2
y + µxµy − 2µy + µx + µy

− 1

4k
((σ2

x + µ2
x) + 2µxµy + (σ2

y + µ2
y))−

(k − 1)

4k
(µ2
x + 2µxµy + µ2

y)

=
(1− k)
k

σ2
y + µxµy + µx − µy −

1

4
µ2
x −

1

2
µxµy −

1

4
µ2
y −

1

4k
σ2
x −

1

4k
σ2
y

=
(.75− k)

k
σ2
y −

1

4k
σ2
x −

1

4
µ2
x −

1

4
µ2
y +

1

2
µxµy + µx − µy

DivRcLSGAN(P,Q) = E
[
f

(
C(x)− (µx + µy)

2

)]
= E

[
−
(
C(x)− (µx + µy)

2
− 1

)2

− 1

]

= E
[
−C(x)2 + C(x)(µx + µy) + 2C(x)− (µx + µy)−

(µx + µy)
2

4

]
= −σ2

x − µ2
x + µ2

x + µxµy + µx − µy −
1

4
(µ2
x + µ2

y + 2µxµy)

= −σ2
x +

1

2
µxµy + µx − µy −

1

4
µ2
x −

1

4
µ2
y



Relativistic f -divergences

DivRcLSGAN2(P,Q) = E [f (C(x)− µy)]

= E

[
−
(
C(y)− (µx + µy)

2
+ 1

)2

− 1

]

= E
[
−C(y)2 + C(y)(µx + µy)− 2C(y) + (µx + µy)−

(µx + µy)
2

4

]
= −σ2

y − µ2
y + µ2

y + µxµy + µx − µy −
1

4
(µ2
x + µ2

y + 2µxµy)

= −σ2
x +

1

2
µxµy + µx − µy −

1

4
µ2
x −

1

4
µ2
y

BiasRaLSGAN(P,Q) = D̂iv
RaLSGAN

(P,Q)−DivRaLSGAN(P,Q)

=
3

4k
σ2
x −

1

4k
σ2
y

BiasRaLSGAN2(P,Q) = D̂iv
RaLSGAN2

(P,Q)−DivRaLSGAN2(P,Q)

=
3

4k
σ2
y −

1

4k
σ2
x

BiasRalfLSGAN = BiasRaLSGAN (P,Q) + BiasRaLSGAN2(Q,P)

=
3

4k
σ2
x −

1

4k
σ2
y +

3

4k
σ2
y −

1

4k
σ2
x

=
1

2k

(
σ2
x + σ2

y

)
Let
σ̂2
x = 1

(k−1)
∑k
i=1

(
C(xi)− 1

k

∑k
i=1 C(xj)

)
,

σ̂2
y = 1

(k−1)
∑k
i=1

(
C(yi)− 1

k

∑k
i=1 C(yj)

)
.

We know that σ̂2
x and σ̂2

y are unbiased estimators of σ2
x and σ2

y respectively.
Thus, if we subtract 1

2k (σ̂
2
x + σ̂2

y) to the objective function of RcLSGAN, we have that the new objective functions are
unbiased.

C.3. HINGEGAN

f(x) = −max(0, 1− x) + 1

For simplicity:
Let x′ = C(x), y′i = C(yi), p(x) and q(x) be the probability density functions of x′ and y′i.
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DivRaHingeGAN(P,Q) = E

[
f

(
C(x)− 1

k

k∑
i=1

C(yi)

)]

= E

[
−max

(
0, 1 +

1

k

k∑
i=1

y′i − x′
)

+ 1

]

= −
∫ ∞
−∞

...

∫ ∞
−∞

∫ 1+ 1
k

∑k
i=1 y

′
i

−∞

(
1 +

1

k

k∑
i=1

y′i − x

)
p(x)q(y)...q(y)dxdy1...dyk

This is non-linear and we cannot derive a close-form.

D. Architecture

Generator

z ∈ R128 ∼ N(0, I)

linear, 128 -¿ 512*4*4

Reshape, 512*4*4 -¿ 512 x 4 x 4

ConvTranspose2d 4x4, stride 2, pad 1, 512-¿256

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, 256-¿128

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, 128-¿64

BN and ReLU

ConvTranspose2d 3x3, stride 1, pad 1, 64-¿3

Tanh

Discriminator

x ∈ R3x32x32

Conv2d 3x3, stride 1, pad 1, 3-¿64

LeakyReLU 0.1

Conv2d 4x4, stride 2, pad 1, 64-¿64

LeakyReLU 0.1

Conv2d 3x3, stride 1, pad 1, 64-¿128

LeakyReLU 0.1

Conv2d 4x4, stride 2, pad 1, 128-¿128

LeakyReLU 0.1

Conv2d 3x3, stride 1, pad 1, 128-¿256

LeakyReLU 0.1

Conv2d 4x4, stride 2, pad 1, 256-¿256

LeakyReLU 0.1

Conv2d 3x3, stride 1, pad 1, 256-¿512

Reshape, 512 x 4 x 4 -¿ 512*4*4

linear, 512*4*4 -¿ 1


