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Abstract
We present a Bayesian non-parametric way of in-
ferring stochastic differential equations for both
regression tasks and continuous-time dynamical
modelling. The work has high emphasis on the
stochastic part of the differential equation, also
known as the diffusion, and modelling it by means
of Wishart processes. Further, we present a semi-
parametric approach that allows the framework
to scale to high dimensions. This successfully
lead us onto how to model both latent and auto-
regressive temporal systems with conditional het-
eroskedastic noise. We provide experimental ev-
idence that modelling diffusion often improves
performance and that this randomness in the dif-
ferential equation can be essential to avoid over-
fitting.

1. Introduction
An endeared assumption to make when modelling multi-
variate phenomena with Gaussian processes (GPs) is that
of independence between processes, i.e. every dimension
of a multivariate phenomenon is modelled independently.
Consider the case of a two-dimensional temporal process
xt evolving as

xt := f(xt−1) + εt, (1)

where f(xt−1) = (f1(xt−1), f2(xt−1))>, f1 and f2 inde-
pendent, and εt ∼ N (0, σ2I). This model is commonly
used in the machine learning community and is easy to use
and understand, but for many real-world cases the noise is
too simplistic. In this paper, we will investigate the noise
term εt and also make it dependent on the state xt−1. This
is also known as heteroskedastic noise. We will refer to the
sequence of εt as the diffusion or process noise.
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Why model the process noise? Assume that in the example
above, the two states represent meteorological measure-
ments: rainfall and wind speed. Both are influenced by
confounders, such as atmospheric pressure, which are not
measured directly. This effect can in the case of the model
in (1) only be modelled through the diffusion ε. Moreover,
wind and rain may not correlate identically for all states of
the confounders.

Dynamical modelling with focus in the noise-term is not
a new area of research. The most prominent one is the
Auto-Regressive Conditional Heteroskedasticity (ARCH)
model (Engle, 1982), which is central to scientific fields
like econometrics, climate science and meteorology. The
approach in these models is to estimate large process noise
when the system is exposed to a shock, i.e. an unforeseen
significant change in states. Thus, it does not depend on the
value of some state, but rather on a linear combination of
previous states.

In this paper, we address this shortcoming and introduce
a model to handle the process noise by the use of Wishart
processes. Through this, we can sample covariance matrices
dependent on the input state. This allows the system to
evolve as a homogeneous system rather than independent
sequences. By doing so, we can avoid propagating too
much noise—which can often be the case with diagonal
covariances—and potentially improve on modelling longer-
range dependencies. Volatility modelling with GPs has
been considered by Wu et al. (2014); Wilson & Ghahramani
(2010); Heaukulani & van der Wilk (2019).

For regression tasks, our model is closely related to several
recent works exploring continuous-time deep neural net-
works (E, 2017; Haber & Ruthotto, 2017; Chen et al., 2018).
Here the notion of depth is no longer a discrete quantity (i.e.
the number of hidden layers), but an interval on which a
continuous flow is defined. In this view, continuous-time
learning takes residual networks (He et al., 2016) to their in-
finite limit, while remaining computationally feasible. The
flow, parameterized by a differential equation, allows for
time-series modelling, even with temporal observations that
are not equidistant.

This line of work has been extended with stochastic equiv-
alents (Twomey et al., 2019; Tzen & Raginsky, 2019;
Liu et al., 2019; Li et al., 2020), and the work by
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Andreas & Kandemir (2019), who model the drift and dif-
fusion of an SDE with Bayesian neural networks. These
approaches make the framework more robust, as the original
approach can fail even on simple tasks (Dupont et al., 2019).

The work that inspired our model most was by Hegde et al.
(2019). They model the random field that defines the SDE
with a Gaussian field. They consider regression and clas-
sification problems. To this end, they can take deep GPs
(Damianou & Lawrence, 2013; Salimbeni & Deisenroth,
2017) to their ‘infinite limit’ while avoiding their degener-
acy discussed by Duvenaud et al. (2014).

Our main focus throughout this paper lies on the stochastic-
ity of the flow, what impact it has and to which degree it can
be tamed or manipulated to improve overall performance.
Contributions:

• A model that unifies theory from conditional het-
eroskedastic dynamics, stochastic differential equations
(SDEs) and regression. We show how to perform varia-
tional inference in this model.

• A scalable approach to extend the methods to high-
dimensional input without compromising with inter-
dimensional independence assumptions.

2. Background
In this section, we give an overview of the relevant material
on GPs, Wishart processes, and SDEs.

2.1. Gaussian Processes

A Gaussian process (GP) is a distribution over func-
tions f : Rd → RD, satisfying that for any finite set
of points X :=

(
x1, . . . ,xN

)> ∈ RN×d, the outputs(
f(x1), . . . , f(xN )

)> ∈ RN×D are jointly Gaussian dis-
tributed. A GP is fully determined by a mean function µ :
Rd → RD and a covariance function c : Rd×Rd → RD×D.
This notation is slightly unorthodox, and we will elaborate.

The usual convention when dealing with multi-output GPs
(i.e. D > 1) is to assume D i.i.d. processes that share
the same covariance function (Álvarez & Lawrence, 2011),
which equivalently can be done by choosing the covari-
ance matrix K = k(X,X) ⊗ ID, where ⊗ denotes
the Kronecker product and k is a covariance function
for univariate output. For ease of notation we shall use
kD(a, b) := k(a, b)⊗ ID; that is, k(a, b) returns a kernel
matrix of dimension number of rows in a times the num-
ber of rows in b. This corresponds to the assumption of
independence between output dimensions. Furthermore, we
write f := f(X), µ := vec(µ(X)) and denote by K the
ND ×ND-matrix with Ki,j = kD(xi,xj). Then we can
write in short p(f) = N (µ,K).

As the number N of training data points gets large, the
size of K becomes a challenge as well, due to a re-
quired inversion during training/prediction. To circumvent
this, we consider sparse (or low-rank) GP methods. In
this respect, we choose M auxiliary inducing locations
Z =

(
z1, . . . ,zM

)> ∈ RM×d, and define their func-
tion values u := f(Z) ∈ RM×D. Since any finite set
of function values are jointly Gaussian, p(f ,u) is Gaussian
as well, and we can write p(f ,u) = p(f |u)p(u), where
p(f |u) = N (µ̃, K̃) with

µ̃ = µ+α>vec(u− µ(Z)), (2)

K̃ = kD(X,X)−α>kD(Z,Z)α, (3)

where α = kD(X,Z)kD(Z,Z)−1. Here it becomes evi-
dent why this is computationally attractive, as we only have
to deal with the inversion of kD(Z,Z), which due to the
structure, only requires inversion of k(Z,Z) of sizeM×M .
This is opposed to a matrix of size ND ×ND had we not
used the low-rank approximation and independence of GPs.

We will consider variational inference to marginalise u (Tit-
sias, 2009). Throughout the paper, we will choose our
variational posterior to be q(f ,u) = p(f |u)q(u), where
q(u) := N (m,S), similar to Hensman et al. (2013).
Further, q factorises over the dimensions, i.e. q(u) =∏D
j=1N (mj ,Sj), wherem = (m1, . . . ,mD) and S is a

block-diagonal MD×MD-matrix, with block-diagonal en-
tries {Sj}Dj=1. In this case, we can analytically marginalise
u in (2) to obtain

q(f) =

∫
p(f |u)q(u)du = N (µqf ,K

q
f ), (4)

µqf = µ+α>vec(m− µ(Z)), (5)

Kq
f = kD(X,X)−α>

(
kD(Z,Z)− S

)
α, (6)

which resembles (2)–(3), but which is analytically tractable
given variational parameters

{
m,S,Z

}
.

Recall that a vector field is a mapping f : Rd → RD that
associates a point in Rd with a vector in RD. A Gaussian
(random) field is a vector field, such that for any finite col-
lection of points {xi}Ni=1, their associated vectors in RD
are jointly Gaussian distributed, i.e. a Gaussian field is a
GP. We shall use both terminologies, but when we refer to
a Gaussian field, we will think of the outputs as having a
direction.

2.2. Wishart Processes

The Wishart distribution is a distribution over symmetric,
positive semi-definite matrices. It is the multidimensional
generalisation of the χ2-distribution. Suppose Fv is a D-
variate Gaussian vector for each v = 1, . . . , ν independently,
say Fv ∼ N (0,A). Then Σ =

∑ν
v=1 FvF

>
v is Wishart
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distributed with ν degrees of freedom and scale matrix A.
We write for short Σ ∼ WD(A, ν). By Bartlett’s decom-
position (Kshirsagar, 1959), this can also be represented
as Σ = LFF>L>, where F is a D × ν-matrix with all
entries unit Gaussian andA = LL>.

With this parametrization we define Wishart processes, as
in (Wilson & Ghahramani, 2010):

Definition 1. Let L be a D ×D matrix, such that LL> is
positive semidefinite and fd,v ∼ GP

(
0, kd,v(x,x

′)
)

inde-
pendently for every d = 1, . . . , D and v = 1 . . . , ν, where
ν ≥ D. Then if

Σ(x) = L

(
ν∑
v=1

fv(x)f>v (x)

)
L> (7)

is Wishart distributed for any marginal x, and if for any fi-
nite collection of pointsX = {xi}Ni=1 the joint distribution
Σ(X) is determined through the covariance functions kd,v ,
then Σ(·) is a Wishart process. We will write

Σ ∼ WPD(LL>, ν, κ), (8)

where κ is the collection of covariance functions {kd,v}.

If Σ follows a Wishart distribution with ν degrees of
freedom and scale matrix LL> of size D × D, then for
some ρ ×D-matrix R of rank ρ, we have that RΣR> ∼
Wρ(RLL

>R>, ν). That is,RΣR> is Wishart distributed
on the space of ρ × ρ symmetric, positive semi-definite
matrices.

The Wishart distribution is closely related to the Gaussian
distribution in a Bayesian framework, as it is the conjugate
prior to the precision matrix of a multivariate Gaussian. Fur-
thermore, it is the distribution of the maximum likelihood
estimator of the covariance matrix.

The Wishart process is a slight misnomer as the posterior
processes are not marginally Wishart. This is due to the
mean function not being constant 0, and a more accurate
name could be matrix-Gamma processes. We shall not
refrain from the usual terminology: a Wishart process is a
stochastic process, whose prior is a Wishart process.

2.3. Stochastic Differential Equations

We will consider SDEs of the form

dxt = µ(xt)dt+
√

Σ(xt)dBt, (9)

where the last term of the right-hand side is the Itô integral
(Itô, 1946). The solution xt is a stochastic process, often
referred to as a diffusion process, and µ and Σ are the drift
and diffusion coefficients, respectively. In (9), Bt denotes
the Brownian motion.

The Brownian motion is the GP satisfying that all increments
are independent in the sense that, for 0 ≤ s1 < t1 ≤
s2 < t2, then Bt1−s1 is independent from Bt2−s2 . Further,
any increment has distribution Bt − Bs ∼ N (0, t − s).
Lastly, B0 = 0. This is equivalent to the GP with constant
mean function 0 and covariance function (t, s) 7→ min{s, t}
(Rasmussen & Williams, 2006).

Given some initial condition (e.g. x0 = 0), we can gen-
erate sample paths [0, T ] → RD by the Euler-Maruyama
method. Euler-Maruyama (Kloeden & Platen, 2013) finely
discretizes the temporal dimension 0 = t0 < t1 < . . . <
tl = T , and pushes xti along the vector field xti+1 =

xti + µ(xti)∆i +
√

Σ(xti)∆iN , where N ∼ N (0, ID)
and ∆i = ti+1 − ti.

3. Model and variational inference
We consider a random field f : RD × [0, T ] → RD and a
GP g : RD → Rη . Their priors are

f ∼ GP(0, kf (·, ·)⊗ ID), g ∼ GP(0, kg(·, ·)⊗ Iη).
(10)

We also have a Wishart process Σ : RD×[0, T ]→ G, where
G is the set of symmetric, positive semi-definite D × D
matrices; the specific prior on this will follow in Section
3.1. We will approximate the posteriors of f , g and Σ with
variational inference, but first we will formalise the model.

We propose a continuous-time deep learning model that can
propagate noise in high-dimensions. This is done by letting
the diffusion coefficient Σ(xt) of an SDE be governed by a
Wishart process. The model we present factorises as

p(y,Θ) =p(y|g)p(g|xT ,ug)p(ug)p(xT |f)

· p(f |Σ,uf )p(uf )p(Σ|uΣ)p(uΣ),
(11)

where Θ :=
{
g,ug,xT ,f ,uf ,Σ,uΣ

}
denotes all vari-

ables to be marginalised. We assume that data D ={
(xi,yi)

}N
i=1

is i.i.d. given the process, such that p(y|g) =∏N
i=1 p(yi|gi). We approximate the posterior of g with the

variational distribution as in (4), i.e.

q(gi) =

∫
p(gi|ug)q(ug)dug (12)

= N (µ̃g(xi), k̃g(xi,xi)), (13)

where

µ̃g(xi) = α>g (xi)vec(mg), (14)

k̃g(xi,xi) = kηg (xi,xi) (15)

−α>g (xi)
(
kηg (Zg,Zg)− Sg

)
αg(xi),

where αg(xi) := kηg (xi,Zg)k
η
g (Zg,Zg)

−1. Here mg is
an M × η matrix, and Sg is an Mη × Mη-matrix, con-
structed as η different M ×M -matrices Sg = {Sj}ηj . Dur-
ing inference (Quiñonero Candela & Rasmussen, 2005), we
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x0 xt xT

Σt ft

g y

uΣ uf
ug

(a) Graphical model based on Eq. (11)

· · ·

· · ·

· · ·xs := ft

ft = µ(xt)(s− t) +
√

Σ(xt)N

xt xs

µ(·)

Σ(·)

ft

(b) Cycle from (a) and how it moves along the time-axis.

Figure 1. (a) Graphical model based on the factorisation in Eq. (11); (b) The cycle from (a), which represents the field f , and how it moves
along the time-axis. Here N ∼ N (0, (s− t)I). Blue represents the flow/SDE, square nodes are variational variables.

additionally assume that the marginals gi = g(xi) are inde-
pendent when conditioned on ug . This is an approximation
to make inference computationally easier.

The inputs to g are given as the state distribution of an
SDE at a fixed time point T ≥ 0. We construct this
SDE from the viewpoint of a random field. Consider
the random walk with step size ∆ on the simplest Gaus-
sian field, where any state has mean µ and covariance Σ.
For any time point t, the state distribution is tractable, i.e.
p(xt) = x0 +

∑S
s=1N (∆sµ,∆sΣ), where

∑
∆s = t and

S is any positive integer.

For a state-dependent Gaussian field, we define the random
walk

xt+∆ = xt + µ(xt)∆ +
√

Σ(xt)∆N , (16)

withN ∼ N (0, I). Given an initial condition x0, the state
xS after S steps is given by

xS = x0 +

S−1∑
s=0

(
µ(xs)∆ +

√
Σ(xs)∆N

)
. (17)

In the limit ∆→ 0, this random walk dynamical system is
given by the diffusion process (Durrett, 2018)

xT − x0 =

∫ T

0

µ(xt)dt+

∫ T

0

√
Σ(xt)dBt, (18)

where B is a Brownian motion. This is an SDE in the
Îto-sense, which we numerically can solve by the Euler-
Maruyama method. We will see that by a particular choice
of variational distribution that Σ(xt) will be the realisation
of a Wishart process. The coefficients in (18) are determined
as the mean and covariance of a Gaussian field f . The
posterior of f is approximated with a Gaussian q(fi) =
N (µqf (xi), k

q
f (xi,xi)), where

µqf (xi) =α>f (xi)vec(mf ), (19)

kqf (xi,xi) =kDf (xi,xi) (20)

−α>f (xi)
(
kDf (Zf ,Zf )− Sf

)
αf (xi), (21)

and αf (·) = kDf (·,Zf )kDf (Zf ,Zf )−1.

So far, we have seen how we move a data point x0 through
the SDE (18) to xT , and further through the GP g, to make
a prediction. However, each coordinate of x moves inde-
pendently. By introducing the Wishart process, we will see
how this assumption is removed.

3.1. Wishart-priored Gaussian random field

We are still considering the Gaussian field f , whose pos-
terior is approximated by the variational distribution q(f).
To regularise (or learn) the noise propagated through this
field into g, while remaining within the Bayesian variational
framework, we define a hierarchical model as

p(f) =

∫
p(f |uf ,Σ)p(uf )p(Σ|uΣ)p(uΣ)d{Σ,uf ,uΣ},

(22)
where Σ is a Wishart process. Specifically, its prior is

Σ ∼ WPD(LL>, ν, kf ), (23)

that is any marginal Σ(xt) = LJJ>L>, where J is
the D × ν-matrix with all independent entries jd,v(xt)
drawn from GP’s that share the same prior jd,v(·) ∼
GP(0, kf (·, ·)). To approximate the posterior of the Wishart
process we choose a variational distribution

q(J ,uΣ) = q(J |uΣ)q(uΣ) := p(J |uΣ)q(uΣ), (24)

where q(uΣ) =
∏D
d=1

∏ν
v=1N (mΣ

d,v,S
Σ
d,v). Here, mΣ

d,v

is M×1 and SΣ
d,v is M×M for each pair {d, v}. Notice the

same kernel is used for the Wishart process as is used for the
random field f , that is: only one kernel controls the vector
field f . The posterior of Σ is naturally defined through the
posterior of J . Given our choice of kernel, this approximate
posterior is identical to Eqs. (19)-(21), only changing the
variational parameters to mΣ and SΣ, and D changes to
Dν.

What remains to be defined in (11) is p(f |Σ,uf ). Since
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Σ(xt) is a D×D-matrix we define

p
(
f |{Σ(xi)}Ni=1,uf

)
= N

(
µ̃(X), k̃Σ

f (X,X)
)
, (25)

µ̃(xi) = α>f (xi)vec(uf ), (26)

k̃Σ
f (xi,xj) =

(
Σ(xi)− hij

)
δij , (27)

where hij = αf (xi)
>kDf (Zf ,Zf )αf (xj) and δij is Kro-

necker’s delta. Notice this, conditioned on the Wishart
process, constitutes a FITC-type model (Snelson & Ghahra-
mani, 2006).

This goes beyond the assumption of independent output
dimensions, and instead makes the model learn the inter-
dimensional dependence structure through the Wishart pro-
cess Σ. This structure shall also be learned in the variational
inference setup. The posterior of conditional f is approxi-
mated by

q(f ,uf |{Σ(xi)}Ni=1) = q(f |{Σ(xi)}Ni=1,uf )q(uf )

= p(f |{Σ(xi)}Ni=1,uf )q(uf ),

(28)

where q(uf ) := N (mf , k
D
f (Zf ,Zf )). At first, this might

seem restrictive, but covariance estimation is already in Σ
and the variational approximation is the simple expression

q(f |{Σ(xi)}Ni=1) =

N∏
i=1

N
(
α>f (xi)mf ,Σ(xi)

)
. (29)

The marginalisation can then be computed with Jensen’s
inequality

log p(y) = log

∫
p(y,Θ)dΘ

≥
∫

log
(p(y,Θ)

q(Θ)

)
q(Θ)dΘ

=

∫
log p(y|g)q

(
g|Θ\{g}

)
dΘ (30)

− KL
(
q(ug)‖p(ug)

)
− KL

(
q(uf )‖p(uf )

)
−KL

(
q(uΣ)‖p(uΣ)

)
,

or, in a more straightforward language,

log p(y) ≥ Eq(g)[log p(y|g)]− KL
(
q(ug)‖p(ug)

)
(31)

− KL
(
q(uf )‖p(uf )

)
−KL

(
q(uΣ)‖p(uΣ)

)
.

The right-hand side in (31) is the so-called evidence lower
bound (ELBO). The first term, the expectation, is analyti-
cally intractable, due to q(g) being non-conjugate to the like-
lihood. Therefore, we determine it numerically with Monte
Carlo (MC) or with Gauss-Hermite quadrature (Hensman
et al., 2015). With MC, often a few samples are enough for
reliable inference (Salimans & Knowles, 2013).

The KL-terms in (31) can be computed analytically as they
all involve multivariate Gaussians. Still, due to some of the
modelling constraints, it is helpful to write them out, which
yields

KL
(
q(ug)‖p(ug)

)
=

η∑
d=1

KL
(
q(ugd)‖p(ugd)

)
, (32)

KL
(
q(uΣ)‖p(uΣ)

)
=

D∑
d=1

ν∑
v=1

KL
(
q(uΣd,v

)‖p(uΣd,v
)
)
,

(33)

where in both instances we used the independence between
the GPs. The remaining one is special. Since both distribu-
tion share the same covariance it reduces to

KL
(
q(uf )‖p(uf )

)
=

1

2

D∑
d=1

m>fdk
D
f (Zf ,Zf )−1mfd .

(34)
Here, kDf (Zf ,Zf )−1 is already known from the computa-
tion of (33), as the kernel and inducing locations are shared.

Summarising this section, we have inputs x0 := x that are
warped through an SDE (governed by a random field f )
with drift µ and diffusion Σ that is driven by one kernel kDf .
The value of this SDE, at some given time T , is then used
as input to a final layer g, i.e. g(xT ) predicts targets y(x).
All this is inferred by maximising the ELBO (31).

3.2. Complexity and scalability

The computational cost of estimating Σ with a Wishart, as
opposed to a diagonal matrix, can be burdensome. For
the diagonal, the cost is O(DNM2) since we need to
compute (3) D times. Sampling Dν GP values and then
matrix-multiplying it with a D × ν matrix is of complex-
ity O(DνNM2 +DνD). Hence, if we, for simplicity, let
ν = D, we have overhead cost ofO(D2NM2 +D3). Note
this is only the computational budget associated with the
diffusion coefficients of the random field; the most costly
one.

On this inspection, we propose a way to overcome a too
heavy burden if D is large. Naturally this involves an ap-
proximation; this time a low-rank approximation on the
dimensionality-axis. Recall that, if Σρ ∼ WPρ(I, ν, κ),
then ΣD := LΣρL

> ∼ WPD(LL>, ν, κ). The matrices
naturally are of rank ρ� D. The computational overhead is
reduced toO(ρ2NM2+Dρ2) if ν = ρ. This same structure
was introduced by Heaukulani & van der Wilk (2019) for
time-series modelling of financial data; and it reminisces the
structure of Semiparametric Latent Factor Models (SLFM)
(Seeger et al., 2005). That is, we have ρ GPs, and the D-
dimensional outputs are all linear combinations of these.
For clarity, we need only to compute/sample

√
ΣD = LJ ,



Stochastic Differential Equations with Variational Wishart Diffusions

where J is a ρ× ν matrix, with GP values according to the
approximate posterior q(J), where D replaced by ρ.

3.3. Further model specifications

If ρ is too small it can be difficult to identify a good diffusion
coefficient as the matrix is too restricted by the low rank.
One possible way to overcome this is too add ‘white noise’
to the matrix

Σ = LFF>L> + Λ, (35)

where Λ is a diagonal D×D-matrix. In many situations,
this will ensure that the diffusion is full rank, and this pro-
vides more freedom in estimating the marginal variances.
However, if the values on the diagonal of Λ are estimated
by maximum likelihood, we have to be cautious. If Λ be-
comes to ‘dominant’, inference can turn off the Wishart-part,
potentially leading to overfitting.

Consider the matrix L, that makes up the scale matrix of the
Wishart process. It is fully inferred by maximum likelihood,
hence there is no KL-term to regularise it. Effectively, this
can turn off the stochasticity of the flow by making some
matrix norm of L be approximately zero. Then the flow
is only determined by its drift and overfitting is a likely
scenario.

To alleviate this concern we propose to regularise L by its
rownorms. That is,

∀d = 1, . . . , D :

ρ∑
r=1

L2
d,r = 1, (36)

where Ld,r denotes the entries ofL. First of all, this ensures
that the prior variance for all dimensions is determined by
the kernel hyperparameters, as it makes the diagonal of the
scale matrix LL> equal to 1. This way the variance in each
dimension is a ‘fair’ linear combination of the ρ GPs that
control the Wishart.

3.4. Extending to time series

The specified model can be specified to model temporal data
D = {yi, ti}Ni=1 in a straightforward way. In a few lines,
see also Figure 1, we write

xt = x0 +

∫ t

0

µ(xs)ds+

∫ t

0

√
Σ(xs)dBs, (37)

f(·)|Σ(·),D ∼ GP(µ(·),Σ(·)), (38)
Σ(·) ∼ WP(·|D), (39)

p(yt|xt) = N (g(xt),AΣ(xt)A
> + Λ). (40)

If g is not the identity mapping, we can define a latent
dynamical model. Say g is a GP mapping from RD to Rη.

This is similar to GP state space models (GPSSM) where the
dynamics, or transitions, are defined xt = f(xt−1)+εx and
yt = g(yt) + εy , for GPs f and g and some noise variables
εx and εy, usually Gaussian with zero mean and diagonal
covariance matrix (Deisenroth et al., 2012; Eleftheriadis
et al., 2017).

The latent dynamics defined in (37)–(39) are not restricted to
have equi-temporal measurements and model non-diagonal
covariance structure both in the latent states x and in the
observed states y through the matrixA, which is an η×D-
matrix. Adding the diagonal η×η-matrix Λ is necessary to
avoid singularity. Even though Σ(·) is a D ×D-matrix, we
can still lower-rank approximate with a ρ-rank matrix, as
described in Section 3.2. The log-likelihood we compute is

log p(yt|gt,Σ(xt)) =
η

2
log(2π)− log(det(B))

− 1

2
(yt − gt)>B−1(yt − gt),

(41)

where B := AΣ(xt)A
> + Λ. As a consequence of

the matrix-determinant lemma and the Woodbury identity,
we can evaluate the likelihood cheaply, because of B’s
structure. The ELBO that we optimise during training is
similar to (31), only the likelihood term is different: it is
swapped for a variational expectation over (41). We as-
sume independence between all temporal observations, i.e.
p(D) =

∏N
i=1 p({yi, ti}).

4. Experiments
We evaluate the presented model in both regression and a
dynamical setup. In both instances, we use baselines that
are similar to our model to easier distinguish the influence
the diffusion has on the experiments. We evaluate on a well-
studied regression benchmark and on a higher-dimensional
dynamical dataset.

4.1. Regression

We compare our model, which we will dub Wishart-priored
GP flow (diffWGP), to three baseline models in order to shed
light on some properties of the diffWGP.

GP flows Reproducing the model from Hegde et al. (2019)
will give indications, if it is possible to increase overall
performance by modelling the randomness in the flow. This
model has a diagonal matrix Σ with entries determined
solely by the chosen covariance function. We will refer to
this model with diffGP.

No noise flows We also evaluate the model, where Σ =
0, i.e. the situation where the flow is deterministic. The
remaining part of the flow is still as in (19) to make fair
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Figure 2. Test-set log-likelihood values on eight UCI regression datasets. The violin plots show the test-set log (likelihood-ratio) of
baseline diffusion models with respect to the SGP baseline. Values greater than 0 indicate an improvement over SGP. Key findings are
that No noise can overfit heavily (boston, concrete, naval), and diffWGP performs best on most datasets. The figure has been cut for
readability—this explain why occasionally purple violins are missing.

comparisons. All the relevant KL-terms are removed from
the ELBO (31). We refer to this as No noise.

Sparse GPs Also in the variational setup we shall com-
pare to vanilla sparse GPs, i.e. the model introduced by
Titsias (2009). We will refer to this as SGP.

4.1.1. EXPERIMENTAL SETUP

In all experiments, we choose 100 inducing points for the
variational distributions, all of which are Gaussians. All
models are trained for 50000 iterations with a mini-batch
size of 2000, or the number of samples in the data if smaller.
In all instances, the first 10000 iterations are warm-starting
the final layer GP g, keeping all other parameters fixed. We
use the Adam-optimiser with a step-size of 0.01. After this
all flows (this excludes SGP) are initialised with a constant
mean 0 and covariance functions chosen as RBF with auto-
matic relevance determination (ARD), initialised with tiny
signal noise to ensure x0 ≈ xT . The time variable T is
always 1.

The remaining 40000 iterations (SGP excluded) are updat-
ing again with Adam with a more cautious step-size of
0.001. For the diffWGP, the first 4000 of these are warm-
starting the KL-terms associated with the flow to speed up
convergence. Note that this model fits more parameters than
the baseline models. For the diffWGP, we update the ELBO

Eq(g)[log p(y|g)]− KL
(
q(ug)‖p(ug)

)
− c2KL

(
q(uf )‖p(uf )

)
−cKL

(
q(uΣ)‖p(uΣ)

)
,

(42)

diffGP vs. SGP diffWGP vs. diffGP
BIKE (14) 0.8695 0.2262
BOSTON (13) <0.0001 0.9867
CONCRETE (8) 0.0042 0.0348
KIN8NM (8) <0.0001 0.0164
NAVAL (26) 0.8695 <0.0001
POWER (4) <0.0001 0.1387
PROTEIN (9) <0.0001 <0.0001
WINE_WHITE (11) 0.0003 0.3238

Table 1. Wilcoxons paired signed rank-test. Listed are the p-values
of the hypothesis of equal median versus alternative that location
shift is negative. Bold highlights the significant ones at a 0.05
confidence level. In parenthesis are the input dimensionality of the
datasets. Results are for ρ = 5.

where c = min(1, iteration4000 ), i.e. we warm-start the regular-
ising KL-terms.

4.1.2. UCI REGRESSION BENCHMARK

Figure 2 shows the results on eight UCI benchmark datasets
over 20 train-test splits (90/10). On the y-axis we see the
distribution of the test-set log-likelihood subtracted by the
SGP log-likelihood on the same split. Values greater than
0 are improvements over the baseline SGP. An analogous
plot with RMSE is supplied in the supplementary material.
In Table 1, we use Wilcoxon’s paired rank test to evaluate
whether the more advanced models perform better.

Key observations are: not having noise in the flow (No
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noise case; Right: Wishart noise. The Wishart detects a correlation between these two temperature
measurements, as we would expect for such nearby locations.

Figure 3. (a): The performance of predictions plotted over the forecast horizon. (b): The joint development of two temperature
measurements over the forecasted time-horizon for two different models.

noise) seem to lead to overfitting, except in two cases, where
a more expressive model is preferred. In one of these cases
(protein) Wishart modelling improves both the RMSE and
the log-likelihood. In one case (boston), overfitting was ab-
surdly large: on this dataset we were not able to reproduce
the results from Hegde et al. (2019) either. In four cases
(concrete, kin8nm, power, wine_white), No noise overfitted
mildly. In two of these cases, diffWGP improved over dif-
fGP. The two cases, where no improvement is significant,
are simple cases, wine_white and power, which are almost
linear or low-dimensional. On the naval dataset, the No
noise model could not run due to numerical issues. Here
diffWGP outperforms diffGP in the log-likelihood. We con-
jecture this is because of the high dimensionality and the
fact that almost no observation noise is present. We found
no substantial influence of the parameter ρ; if any then it
actually seems to prefer lower-rank approximations. This

emphasises that training Wishart processes is difficult, and
further research in this area is needed.

4.2. Auto-regressive modelling of air quality

We evaluate our dynamical model on atmospheric air-quality
data from Beijing (Zhang et al., 2017). We pre-processed
the data for three locations in the city (Shunyi, Tiantan,
Dongsi), which each have hourly observation of ten features
over the period of 2014–2016. Explicitly, the ten features
are: the concentration of PM2.5, PM10, SO2, NO2, CO,
O3, the temperature and dew point temperature, air pressure
and amount of precipitation.1

1Full data set available at https://archive.ics.
uci.edu/ml/datasets/Beijing+Multi-Site+
Air-Quality+Data.

https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
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We use the first two years of this dataset for training and
aim to forecast into the first 48 hours of 2016. Including
the variables year, month, day and hour, we have in total 34
features for the three cities and 17520 temporal observations
for training. Missing values were linearly interpolated. All
features were standardised.

To analyse properties of our proposed model, we perform
an ablation study with the following models:

diffWGP The model proposed in the paper to model the
diffusion with Wisharts.

Diagonal noise The drift term remains as in the diffWGP
model, but the diffusion is restricted to diagonal, i.e. corre-
lated diffusion cannot be modelled. This becomes the model

xt = xs + µ(xs)(t− s) +
√

Λ(t− s)εt, ε ∼ N (0, I).
(43)

No drift The drift is constantly zero, and the diffusion is
modelled by a Wishart, which results in the model

xt = xs +
√(
AΣ(xt)A> + Λ

)
(t− s)εt. (44)

This model is a continuous-time version of the model pre-
sented by Heaukulani & van der Wilk (2019).

In all instances, we train by minibatching shorter sequences,
and we use the Adam optimiser (Kingma & Ba, 2014) with
a learning rate 0.01. Due to the large amount of tempo-
ral observation compared to small batches we ease off on
momentum.

Figure 3(a) shows how the different models forecast future
observations by reporting the log-likelihood traces of indi-
vidual models at test time. The figure shows the mean and
two times the standard error, which we obtain from 50 sim-
ulations. At first, we see that having no drift starts off better,
but quickly drops in performance. This is not unexpected,
as the data has structure in its evolution. The difference
between the models with drift, but different diffusions, are
more interesting for this dataset. Overall, Wishart diffusions
perform best, and it seems to be resilient and take only few
and relatively small ‘dips’.

We expect this dataset to have highly correlated features.
The three locations in Beijing are, in distance, close to each
other; naturally the different air measurements are similar
in their evolution over time. Figure 3(b) illustrates how
a model with diagonal noise is incapable of learning this
joint development of temperature measurements. Here, the
Wishart learns that when the temperature in Dongsi is high,
it is also high in Tiantan. This behaviour is seen in many
pairs of the features considered, and it suggests diffWGP
has dynamics moving on a manifold of smaller dimension
than if diagonal noise was considered. This supports the

hypothesis that diffWGP moves as one dynamical systems,
opposed to 34.

5. Conclusion
In a non-parametric Bayesian way, we presented a scalable
approach to continuous-time learning with high emphasis
on correlated process noise. This noise is modelled with a
Wishart process, which lets high-dimensional data evolve as
a single system, rather thanD independent systems. We pre-
sented a way to scale this to high dimensions. We found that
it is never worse taking the dependence structure in the pro-
cess noise into account. However, with certain types of data,
it can mitigate overfitting effects and improve performance.

Code is publicly available at: https://github.com/
JorgensenMart/Wishart-priored-SDE.
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