On Relativistic f-Divergences

Alexia Jolicoeur-Martineau

Abstract
We take a more rigorous look at Relativistic Generative Adversarial Networks (RGANs) and prove that the objective function of the discriminator is a statistical divergence for any concave function f with minimal properties ($f(0) = 0$, $f'(0) \neq 0$, $\sup_x f(x) > 0$). We devise additional variants of relativistic f-divergences. We show that the Wasserstein distance is weaker than f-divergences which are weaker than relativistic f-divergences. Given the good performance of RGANs, this suggests that Wasserstein GAN does not perform well primarily because of the weak metric, but rather because of regularization and the use of a relativistic discriminator. We introduce the minimum-variance unbiased estimator (MVUE) for Relativistic GANs and show that it does not perform better. We show that the estimator of Relativistic average GANs (RaGANs) is asymptotically unbiased and that the finite-sample bias is small; removing this bias does not improve performance.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al., 2014) are a very popular approach to approximately generate data from a complex probability distribution using only samples of data (without any information on the true data distribution). Most notably, it has been very successful in generating photo-realistic images (Karras et al., 2017; 2018). It consists in a game between two neural networks, the generator G and the discriminator D. The goal of D is to classify real from fake (generated) data. The goal of G is to generate fake data that appears to be real, thus “fooling” D into thinking that fake data is actually real.

There are many GAN variants and most of them consist of changing the loss function of D. To name a few: Standard GAN (SGAN) (Goodfellow et al., 2014), Least-Squares GAN (LSGAN) (Mao et al., 2017), Hinge-loss GAN (HingeGAN) (Miyato et al., 2018), Wasserstein GAN (WGAN) (Arjovsky et al., 2017).

For most GAN variants, training D is equivalent to estimating a divergence: SGAN estimates the Jensen–Shannon divergence (JSD), LSGAN estimates the Pearson χ^2 divergence, HingeGAN estimates the Reverse-KL divergence, and WGAN estimates the Wasserstein distance. Even more generally, f-GANs (Nowozin et al., 2016) estimate any f-divergence (which includes most of the popular divergences), while IPM-based GANs (Mroueh & Sercu, 2017) estimate any Integral probability metric (IPM) (Müller, 1997). Thus, intuitively, GANs can be thought of as estimating a divergence and then minimizing it (this is not technically correct; see Jolicoeur-Martineau (2018b)).

Recently, Jolicoeur-Martineau (2018a) showed that IPM-based GANs possess a unique type of discriminator which they call a Relativistic Discriminator (RD). They explained that one can construct f-GANs while using a RD and that doing so improves the stability of the training and quality of generated data. They called this approach Relativistic GANs (RGANs). They proposed two variants: Relativistic paired GANs (RpGANs)\(^1\) and Relativistic Average GANs (RaGANs).

Jolicoeur-Martineau (2018a) provided mathematical and intuitive arguments as to why using a Relativistic Discriminator (RD) may be helpful. However, they did not prove that the loss functions are mathematically sensible. Furthermore, the estimators that they used are not the minimum-variance unbiased estimators (MVUE).

The contributions of this paper are the following:

1. We prove that the objective functions of the discriminator in RGANs are divergences (relativistic f-divergences).

2. We devise additional variants of Relativistic f-divergences.

\(^1\)We added the word “paired” to better distinguish the variant with paired real/fake data (originally called RGANs) and the general approach called Relativistic GANs (RGANs).
3. We show that the Wasserstein Distance is weaker than f-divergences which are weaker than relativistic f-divergences.

4. We present the minimum-variance unbiased estimator (MVUE) of RpGANs and show that using it hinders the performance of the generator.

5. We show that RaGANs are only asymptotically unbiased, but that the finite-sample bias is small. Removing this bias does not improve the performance of the generator.

2. Background

For the rest of the paper, we will refer to the “critic” $C(x)$ instead of the discriminator $D(x)$. The critic is the discriminator before applying the activation function $(D(x) = a(C(x)))$, where a is an activation function and $C(x) \in \mathbb{R}$. Intuitively, the critic can be thought of as describing how realistic x is. In the case of SGAN and HingeGAN, a large $C(x)$ means that x is realistic, while a small $C(x)$ means that x is not realistic. We use this notation because Relativistic GANs are defined in terms of the critic rather than the discriminator.

2.1. Generative Adversarial Networks

GANs can be defined very generally in the following way:

$$\sup_{C: \mathcal{X} \to \mathbb{R}} E_{x \sim \mathcal{P}} [f_1(C(x))] + E_{y \sim \mathcal{Q}} [f_2(C(y))],$$

(1)

$$\sup_{G: Z \to \mathcal{X}} E_{z \sim \mathcal{Z}} [g_1(C(z))] + E_{y \sim \mathcal{Z}} [g_2(C(G(z)))],$$

(2)

where f_1, f_2, g_1, $g_2 : \mathbb{R} \to \mathbb{R}$, \mathcal{P} is the distribution of real data with support \mathcal{X}, \mathcal{Z} is the latent distribution (generally a multivariate normal distribution), $C(x)$ is the critic evaluated at x, $G(z)$ is the generator evaluated at z, and $G(z) \sim \mathcal{Q}$, where \mathcal{Q} is the distribution of fake data. See Brock et al. (2018) for details on how different choices of \mathcal{Z} perform. The critic and the generator are generally trained with stochastic gradient descent (SGD) in alternating steps.

Most GANs can be separated in two classes: non-saturating and saturating loss functions. GANs with the saturating loss are such that $g_1 = -f_1$ and $g_2 = -f_2$, while GANs with the non-saturating loss are such that $g_1 = f_2$ and $g_2 = f_1$. In this paper, we will assume that the non-saturating loss is used as it generally works best in practice (Goodfellow et al., 2014) (Nowozin et al., 2016). Note that g_1 generally has no impact on training since its gradient with respect to G is zero; we can thus ignore it.

Although not always the case, the most popular GAN loss functions (SGAN, LSGAN with labels -1/1, HingeGAN, WGAN) are symmetric (i.e., $f_2(x) = f_1(-x)$). For simplicity, in this paper, we restrict ourselves to symmetric loss functions.

Non-saturating Symmetric GANs (SyGANs) can be represented more simply as:

$$\sup_{C: \mathcal{X} \to \mathbb{R}} E_{x \sim \mathcal{P}} [f(C(x))] + E_{y \sim \mathcal{Q}} [f(-C(y))],$$

(3)

$$\sup_{G: Z \to \mathcal{X}} E_{z \sim \mathcal{Z}} [f(C(G(z)))],$$

(4)

for some function $f : \mathbb{R} \to \mathbb{R}$. For easier optimization, we generally want f to be concave with respect to the critic. This is the case in symmetric f-GANs.

In this paper, we restrict our relativistic divergences to symmetric cases with concave f. Although this may be somewhat constraining, not making these assumptions would be very problematic for GANs. By not assuming concavity, we could have an objective function that diverges to infinity (and thus an infinite divergence). This is particularly problematic for GANs because early in training, we expect \mathcal{P} and \mathcal{Q} to be perfectly separated (because of fully disjoint supports). This would cause the objective function to explode towards infinity and thereby causing severe instabilities. The Kullback–Leibler (KL) divergence is a good example of such a problematic divergence for GANs. If a single sample from the support of \mathcal{Q} is not part of the support of \mathcal{P}, the divergence will be ∞. Also, note that the dual form of the KL divergence cannot be represented as a SyGAN with equation (3) since $f_1(x) = x$ and $f_2(x) = -e^{x-1}$ are not symmetric (Nowozin et al., 2016).

2.2. Integral Probability Metrics

Rather than using a concave function f to ensure a maximum on the objective function, IPM-based GANs instead use the critic to respect some constraint so that it does not grow too quickly. IPM-based GANs are defined in the following way:

$$\sup_{C: \mathcal{X} \to \mathbb{R}} E_{x \sim \mathcal{P}} [C(x)] - E_{y \sim \mathcal{Q}} [C(y)],$$

(5)

$$\sup_{G: Z \to \mathcal{X}} E_{z \sim \mathcal{Z}} [C(G(z))],$$

(6)

where \mathcal{F} is a class of functions such that the IPM is not infinite. See Mroueh et al. (2017) for an extensive review of the choices of \mathcal{F}.

2.3. Relativistic GANs

Rather than training the critic on real and fake data separately, Relativistic GANs tries to maximize the critic’s difference (CD). In Relativistic paired GANs (RpGANs), the CD is defined as $C(x) - C(y)$, while in Relativistic average
GANs (RaGANs), the CD is defined as \(D(x) = \mathbb{E}_{y \sim Q} C(y) \) (or vice-versa). The CD can be understood as how much more realistic real data is from fake data. The optimal size of the CD is determined by the choice of \(f \). With a least-square loss, the CD must be exactly equal to 1. On the other hand, with a log-sigmoid loss, the CD is grown to around 2 or 3 (after which the gradient of \(f \) vanishes to zero). This will be explained in more details in the next section. Again, we focus only on choices of \(f \) that have symmetry (as done with SyGANs).

Relativistic paired GANs (RpGANs) are defined in the following way:

\[
\sup_{C: X \to \mathbb{R}} \mathbb{E}_{x \sim P} \left[f(C(x)) - C(y) \right], \tag{7}
\]

\[
\sup_{G: Z \to X} \mathbb{E}_{z \sim Z} \left[f(C(G(z))) - C(x) \right]. \tag{8}
\]

Relativistic average GANs (RaGANs) are defined in the following way:

\[
\sup_{C: X \to \mathbb{R}} \mathbb{E}_{x \sim P} \left[f(C(x)) - \mathbb{E}_{y \sim Q} C(y) \right] + \mathbb{E}_{y \sim Q} \left[f(\mathbb{E}_{x \sim P} C(x)) - C(y) \right], \tag{9}
\]

\[
\sup_{G: Z \to X} \mathbb{E}_{z \sim Z} \left[f(C(G(z))) - \mathbb{E}_{x \sim P} C(x) \right] + \mathbb{E}_{x \sim P} \left[f(\mathbb{E}_{z \sim Z} C(G(z))) - C(x) \right]. \tag{10}
\]

3. Relativistic Divergences

We define statistical divergences in the following way:

Definition 3.1. Let \(P \) and \(Q \) be probability distributions and \(S \) be the set of all probability distributions with common support. A function \(D : (S, S) \to \mathbb{R}_{>0} \) is a divergence if it respects the following two conditions:

\[
D(P, Q) \geq 0
\]

\[
D(P, Q) = 0 \iff P = Q.
\]

In other words, divergences are distances between probability distributions. The distribution of real data (\(P \)) is fixed and our goal is to modify the distribution of fake data (\(Q \)) so that the divergence decreases over time through the training process.

It is important to show that we use a divergence; this ensures that it is not possible to obtain a critic which cannot distinguish real from fake sample (\(D(P, Q) = 0 \)) when the two distributions (real and fake) are not the same (\(P \neq Q \)). If we did not have a divergence, it could be possible to reach a situation where the generator cannot learn (since the critic returns the same value for real and fake samples) while the generator still isn’t generating samples from the real distribution.

3.1. Main Theorem

As discussed in the introduction, in most GANs, the objective function of the critic at optimum is a divergence. We show that the objective function of the critic in RpGANs, RaGANs, and other variants also estimate a divergence. The theorem is as follows:

Theorem 3.1. Let \(f : \mathbb{R} \to \mathbb{R} \) be a concave function such that \(f(0) = 0 \), \(f \) is differentiable at 0, \(f'(0) \neq 0 \), \(\sup_x f(x) = M > 0 \), and \(\arg \sup_y f(x) > 0 \). Let \(P \) and \(Q \) be probability distributions with support \(X \). Let \(M = \frac{1}{2} + \frac{1}{2} Q \). Then, we have that

\[
D^R_P(P, Q) = \sup_{C: X \to \mathbb{R}} \mathbb{E}_{x \sim P} \left[f(C(x)) - C(y) \right] + \mathbb{E}_{y \sim Q} \left[f(\mathbb{E}_{x \sim P} C(x)) - C(y) \right].
\]

\[
D^R_P(P, Q) = \sup_{C: X \to \mathbb{R}} \mathbb{E}_{x \sim P} \left[f(C(x)) - \mathbb{E}_{y \sim Q} C(y) \right] + \mathbb{E}_{y \sim Q} \left[f(\mathbb{E}_{x \sim P} C(x)) - C(y) \right].
\]

\[
D^R_P(P, Q) = \sup_{C: X \to \mathbb{R}} \mathbb{E}_{x \sim P} \left[f(C(x)) - \mathbb{E}_{m \sim M} C(m) \right] + \mathbb{E}_{y \sim Q} \left[f(\mathbb{E}_{m \sim M} C(m)) - C(y) \right].
\]

are divergences.

We ask that the supremum of \(f(x) \) is reached at some positive \(x \) (or at \(\infty \)). This is purely to ensure that a larger CD can be interpreted as leading to a larger divergence (rather than the opposite). This does not reduce the generality of Theorem 3.1. If \(f(x) \) is maximized at \(x < 0 \), we have that \(g(x) = f(-x) \) is maximized at \(x > 0 \) and one can simply use \(g \) instead of \(f \).

We require that \(f \) is differentiable at zero and its derivative to be non-zero. This assumption may not be necessary, but it is needed for one of our main lemma which we use to prove that these objective functions are divergences.

Note that \(D^R_P(P, Q) \) corresponds to RpGANs, \(D^R_P(P, Q) \) corresponds to RaGANs, \(D^R_P(P, Q) \) corresponds to simplified one-way version of RaGANs (RalfGANs), and \(D^R_P(P, Q) \) corresponds to a new type of RGAN called Relativistic centered GANs (ReGANs). ReGANs are not particularly interesting as they simply represent a simpler ver-
sion of RaGANs. On the other hand, RaGANs are inter-
esting as they center the critic scores using the mean of the
whole mini-batch (rather than the mean of only real or only
fake mini-batch samples). This divergence also has simi-
larities to the Jensen–Shannon divergence (JSD) since the
JSD is the sum of the KL-divergence between \(\mathbb{P} \) and \(\mathbb{M} \) to
the KL-divergence between \(\mathbb{Q} \) and \(\mathbb{M} \).

A logical extension to RaGANs would be to standardize the
critic scores; however, this would not lead to a divergence
given that we could not control the size of the elements
inside \(f \). To make it a divergence, we need a learn-
able scaling weight (as in batch norm (Ioffe \\& Szegedy,
2015)), but this would counter the effect of the standard-
ization. Thus, standardizing and scaling would just corre-
spond to an equivalent re-parametrization of \(D_f^{R_c} \).

A sketch of the proof can be found below; the full proof is
found in Appendix A.

3.2. Sketch of the Proof

Although the four divergences need separate proofs, a simi-
lar framework is used in each of them. Each proof con-
ists of three steps. For clarity of notation, let
\[
D_f(\mathbb{P}, \mathbb{Q}) = \sup_{C: X \to \mathbb{R}} F(\mathbb{P}, \mathbb{Q}, C, f)
\]
be the divergence, where \(F \) is any of the objective
functions in Theorem 3.1.

First, we show that \(D_f(\mathbb{P}, \mathbb{Q}) \geq 0 \). This is easily proven by
taking the simplest possible choice of critic, which does not
depend on the probability distributions, i.e., \(C^{w*}(x) = k \)
for all \(x \). This critic always leads to \(f(0) \) and thus to a objective
function equal to 0. This means that
\[
D_f(\mathbb{P}, \mathbb{Q}) = \sup_{C: X \to \mathbb{R}} F(\mathbb{P}, \mathbb{Q}, C, f) \geq F(\mathbb{P}, \mathbb{Q}, C^{w*}, f) = 0.
\]

Second, we show that \(\mathbb{P} = \mathbb{Q} \implies D_f(\mathbb{P}, \mathbb{Q}) = 0 \).
This step generally relies on Jensen’s inequality (for con-
cafe functions) which we use to show that \(D_f(\mathbb{P}, \mathbb{P}) \leq 0 \).
Given that \(D_f(\mathbb{P}, \mathbb{P}) \geq 0 \) and \(D_f(\mathbb{P}, \mathbb{P}) \leq 0 \), we have that
\(D_f(\mathbb{P}, \mathbb{P}) = 0 \).

Third, we show that \(D_f(\mathbb{P}, \mathbb{Q}) = 0 \implies \mathbb{P} = \mathbb{Q} \). This
step is by far the most difficult to prove. Instead of show-
ing it directly, we instead prove it by contraposition, i.e.,
we show that \(\mathbb{P} \neq \mathbb{Q} \implies D_f(\mathbb{P}, \mathbb{Q}) > 0 \). To prove
this, we use the fact that if \(\mathbb{P} \neq \mathbb{Q} \), there must be val-
ues of the probability density functions, \(p(x) \) and \(q(x) \)
respectively, such that \(p(x) > q(x) \) (and vice versa). Let
\(T = \arg \sup_{S} \mathbb{P}(S) - \mathbb{Q}(S) \), we know that this set is not
empty. Note that when \(\mathbb{P} \) and \(\mathbb{Q} \) have probability den-
sity functions \(p(x) \) and \(q(x) \) respectively, we have that
\(T = \{ x | p(x) > q(x) \} \). To make the proof as simple as
possible, we use the following sub-optimal critic:
\[
C'(x) = \begin{cases} \nabla & \text{if } x \in T \\ 0 & \text{else,} \end{cases}
\]
where \(\nabla \neq 0 \). This critic function is very simple, but, as
we will show, there exists a \(\forall \nabla > 0 \) such that this leads to
an objective function greater than 0 which means that the
divergence is also greater than 0.

With this critic in mind, our goal is to transform the prob-
lem into the following:
\[
D_f(\mathbb{P}, \mathbb{Q}) = \sup_{C: X \to \mathbb{R}} F(\mathbb{P}, \mathbb{Q}, C, f) \geq F(\mathbb{P}, \mathbb{Q}, C', f) \geq L(\nabla) > 0,
\]
where \(L(\nabla) = af(\nabla) + b f(-\nabla) \), for some \(a > 0 \) and
\(b > 0 \) s.t. \(a > b \). We have been able to show this with all
divergences.

We want to find a \(\nabla > 0 \) large enough so that the positive
term \(f(\nabla) \) is big, but small enough so that the negative
term \(f(-\nabla) \) is not too big. The main caveat is that, by
concavity, \(f(\nabla) \leq |f(-\nabla)| \). This means that the negative
term is always bigger in absolute value than the positive
term. This is problematic, since \(a \) could be be very close
to \(b \) and we want \(af(\nabla) > bf(-\nabla) \) to get \(L(\nabla) > 0 \)
which proves that we have a divergence. The solution is to
choose \(\nabla \) to be very small. By continuity of the concave
function, if we make \(\nabla \) small enough (very close to 0), we
can reach a point where \((f(\nabla) \approx -f(-\nabla)) \). In which
case, if \(a = b + \epsilon \), we have that
\[
L(\nabla) = af(\nabla) + b f(-\nabla) \approx af(\nabla) - bf(-\nabla) = bf(\nabla) + \epsilon f(\nabla) - bf(\nabla) = \epsilon f(\nabla) > 0.
\]
In the actual proof, we show that there always exists a \(\delta > 0 \)
small enough such that any \(\nabla \in (0, \delta) \) leads to \(L(\nabla) > 0 \).
This concludes the sketch of the proof.

3.3. Subtypes of Divergences

Figure 1 shows three examples of concave \(f \) with the neces-
sary properties to be used in relativistic divergences; they
are the concave functions used in SGAN, LSGAN (with la-

tels 1/-1), and HingeGAN. Their respective mathematical
functions are
\[
f_S(z) = \log(\text{sigmoid}(z)) + \log(2),
\]
\[
f_{LS}(z) = -(z - 1)^2 + 1,
\]
\[
f_{Hinge}(z) = -\max(0, 1 - z) + 1.
\]
Interestingly, we see that they form three different types of functions. Firstly, we have functions that grow exponentially less as x increases and thus reach their supremum at ∞. Secondly, we have functions that grow to a maximum and then forever decrease (thus penalizing large CDs). Thirdly, we have functions that grow to a maximum and then never change. SGAN is of the first type, LSGAN is of the second, and HingeGAN is of the third type.

This shows that for all three types, we have that the CD is only encouraged to grow until a certain point. With the first type, we never truly force the CD to stop growing, but the gradients vanish to zero. Thus, SGD effectively prevents the CDs from growing above a certain level (sigmoid saturates at around 2 or 3).

It is useful to keep in mind that Figure 1 also represents the concave functions used for SyGANs, in which case f applies to real and fake data separately ($f(x)$ and $f(-y)$).

3.4. Weakness of the Divergence

The paper by Arjovsky et al. (2017) on using the Wasserstein distance (and other IPMs) for GANs has been extremely influential. In this paper, the authors suggest that the Wasserstein distance is more appropriate than f-divergences for training a critic since it induces the weakest topology possible. Rather than giving a formal definition in terms of topologies, we use a simpler definition (as also done by Arjovsky et al. (2017)):

Definition 3.2. Let P be a probability distribution with support \mathcal{X}, $(P_n)_{n \in \mathbb{N}}$ be a sequence of distributions converging to P, and D_1 and D_2 be statistical divergences (per definition 3.1).

We say that D_1 is weaker than D_2 if we have that:

$$D_2(P_n, P) \to 0 \implies D_1(P_n, P) \to 0 \ \forall \ (P_n)_{n \in \mathbb{N}},$$

but the converse is not true.

We say that D_1 is a weakest distance if we have that:

$$D_1(P_n, P) \to 0 \iff P_n \xrightarrow{D_1} P \ \forall \ (P_n)_{n \in \mathbb{N}},$$

where \xrightarrow{D} represents convergence in distribution.

Thus, intuitively, a weaker divergence can be thought of as converging more easily. Arjovsky et al. (2017) showed that the Wasserstein distance is a weakest divergence and that it is weaker than common f-divergences (as used in f-GANs and standard GANs). They also showed that the Wasserstein distance is continuous with respect to its parameters and they attributed this property to the weakness of the divergence.

Considering this argument, one would except that RaGANs would be weaker than RpGANs which would be weaker than Symmetric GANs since this is generally the order of their relative performance and stability (however, note that this is not always true and GANs can perform better than RaGANs). Instead, we found the opposite relationship:

Theorem 3.2. Let P be a probability distribution with support \mathcal{X}, $(P_n)_{n \in \mathbb{N}}$ be a sequence of distributions converging to P. $f : \mathbb{R} \to \mathbb{R}$ be a concave function such that $f(0) = 0$,
\(f\) is differentiable at 0. \(f'(0) \neq 0\), \(\sup_x f(x) = M > 0\), and \(\arg \sup_x f(x) > 0\). Then, we have that

\[
D_f^W(\mathbb{P}, \mathbb{Q}) \text{ is weakest,} \\
D_f^W(\mathbb{P}, \mathbb{Q}) \text{ is weaker than } D_{f}^{Sy}(\mathbb{P}, \mathbb{Q}), \\
D_{f}^{Sy}(\mathbb{P}, \mathbb{Q}) \text{ is weaker than } D_{f}^{Rp}(\mathbb{P}, \mathbb{Q}), \\
D_{f}^{Rp}(\mathbb{P}, \mathbb{Q}) \text{ is weaker than } D_{f}^{Ra}(\mathbb{P}, \mathbb{Q}),
\]

where \(D_f^W\) is the Wasserstein distance and \(D_{f}^{Sy}\) is the distance in Symmetric GANs (see equation 3).

The proof is in Appendix B.

Given the good performance of RaGANs, this suggests that the argument made by Arjovsky et al. (2017) is insufficient. It only focuses on a perfect sequence of converging distributions, but the generator training does not guarantee a converging sequence of fake data distributions. It ignores the complex dynamics and intricacies of the generator training, which are still not well understood. Furthermore, it assumes an optimal critic which is effectively unobtainable.

Given the non-linear function applied after calculating the CD, the divergences of RaGANs are biased with finite batch size \(k\). This means that RaGANs are only asymptotically unbiased. How large \(k\) must be for the bias to become negligible is unclear.

We attempted to find a close form for the bias with \(f_S\), \(f_{LS}\), and \(f_{Hitone}\) (equations 11, 12, 13 and Figure 1), but we were only able to find a closed form with \(f_{LS}\). The bias with \(f_{LS}\) has a simple form and can be removed, as shown below:

Corollary 4.2. Let \(\mathbb{P}\) and \(\mathbb{Q}\) be probability distributions
with support \mathcal{X}. Then, we have that

$$\sup_{C: \mathcal{X} \to \mathbb{R}} \frac{1}{k} \left(\hat{\sigma}_{C(x)} + \hat{\delta}_{C(y)} - \sum_{i=1}^{k} \left[(C(x_i) - \hat{\mu}_{C(y)} - 1)^2 \right] - \sum_{j=1}^{k} \left[(\hat{\mu}_{C(x)} - C(y_j) - 1)^2 \right] \right) + 2,$$

$$\sup_{C: \mathcal{X} \to \mathbb{R}} \frac{2}{k} \left(\hat{\sigma}_{C(y)} - \sum_{i=1}^{k} \left[(C(x_i) - \hat{\mu}_{C(y)} - 1)^2 \right] \right) + 1,$$

$$\inf_{C: \mathcal{X} \to \mathbb{R}} \frac{1}{k} \left(\frac{1}{2} \hat{\sigma}_{C(x)} + \frac{1}{2} \hat{\delta}_{C(y)} + \sum_{i=1}^{k} \left[(C(x_i) - \hat{\mu}_{C} - 1)^2 \right] \right) + \sum_{j=1}^{k} \left[(\hat{\mu}_{C} - C(y_j) - 1)^2 \right] - 2,$$

are unbiased estimator of $D_{f_{LS}}^{Ra}(P, Q)$, $D_{f_{LS}}^{Rel}(P, Q)$, and $D_{f_{LS}}^{Rec}(P, Q)$ respectively. Furthermore,

$$\hat{\mu}_{C(x)} = \frac{1}{k} \sum_{i=1}^{k} C(x_i),$$

$$\hat{\mu}_{C(y)} = \frac{1}{k} \sum_{i=1}^{k} C(y_i),$$

$$\hat{\mu}_{C} = \frac{1}{k} \sum_{i=1}^{k} \left(\frac{C(x_i) + C(y_i)}{2} \right),$$

$$\hat{\sigma}_{C(x)} = \frac{1}{(k-1)} \sum_{i=1}^{k} (C(x_i) - \hat{\mu}_{C(x)})^2,$$

$$\hat{\sigma}_{C(y)} = \frac{1}{(k-1)} \sum_{i=1}^{k} (C(y_i) - \hat{\mu}_{C(y)})^2.$$

See Appendix C for the proof. This means that we can estimate the loss functions in RaLSGAN, RalLSGAN, and RcLSGAN without bias. In the experiments, we will show that the bias is negligible with the usual choices of f (equations 11, 12, 13) and batch size (32 or higher).

5. Experiments

All experiments were done with the spectral GAN architecture for 32x32 images (Miyato et al., 2018) in Pytorch (Paszke et al., 2017). We used the standard hyperparameters: learning rate (lr) = .0002, batch size (k) = 32, and the ADAM optimizer (Kingma & Ba, 2014) with parameters (α_1, α_2) = (.50, .999). We trained the models for 100k iterations with one critic update per generator update. For the datasets, we used CIFAR-10 (50k training images from 10 categories) (Krizhevsky, 2009), CelebA (200k of face images from celebrities) (Liu et al., 2015) and CAT (10k images of cats) (Zhang et al., 2008). All models were trained using the same seed (seed=1) with a single GPU. To evaluate the quality of generated outputs, we used the Fréchet Inception Distance (FID) (Heusel et al., 2017). For a review of the different evaluation metrics for GANs, please see Borji (2018). CAT was preprocessed by cropping all images to the faces of the cats, removing outliers (faces hidden by background), and removing images smaller than 32x32. CelebA images were center cropped to 160x160 before being resized to 32x32. See code for details; the code to reproduce the experiments is available on https://github.com/AlexiaJM/relativistic-f-divergences.

5.1. Bias

We approximated the bias of RaGANs and RcGANs by estimating the real/fake critic mean from 320 samples rather than the 32 mini-batch samples. For f_{LS}, we were able to calculate the true value of the bias (in expectation, see Corollary 4.2). Results on CIFAR-10 are shown in Figure 2.

For RAGANs, the approximation of the relative bias with f_{LS} was correct from 4k iterations and onwards. For all choices of f, we observed the same pattern of low approximated relative bias which stabilized after a certain number of iterations. We suspect that this may be due to the important instabilities of the first iterations when the discriminator is not optimal. At 15k iterations, all biases were stabilized. We calculated the average of the bias with different f starting at 15k iterations: .995 for the true relative bias with f_{LS}, .996 for the approximated relative bias with f_{LS}, .994 for the approximated relative bias with f_{S}, and .997 for the approximated relative bias with f_{Hinge}.

For RcGANs, the approximation of the bias with f_{LS} was correct from the very beginning of training. All biases were relatively stable over time with the exception of f_{S} which increased linearly over time (up to around 1.05). We calculated the average of the bias with different f: 1.007 for the true relative bias with f_{LS}, 1.007 for the approximated relative bias with f_{LS}, 1.03 for the approximated relative bias with f_{S}, and 1.007 for the approximated relative bias with f_{Hinge}.

Overall, this shows that the bias in the estimators of RaGANs and RcGANs tends to be small. Furthermore, with the exception of f_{S}, the bias is relatively stable over time. Thus, accounting for the bias, may not be necessary.

5.2. Divergences

To test the new relativistic divergences proposed (and verify whether removing the bias in RaGANs is useful), we ran experiments on CIFAR-10 using f_{LS}, on LSUN bedrooms...
Figure 2. Plots of the relative bias (i.e., the biased estimate divided by the unbiased estimate) of relativistic average and centered f-divergences estimators over training time on CIFAR-10 with a mini-batch size of 32. Approximations of the bias were made using 320 independent samples.

Table 1. Minimum (and standard deviation) of the FID calculated at 10k, 20k, ..., 100k iterations using different loss functions (see equations 11, 12, 13) and datasets.

<table>
<thead>
<tr>
<th>Loss</th>
<th>CIFAR-10</th>
<th>CelebA</th>
<th>CAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{LS}</td>
<td>31.1 (8)</td>
<td>15.3 (52)</td>
<td>15.2 (11)</td>
</tr>
<tr>
<td>f_{Hinge}</td>
<td>31.5 (8)</td>
<td>16.7 (4)</td>
<td>12.9 (2)</td>
</tr>
<tr>
<td>f_S</td>
<td>30.2 (12)</td>
<td>21.9 (3)</td>
<td>18.2 (3)</td>
</tr>
<tr>
<td>RpGANMVUE</td>
<td>29.2 (7)</td>
<td>15.9 (5)</td>
<td>12.3 (1)</td>
</tr>
<tr>
<td>RaGAN</td>
<td>30.3 (13)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RaGANunbiased</td>
<td>32.3 (9)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

using f_{Hinge}, and on CAT using f_{Hinge} (these choices of f were arbitrary). Results are shown in Table 1.

Using the MVUE for RpGAN resulted in the generator having a worse performance on CIFAR-10 with f_{LS} ($\beta = .37, p = .72$), CelebA with f_{Hinge} ($\beta = 2.08, p = .07$), and CAT with f_S ($\beta = 4.02, p = .003$). Similarly, using the unbiased estimator made the generator perform slightly worse for RaLSGAN ($\beta = 2.37, p = .04$) and RcLSGAN ($\beta = 1.33, p = .05$). These results are surprising as they suggest that using noisy or slightly biased estimators may be beneficial.

6. Conclusion

Most importantly, we proved that the objective function of the critic in RGANs is a divergence. In addition, we showed that f-divergences are weaker than relativistic f-divergences. Thus, the weakness of the topology induced by a divergence alone cannot explain why WGAN performs well. Finally, we took a closer look at the estimators or RGANs and found that 1) the estimator of RpGANs used by Jolicoeur-Martineau (2018a) is not the minimum-variance unbiased estimator (MVUE) and 2) the estimators of RaGANs and RalfGANs are slightly biased with finite batch-sizes. Surprisingly, we found that neither using the MVUE with RpGANs or using an unbiased estimator with RaGANs and RalfGANs improved the performance. On the contrary, using better estimators always slightly decreased the quality of generated samples. This suggests that using noisy estimates of the divergences may be beneficial as a regularization mechanism. This could be explained by vanishing gradients when the discriminator becomes closer to optimality (Arjovsky & Bottou, 2017).

It still remains a mystery as to why RaGANs are better than RpGANs and the direct mechanism that leads to RGANs performing in a much more stable matter. Future work should attempt to better understand the effect of the critic’s difference on training. Our experiments were limited to the generation of small images; thus, we encourage further experiments with the MVUE and the unbiased estimator of RaLSGAN.

REFERENCES

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein

Relativistic f-divergences

