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Abstract
Recently there have been several attempts to ex-
tend Nesterov’s accelerated algorithm to smooth
stochastic and variance-reduced optimization. In
this paper, we show that there is a simpler ap-
proach to acceleration: applying optimistic online
learning algorithms and querying the gradient or-
acle at the online average of the intermediate opti-
mization iterates. In particular, we tighten a recent
result of Cutkosky (2019) to demonstrate theoret-
ically that online iterate averaging results in a
reduced optimization gap, independently of the al-
gorithm involved. We show that carefully combin-
ing this technique with existing generic optimistic
online learning algorithms yields the optimal ac-
celerated rates for optimizing strongly-convex
and non-strongly-convex, possibly composite ob-
jectives, with deterministic as well as stochastic
first-order oracles. We further extend this idea to
variance-reduced optimization. Finally, we also
provide “universal” algorithms that achieve the
optimal rate for smooth and non-smooth compos-
ite objectives simultaneously without further tun-
ing, generalizing the results of Kavis et al. (2019)
and solving a number of their open problems.

1. Introduction
Our goal in this paper is to obtain algorithms with optimal
convergence rates for the following problem:

find x? = argmin
x∈X

`(x) = f(x) + φ(x) , (1)

where X is a convex constraint set in the d-dimensional
Euclidean space, f is convex and smooth, and φ is a (possi-
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bly non-smooth) convex function. When φ = 0, and given
access to (noise-free) gradients of f , Nesterov’s acceler-
ated gradient algorithms (Nesterov, 2018) achieve optimal
rates of convergence for Problem (1). Several recent papers,
summarized in Table 1, have attempted to obtain similarly
accelerated rates that improve upon the sub-optimal rates of
Stochastic Gradient Descent (SGD) when the gradients of f
are corrupted by noise and/or when φ 6= 0.

Despite the major effort to obtain these extensions, existing
results suffer from several limitations such as: (a) inhibiting
noise in the gradient (Allen-Zhu and Orecchia, 2017; Wang
and Abernethy, 2018); (b) potentially querying the gradient
oracle outside the constraint set (Levy et al., 2018; Cutkosky,
2019) (c) not providing optimal rates for strongly-convex
objectives (Cutkosky, 2019); (d) extra logarithmic terms
appearing in the error bounds (Levy et al., 2018; Cutkosky,
2019); (e) not handling proximal updates when φ 6= 0 (Levy
et al., 2018; Kavis et al., 2019; Cutkosky, 2019) or (f) relying
on prior knowledge of problem parameters (Tseng, 2008;
Beck and Teboulle, 2009; Hu et al., 2009; Xiao, 2010; Lan,
2012; Chen et al., 2012).

In this paper, we demonstrate a simple direct approach to
deriving accelerated rates: following Cutkosky (2019), we
propose running an online learning algorithm and feeding
it with (possibly noisy) first-order information obtained at
the weighted average of its iterates. Then, building on the
recent simple, tight modular analysis techniques of generic
optimistic online learning algorithms (Joulani et al., 2017;
2020), we are able to alleviate all the aforementioned limi-
tations, design new accelerated algorithms with straightfor-
ward convergence analyses, and solve a number of problems
left open in previous work.

1.1. Contributions and Related Work

Our main contributions can be summarized as follows:

• We provide a direct, simple template for deriving and
analyzing accelerated algorithms for stochastic and
deterministic convex optimization with composite ob-
jectives. We further extend the above framework to
variance-reduced stochastic non-strongly-convex opti-
mization.
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X f φ Oracle Universal Notes

Tseng (2008) Any Non-SC X D -

Beck and Teboulle (2009) Rd Non-SC X D -

Hu et al. (2009) Rd SC / Non-SC X S+D - Assumes bounded trajectory

Xiao (2010) Any Non-SC X S + D - Dual-Averaging

Lan (2012) Any Non-SC X S+D - Not utilizing prox-map of φ

Chen et al. (2012) Any SC / Non-SC X S+D -
Any SC X S+D - Exponential noise-free rate

Allen-Zhu and Orecchia (2017) Any Non-SC - D - Linear-coupling
Any SC - D - Exponential rate

Wang and Abernethy (2018) Any Non-SC X D - Primal-dual view
Any SC - D - Exponential rate

This paper (Corollary 4) Any SC / Non-SC X S + D -
Any SC X D - Exponential rate

Cutkosky (2019) Compact Non-SC - S+D X Accessing f outside X
Levy et al. (2018) Compact Non-SC - S+D X Accessing f outside X
Kavis et al. (2019) Compact Non-SC - S + D X

This paper (Theorem 5) Compact Non-SC X S + D X

Table 1. Summary of previous work obtaining accelerated rates of convergence. Cutkosky (2019) analyses strongly-convex optimization
as well, but the rates are sub-optimal (i.e., non-accelerated). Here, “Non-SC” means non-strongly convex (that is, strong-convexity of f is
not required), “SC” means strongly convex, “D” and “S” stand for deterministic and stochastic oracles, respectively. Universality means
the algorithm achieves the smooth and non-smooth rates simultaneously without requiring the knowledge of the problem’s smoothness
and noise level. The “bounded-trajectory” assumption means that the error bound scales with the maximum distance of the iterates from
the optimum x?, but the algorithm does not enforce this to be bounded (e.g., through projection to a compact set). See also the survey by
Bubeck (2015) and the recent book of Nesterov (2018).

• For composite non-strongly-convex objectives, we pro-
vide a new universal algorithm (in the sense of Nes-
terov, 2015): given only access to the proximal projec-
tion oracle of φ onto the constraint set, without prior
knowledge of the smoothness or noise level, the new
algorithm simultaneously achieves the optimal rate of
convergence for smooth and non-smooth f . This, to-
gether with the fact that the algorithm uses coordinate-
wise adaptive step-sizes, resolves two problems left
open by Kavis et al. (2019).

In particular, in Lemma 1 and Corollary 2, we tighten the re-
cent analysis of online iterate averaging by Cutkosky (2019).
Compared to their Theorem 1, Corollary 2 exposes addi-
tional terms that reduce the optimization gap. These terms,
whose absence prevented Cutkosky (2019, Theorem 3) from
getting the optimal accelerated rates, are similar to what
Wang and Abernethy (2018) obtained through an indirect
formulation of acceleration as a two-player game.

Next, we show how to utilize the aforementioned reduc-
tion to obtain accelerated rates. This is achieved by us-
ing properly-tuned optimistic online learning algorithms

(Rakhlin and Sridharan, 2013a;b; Mohri and Yang, 2016)
as the underlying optimization machinery. Importantly, this
tuning can be done somewhat independently of the assump-
tions on the objective (such as the presence of noise, strong
convexity, or a non-zero φ) or the algorithmic techniques
(such as proximal updates or adaptive learning rates), thanks
to the recent modular analyses of online learning algorithms
by Joulani et al. (2017; 2020). This results in a simple,
straightforward acceleration framework.

Furthermore, we extend the analysis to variance-reduced
optimization for smooth non-strongly-convex functions. We
show that incorporating negative momentum (common in
the accelerated SVRG literature, see, e.g., Allen-Zhu, 2017;
Lan et al., 2019) in our framework introduces an additional
reduction in the optimization gap, enabling us to obtain
the optimal convergence rate. We also analyze a simpler
version of the variance reduced algorithm without negative
momentum, which enjoys a variance-reduced, though still
sub-optimal rate of convergence for the last iterate.

Finally, we provide a universal algorithm for non-strongly-
convex composite optimization, extending the works of
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Levy et al. (2018); Cutkosky (2019); Kavis et al. (2019) to
the case when φ 6= 0. The new algorithm features proximal
updates and coordinate-wise adaptive step-sizes, thus solv-
ing two problems left open by Kavis et al. (2019). Unlike
Levy et al. (2018) and Cutkosky (2019), the new algorithm
does not query the optimization oracle outside the constraint
set X , and does not suffer from extra log terms in the bound.
Unlike the algorithm of Kavis et al. (2019) (which is based
on mirror-descent) our algorithm is based on dual-averaging,
which is better suited to sparse learning with a proximal `1
penalty (Xiao, 2009; McMahan, 2011).

Notation. R denotes the set of real numbers. For any
positive integer n, [n] = {1, . . . , n}. Let h : D → R
where D ⊂ Rd for some positive integer d. The gradient
or a subgradient of h is denoted by h′. When h is convex,
the Bregman-divergence Bh : D × Do → R is defined as
Bh(x, y) = h(x)−h(y)−〈h′(y), x−y〉, whereDo denotes
the interior of D. We say that h is µ-strongly convex with
respect to (w.r.t.) a norm ‖ · ‖ if for all x ∈ D, y ∈ Do,
µ
2 ‖x− y‖

2 ≤ Bh(x, y), and it is µ-strongly convex w.r.t. a
function n : D×Do → [0,∞) if µ ·n(x, y) ≤ Bh(x, y) for
all x ∈ D, y ∈ Do (note that h is µ-strongly convex w.r.t. a
norm ‖·‖ if it is µ-strongly convex w.r.t. the function ‖·‖2/2).
For non-negative integers a, b and a sequence of numbers
or vectors x0, x1, . . ., we let xa:b =

∑b
s=a xs if a ≤ b and

0 otherwise. With a slight abuse of notation, for a vector
x ∈ Rd, we denote its coordinates as x = (x1, . . . , xd);
whether the subscript refers to a coordinate or a time index
is usually clear from the context (to reduce the possible
ambiguity, we normally use xi and xj to index coordinates
of x, and xt and xs to indicate a quantity corresponding to
time steps t or s). For an eventE, I{E} denotes its indicator
function, that is I{E} = 1 if E is true, otherwise I{E} = 0.
The base-2 logarithm of x ∈ (0,+∞) is denoted by log(x).

2. Preliminaries
For simplicity, we assume that an optimizer x? ∈ X of
Problem (1) exists, i.e., `? := `(x?) ≤ `(x) for all x ∈ X .1

Smoothness of functions. When f is differentiable over
Rd, given a norm ‖ · ‖, the following are equivalent defini-
tions of smoothness of f (Nesterov, 2018, Theorem 2.1.5):
f is L-smooth if

(i) for all x, y ∈ Rd, Bf (x, y) ≤ L
2 ‖x− y‖

2 ;

(ii) for all x, y ∈ Rd, ‖f ′(x)− f ′(y)‖∗ ≤ L‖x− y‖ ;

(iii) for all x, y ∈ Rd,

‖f ′(x)− f ′(y)‖2∗ ≤ (2L)Bf (x, y) . (2)

1We do not require X to be closed or compact, which are
normally assumed to ensure x? exists.

Throughout the paper, we only require2 that f is differen-
tiable over X , and use (2), holding for all x, y ∈ X , as the
notion of smoothness under which accelerated rates are ob-
tained. Alternatively, assuming (ii) holds only for x, y ∈ X ,
one can still obtain the same rates with a very similar analy-
sis as we provide, at the expense of an additional gradient
oracle call per step of the algorithms; we leave the details
for an extended version of the paper.3

Iterative optimization. We consider first-order sequen-
tial optimization procedures with access to a stochastic gra-
dient oracle that returns unbiased estimates of f ′. A se-
quential optimization method then, in iteration t, queries the
oracle at a point yt ∈ X , receives a gradient estimate gt such
that E [gt|Ht] = f ′(yt) whereHt = σ

(
(gs)

t−1
s=1 , (ys)

t
s=1

)
is the sigma-algebra generated by all the information used by
the algorithm before making the query at yt to the gradient
oracle. In case φ 6= 0, we also assume that the optimization
method has access to the prox-function of φ (cf. Eq. 6).
After T iterations, the algorithm produces an estimate x̄T of
x?, based on all the information it has seen, where the qual-
ity of the estimate is measured by the error E [`(x̄T )]− `?.

Online linear optimization. One way to design and an-
alyze iterative optimization methods is through online lin-
ear optimization (OLO) algorithms. An OLO algorithm
sequentially comes up, at each time step t ∈ [T ], with a
prediction xt, then receives a linear loss function 〈αtut, ·〉,
with the aim of maintaining a small cumulative compos-
ite loss

∑T
t=1 αt (〈ut, xt − x〉+ φ(xt)− φ(x)), a.k.a. its

regret compared to a competitor point x. Here ut ∈ Rd
is unknown to the algorithm before selecting xt, but the
non-negative weights αt are known ahead of time. One can
convert an OLO algorithm to an iterative optimization algo-
rithm by using yt = xt to query the oracle, using ut = gt
in the linear loss to the OLO algorithm, and employing the
average x̄T =

∑T
t=1

αt

α1:T
xt as the final estimate of x?.

The appeal of this “vanilla online-to-batch” approach (Al-
gorithm 1), is that it reduces the convergence analysis of x̄T
for convex f and φ to the regret analysis of the underlying
OLO algorithm. In particular, by Jensen’s inequality,

E [`(x̄T )]− `?

≤
T∑
t=1

E
[
αt (〈f ′(xt), xt − x?〉+ φ(xt)− φ(x?))

α1:T

]

= E

[∑T
t=1 αt (〈gt, xt − x?〉+ φ(xt)− φ(x?))

α1:T

]
2Extensions when f is non-differentiable at boundary points

are straightforward.
3Assuming only that (i) holds for all x, y ∈ X does not imply

(ii) or (2) in general (even for x, y ∈ X ). E.g., f ′(x) can grow
arbitrarily in the directions orthogonal to X while (i) holds.
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Algorithm 1 Vanilla Online-to-Batch
1: Input: Stochastic gradient oracle, non-negative weights

(αt)
T
t=1 with α1 > 0, online linear optimization algo-

rithm A
2: Get the initial point x1 ∈ X from A
3: for t = 1 to T − 1 do
4: Get stochastic gradient gt at the current iterate xt
5: Send 〈αtgt, ·〉 as the next linear loss to A
6: Let xt+1 be the next iterate from A
7: end for
8: return the average iterate

∑T
t=1 αtxt

α1:T
.

Algorithm 2 Anytime Online-to-Batch (Cutkosky, 2019)
1: Input: Stochastic gradient oracle, non-negative weights

(αt)
T
t=1 with α1 > 0, online linear optimization algo-

rithm A
2: Get the initial point x1 ∈ X from A and let x̄1 ← x1

3: for t = 1 to T − 1 do
4: Get stochastic gradient gt at the average iterate x̄t
5: Send 〈αtgt, ·〉 as the next linear loss to A
6: Let xt+1 be the next iterate from A
7: Let x̄t+1 ←

∑t+1
s=1 αsxs

α1:t+1

8: end for
9: return the average iterate x̄T

≤ E
[
RT (x?)

α1:T

]
, (3)

whereRT (x?) is an upper-bound for the regret of the OLO
algorithm. Thus, to analyze the convergence of x̄T , one can
simply plug-in an off-the-shelf regret bound (reviewed at
the end of this section) for the underlying OLO algorithm.

Anytime online-to-batch. An alternative, elegant online-
to-batch conversion (Algorithm 2) was recently proposed
by Cutkosky (2019), which uses the “online” average x̄t =∑t
s=1

αs

α1:t
xs as the query point, i.e., yt = x̄t. Cutkosky

(2019, Theorem 1) showed (with φ = 0) that (3) holds under
this conversion scheme as well. In the next section, we show
that in fact Algorithm 2 enjoys a tighter version of (3) that
enables us to prove accelerated rates.

Generic regret bound. Next, we recall the regret bound
for a general family of OLO algorithms known as “adap-
tive optimistic follow the regularized leader” or AO-FTRL
(Rakhlin and Sridharan, 2013a;b; Mohri and Yang, 2016).
At time t, AO-FTRL makes its t-th prediction as

xt = argmin
x∈X

〈
t−1∑
s=1

αsgs + αtg̃t, x

〉
+ α1:tφ(x) + r0:t−1(x) , (4)

where, the rt : X → R are convex regularizer functions,
and for every t, g̃t, the optimistic part of the update, is
interpreted as a prediction of gt before it is received.

It is straightforward to see that AO-FTRL captures a wide
range of algorithms used in optimization (Xiao, 2009;
McMahan, 2017). For example, the dual-averaging algo-
rithm of Xiao (2009) corresponds to the case when φ = 0
and r0:t−1 = ηt

2 ‖ · ‖
2
2 for ηt > 0, in which case it is easy to

verify that

xt = ΠX

(
−
∑t−1
s=1 αsgs + αtg̃t

ηt

)
, (5)

where ΠX denotes Euclidean projection onto set X . More
generally, allowing coordinatewise step sizes ηt ∈ [0,∞)d

and a possibly non-zero φ, with r0:t−1(x) = 1
2

∑d
j=1 ηt,jx

2
j

we recover the proximal (a.k.a. “composite-objective” or
“regularized”) dual-averaging update (Xiao, 2009):

xt = proxα1:tφ,ηt

(
−
t−1∑
s=1

αsgs − αtg̃t

)

= argmin
x∈X

α1:tφ(x) +
1

2

d∑
j=1

ηt,j

(
xj −

zt−1,j

ηt,j

)2

, (6)

where proxα1:tφ,ηt is the prox-function of α1:tφ
with coordinatewise step sizes ηt,j and zt−1 =

−
(∑t−1

s=1 αsgs + αtg̃t

)
. Note that AdaGrad-style updates

(Duchi et al., 2011) can be recovered by setting ηt based on
the past gradient estimates gs, g̃s (for s < t).

If rt ≥ 0, the cumulative regularizer α1:tφ + r0:t−1 is 1-
strongly convex w.r.t. a norm ‖ · ‖(t), and the AO-FTRL
update is well-defined, that is, the minimizer xt ∈ X exists
and

〈∑t−1
s=1 αsgs + αtg̃t, xt

〉
+ α1:tφ(xt) + r0:t−1(xt) is

finite, then Theorem 6 of Joulani et al. (2020) gives the
following regret bound (see Appendix E):

RT (x?) = r0:T−1(x?) +

T∑
t=1

1

2
α2
t ‖gt − g̃t‖2(t)∗. (7)

3. Acceleration with Anytime Online-to-Batch
First, we present a lemma that generalizes the regret decom-
position of Joulani et al. (2017) to work with the averaging
scheme of Cutkosky (2019). Crucially, the decomposition
keeps track of some negative Bregman-divergence terms,
which are instrumental in reducing the contribution of the
OLO regret to the error of x̄T .
Lemma 1. For t = 1, 2, . . . T , let αt > 0 and xt ∈ Rd,
and define x̄t = (

∑t
s=1 αsxs)/α1:t, Bt = αtBf (x?, x̄t),

and B̄ft = α1:t−1Bf (x̄t−1, x̄t), t > 1. Then, if φ is convex,

α1:T (`(x̄T )− `?)
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≤
T∑
t=1

αt (〈f ′(x̄t), xt − x?〉+ φ(xt)− φ(x?))

−B1:T − B̄f2:T . (8)

The lemma immediately gives rise to the following generic
error bound, which improves upon Theorem 1 of Cutkosky
(2019) by keeping around the aforementioned −B̄ft and
−Bt terms. While theBt are the usual Bregman-divergence
terms (also appearing in the vanilla online-to-batch) that
are utilized to get fast rates for strongly convex functions
(and can be dropped in general as long as the function is
star-convex; see Joulani et al., 2020), the important new
terms here are the −B̄ft terms, which allow us to prove
accelerated rates for online averaging.

Corollary 2 (Generic Error Bound). Under the assumptions
of Lemma 1, if for all t = 1, 2, . . . , T , gt ∈ Rd satisfies
E [gt|x̄t] = f ′(x̄t) and we have

T∑
t=1

αt (〈gt, xt − x?〉+ φ(xt)− φ(x?)) ≤ RT (x?) (9)

for some upper-boundRT (x?), then

E [`(x̄T )− `(x?)] ≤ E

[
RT (x?)−B1:T −B̄f2:T

α1:T

]
. (10)

The corollary follows since gt is a conditionally unbiased
estimate of f ′(x̄t), so the first term on the r.h.s. of (8) is, in
expectation, equal to the term on the l.h.s. of (9), and hence
upper-bounded by E [RT (x?)]. Next, we prove the lemma.

Proof of Lemma 1. Writing f(x̄T ) as a telescoping sum,

f(x̄T )− f(x?)

= −f(x?) +
α1f(x̄1)

α1:T
+

T∑
t=2

α1:tf(x̄t)− α1:t−1f(x̄t−1)

α1:T

=

T∑
t=1

αt (f(x̄t)−f(x?))

α1:T
+

T∑
t=2

α1:t−1(f(x̄t)−f(x̄t−1))

α1:T

=

T∑
t=1

αt 〈f ′(x̄t), x̄t − x?〉 −Bt
α1:T

+

T∑
t=2

α1:t−1 〈f ′(x̄t), x̄t − x̄t−1〉 − B̄ft
α1:T

=

T∑
t=1

αt 〈f ′(x̄t), x̄t − x?〉 −Bt
α1:T

+

T∑
t=2

αt 〈f ′(x̄t), xt − x̄t〉 − B̄ft
α1:T

=

∑T
t=1 αt 〈f ′(x̄t), xt − x?〉 −B1:T − B̄f2:T

α1:T
,

where the third step follows since by the definition of Breg-
man divergence, f(z)− f(y) = 〈f ′(z), z − y〉 −Bf (y, z),
the fourth step follows since by the definition of x̄t, for
t = 2, 3, . . . , T we have αt(x̄t − xt) = α1:t−1(x̄t−1 − x̄t),
and the last step uses x̄1 = x1. The proof is completed
by φ(x̄T ) − φ(x?) ≤

∑T
t=1

αt

α1:T
(φ(xt)− φ(x?)), which

holds by Jensen’s inequality.

Acceleration. The main idea behind deriving accelerated
rates is combining (7) with (10), and selecting αt and g̃t
appropriately so that the negative terms −B̄ft in (10) offset
the contribution of the terms α2

t

2 ‖gt − g̃t‖
2
(t)∗ in (7) to the

final error bound of x̄T . For example, let f be L-smooth
over Rd or assume otherwise that (2) holds with the norm
‖ · ‖ = ‖ · ‖2. Suppose the optimization algorithm uses
the dual averaging update (5) with αt = t, ηt = η = 2L,
deterministic gradients gt = f ′(x̄t), and g̃t = gt−1. Then,
r0:t−1 is 1-strongly convex w.r.t. the norm L‖ · ‖22, and the
norm terms α2

t

2 ‖gt − g̃t‖
2
(t)∗ in (7) can be bounded as

α2
t

2
‖gt − g̃t‖2(t)∗ = α2

t

1

4L
‖f ′(x̄t)− f ′(x̄t−1)‖22

≤ α2
t

2α1:t−1
B̄ft =

t2

t(t− 1)
B̄ft ≤ B̄

f
t ,

where the first inequality follows using (2). Hence,
RT (x?)− B̄f2:T ≤ L‖x?‖22 + 1

4L‖f
′(x1)‖22. Noticing that

α1:T = Ω(T 2) gives the well-known accelerated O(1/T 2)
rate for the error of x̄T . The next theorem, proved in Ap-
pendix A, makes this argument precise for the general set-
ting with noise, non-zero φ and generic AO-FTRL.

Theorem 3. In Algorithm 2, let the base methodA generate
its iterates by the AO-FTRL update (4), using g̃t = gt−1

as the optimistic prediction of gt for t > 1 and arbitrary
g̃1. Suppose that f and φ are convex, and there exists a
norm ‖ · ‖ such that either f is 1-smooth w.r.t. ‖ · ‖ over
Rd or otherwise (2) holds with L = 1 for all x, y ∈ X .
Further suppose that for all t ∈ [T ], rt−1 ≥ 0 is convex,
the AO-FTRL update (4) is well-defined with finite value
at the optimum xt, and there exist βt > 0 and a norm
‖ · ‖(t) such that α1:tφ + r0:t−1 is 1-strongly-convex w.r.t.
βt

2 ‖ · ‖
2 + 1

2‖ · ‖
2
(t). Then, if α2

tβ
−1
t ≤ α1:t−1 for all t > 1,

we have

E [`(x̄T )− `?] ≤
T∑
t=1

E
[
rt−1(x?)− rt−1(xt)−Bt

α1:T

]

+

T∑
t=1

E

[
α2
t ‖σt − σt−1‖2(t)∗

2α1:T

]

+ E
[
α2

1‖f ′(x̄1)− g̃1‖2∗
2β1α1:T

]
, (11)
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where σt = gt − f ′(x̄t), t ∈ [T ], and σ0 = 0.

4. Applications
In this section we use the framework of the previous section,
and Theorem 3 in particular, to obtain accelerated conver-
gence rates with proximal updates, noisy gradients, and
universal algorithms.

4.1. Accelerated Proximal Dual-Averaging

First, we show that with appropriately setting αt and ηt, one
can obtain the optimal accelerated rates for the proximal
dual averaging update (6). In particular, we consider the
case of a single step size for all coordinates (with a slight
abuse of notation, ηt,i = ηt for all i) and r0:t−1 = ηt

2 ‖ · ‖
2
2.

Then, under the conditions of Theorem 3, we have

E [`(x̄T )− `?] ≤
T∑
t=1

E

[
α2
t ‖σt − σt−1‖2(t)∗

2α1:T

]

+ E

[
ηT ‖x?‖22 −

∑T
t=1(ηt − ηt−1)‖xt‖22 − 2Bt

2α1:T

]

+ E
[

α2
1

2β1α1:T
‖f ′(x̄1)− g̃1‖2∗

]
. (12)

Thus, the optimal rates follow immediately by properly
setting ηt and αt, as captured by the following corollary.

Corollary 4 (Accelerated Proximal Dual-Averaging). Let
f and φ be convex and assume that either f is L-smooth
over Rd or otherwise (2) holds for all x, y ∈ X . Consider
the online-averaged (stochastic) proximal dual averaging
algorithm, given by Algorithm 2 with update (6) using g̃t =
gt−1 as the optimistic prediction of gt for t > 1, and g̃1 =
0, where the gradient estimates gt are unbiased, that is,
E [gt|x̄t] = f ′(x̄t). Let σ2

∗ = maxTt=1 E
[
‖σt‖22

]
, where

σt = gt − f ′(x̄t), and let D = max{‖x?‖2, ‖x1 − x∗f‖2},
where x∗f is the minimizer of f over Rd. Then we have the
following error bounds:

(i) If ηt = 4L + ηαt
√
t for some η > 0 and αt = t, we

have

E [`(x̄T )− `?] ≤

(
4L+ L

4 + ηT
√
T
)
D2 +

4σ2
∗
η T
√
T

T (T + 1)

= O
(
LD2

T 2
+
ηD2 + η−1σ2

∗√
T

)
.

(ii) If φt is µ-strongly-convex then using ηt = 4L and
αt = t, we have

E [`(x̄T )− `?] ≤
(
4L+ L

4

)
D2 +

8σ2
∗T
µ

T (T + 1)

= O
(
LD2

T 2
+
σ2
∗

µT

)
.

(iii) If gt = f ′(xt) (i.e., the noiseless case) and φ is µ-
strongly-convex, then for ηt = 0 and any sequence of
αt > 0, t ∈ [T ] satisfying

√
cκ ≥ α1:t

αt
≥
√

2κ t > 1 , (13)

for some c ≥ 2 where κ = (L + µ)/µ denotes the
condition number, we have

`(x̄T )− `? ≤
‖f ′(x1)‖2

(
1− 1√

cκ

)T−1

2µ
. (14)

Remark 1. The above rates of O
(
1/T 2

)
for a non-

strongly-convex f are optimal in T when there is no noise
(σt = 0), and the bound (14) also almost matches the
optimal O

(
(1− 1/

√
κ)T

)
rate for the noiseless strongly-

convex case. When there is noise, the worst-case rate of
O
(

1/
√
T
)

(for non-strongly-convex f ) and O (1/T ) (for
strongly-convex f ) are unavoidable, according to the lower-
bounds of Nemirovsky and Yudin (1983): when the noise
dominates, there is no hope of exploiting the smoothness
in the signal (i.e., the gradient). Therefore, similarly to
our paper, all previous work obtain only a lower-order im-
provement, e.g., from 1/T +σ/

√
T (of smooth non-strongly-

convex SGD) to 1/T 2 + σ/
√
T . If the noise is small, the

latter rate is closer to the noise-free optimal rate of 1/T 2,
and determines the convergence speed of the algorithm in
the initial stages of optimization. In contrast, the former
bound (for SGD) is sub-optimal in the noise-free case. The
possible improvements are lower-order in case of noisy
strongly-convex optimization as well.

Proof of Corollary 4. First, notice that with any step size
ηt = 4L + γt, the algorithm is equivalent to Algorithm 2
with AO-FTRL as the base algorithm, using regularizers
r0:t−1 = 4L+γt

2 ‖ · ‖22, which satisfy the conditions of The-
orem 3 with βt = 4, ‖ · ‖2 = L‖ · ‖22, and ‖ · ‖2(t) =

(γt + α1:tµ)‖ · ‖22, where µ is the strong-convexity param-
eter of φ (i.e, µ = 0 in part (i), and µ > 0 in parts (ii) and
(iii)). Hence, starting from (12), with αt = t we have

E [`(x̄T )− `(x?)]

≤
T∑
t=1

t2E
[
‖σt − σt−1‖22

]
(γt + α1:tµ)T (T + 1)

+
(4L+ γT ) ‖x?‖22

T (T + 1)

−
∑T
t=1(γt − γt−1)E

[
‖xt‖22

]
T (T + 1)

+
E
[
‖f ′(x̄1)‖22

]
4T (T + 1)L

.

In the above, E
[
‖σt − σt−1‖22

]
≤ 4σ2

∗. In addition, since
f is convex and satisfies (2), we have 1

2L‖f
′(x̄1)‖22 ≤
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Bf (x1, x
∗
f ) ≤ L

2 ‖x1−x∗f‖2 where x∗f is the minimizer of f
over Rd. Then, plugging in γt = ηαt

√
t (respectively, γt =

0) and dropping the non-positive terms −(γt − γt−1)‖xt‖22
immediately gives part (i) (respectively, part (ii)).

To prove part (iii), first recall that for ηt,j > 0, (6) is
equivalent to the AO-FTRL update (4) with r0:t−1(x) =
1
2

∑d
j=1 ηt,jx

2
j . For ηt = 0, we define the update to be

AO-FTRL with r0:t−1 = 0, hence the update will be of
the form xt = argminx∈X 〈zt−1, x〉+α1:tφ(x) (recall that
zt−1 = −

∑t−1
s=1 αsgs − αtg̃t). Then, since φ is strongly-

convex, despite having rs = 0 for all s, we have that
α1:tφ + r0:t−1 is strongly-convex w.r.t. βt L2 ‖ · ‖

2
2 with

βt = α1:t
µ
L . Hence, by Theorem 3,4 we have

α1:T (`(x̄T )− `(x?)) ≤ α1

2µ
‖f ′(x1)− g̃1‖2 , (15)

as long as for all t > 1, the assumption α2
tβ
−1
t ≤ α1:t−1 of

Theorem 3 is satisfied: that is, we have

α2
t

α1:tα1:t−1
≤ µ

L
=

1

κ− 1
. (16)

It remains to show that (16) is satisfied, and simplify the
bound (15). To that end, note that on the one hand, by
(13) we have α1:t−1/αt ≥

√
2κ− 1, which in turn implies

α1:tα1:t−1

α2
t

≥ 2κ−
√

2κ ≥ κ−1, proving (16). On the other

hand, (13) implies α1:t−1 ≤ (1 − 1√
cκ

)α1:t for all t > 1;

therefore α1 ≤ α1:T

(
1− 1√

cκ

)T−1

. Putting this back into
(15) finishes the proof.

4.2. A Proximal Adaptive Universal Algorithm

Next, we present the universal convergence of Algorithm 2
with AdaGrad-style step sizes, proved in Appendix B.
Theorem 5. Suppose that the iterates xt are given by AO-
FTRL with AdaGrad step sizes, i.e., using (4) with r0 = 0,

rt(x) = γ

d∑
j=1

ηt,j − ηt−1,j

2
(xj − xt,j)2, t ≥ 1 ,

where γ > 0, ηt,j =
√∑t

s=1 α
2
s(gs,j − g̃s,j)2, t > 0 and

η0 = 0. Further suppose that gt are unbiased estimates of
f ′(x̄t), and we use g̃t = gt−1, t > 1 and g̃1 = 0. Let R be
an upper-bound on |x?j − xt,j |2. Then the following hold:

(i) If E
[
g2
t,j

]
≤ G2

j for all t ∈ [T ], then

E [`(x̄T )− `?] ≤
d∑
j=1

E


(
γR2

2 + 2
γ

)
α1:T

√√√√ T∑
t=1

α2
tG

2
t,j


4Note that instead of using a norm, here we set ‖ · ‖(t) in

Theorem 3 to be zero. While this is not a valid choice, an inspection
of the proof of the theorem verifies that the theorem still holds in
this case if the dual norm is set to zero and σt = 0 for all t.

= O

(
R
∑d
j=1Gj√
T

)
,

for γ = 2/R, where Gt,j := (gt,j − g̃t,j).

(ii) If f is L-smooth over Rd or otherwise (2) holds for all
x, y ∈ X , and E

[
σ2
t,j

]
≤ σ2

j for all t ∈ [T ] (recall
that σt = gt − f ′(x̄t)), then

E [`(x̄T )− `?] ≤ 1

α1:T

d∑
j=1

6L

(
γR2

2
+

2

γ

)2

+
1

α1:T

(
γR2

2
+

2

γ

)∆ +

d∑
j=1

√√√√ T∑
t=1

6α2
tσ

2
j


= O

(
LdR2 + ∆R

T 2
+

maxj σjdR√
T

)
,

for γ = 2/R, where ∆ =
∑d
j=1

√
2E [|f ′(x1,j)|2].

Remark 2. Both bounds above are achieved by the same
algorithm, without further prior knowledge about f or the
values of L and σ. The first bound is a data-adaptive bound
that holds even if f is non-smooth, and is optimal when the
data is sparse (Duchi et al., 2013). The second bound is of
the optimal rate O(1/T 2 + σ/

√
T ) when f is smooth.

Remark 3. The bound R required by the theorem is en-
forced, e.g., when X is compact. This implies that in the
unconstrained optimization setting, similarly to Levy et al.
(2018), we assume that we are still given a compact set X
containing x? and project to that set in the algorithm.

5. Accelerated Variance-Reduced Methods
In this section, we apply our framework to the variance
reduced setting. In this setting, we assume f = E [F (·, ξ)]
is the expected value of functions F : Rd×Ξ→ R, where ξ
is a random variable from some set Ξ, with distribution PΞ.
At time step t, the algorithm receives a realization ζt ∼ PΞ,
and can query the gradient oracle F ′(·, ζt) at (potentially
multiple) points in X . In addition, the algorithm can query
the exact (non-stochastic) gradient oracle f ′ from time to
time. Then, the gradient estimate gt at x̄t is calculated as

gt = F ′(x̄t, ζt)− F ′(x̃t, ζt) + f ′(x̃t) , (17)

where x̃t is the snapshot point at time t, i.e., the most recent
point at which f ′ has been queried prior to time t.

The underlying operational assumption in computing gt is
that calls to F ′ are computationally cheaper than calls to
f ′, and hence the latter is queried less frequently. This is
in particular the case in finite sum minimization problems,
where f = 1

n

∑n
i=1 fi for some functions fi : X → R,

F (x, i) = fi(x) for all i ∈ [n], and ζt has a uniform distri-
bution over [n]. In this case, the computational complexity
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of an algorithm is measured by the number of times the
gradient of any fi is computed, so a single access to the full
gradient oracle f ′ has a computation cost of O(n).

Let H1 = ∅ and Ht = {ζ1, ζ2, . . . , ζt−1} for t > 1, i.e.,
Ht is the history of random realizations up to time t. To
ensure gt is an unbiased estimate of f ′(x̄t), i.e., E [gt|Ht] =
f ′(x̄t), we assume that for any t and anyHt-measurable x,

E [F ′(x, ζt)|Ht] = f ′(x) , and,
E [F (x, ζt)|Ht] = f(x) .

(18)

This is ensured, e.g., if ζt, t = 1, 2, . . . is an i.i.d. sequence.

Algorithm. In this setting, instead of defining the query
point x̄t as the average of the previous outputs of the un-
derlying online optimization algorithm A, we define it as

x̄t =
α1:t−1x̄t−1 + αtxt + ptx̃t

α1:t + pt
(19)

where the αt > 0 are the averaging weights as before, and
pt ≥ 0 incorporates a negative momentum (first introduced
by Allen-Zhu (2017)) towards the current snapshot point x̃t.
If pt = 0, (19) reduces back to x̄t = 1

α1:t

∑t
s=1 αsxs.

The resulting algorithm, presented in Algorithm 3, extends
Algorithm 1 of Joulani et al. (2020) to the anytime averaging
scheme with negative momentum. Algorithm 3 operates
in epochs (the outer loop in the algorithm goes over the
epochs): At the beginning of epoch s, the gradient snapshot
is calculated. Then, in the sth run of the inner loop, from
time T1:s−1 + 1 to T1:s, an optimization algorithm A is run
for Ts steps with the variance reduced gradient estimates
(17) and averaging (19). Finally, the snapshot point is up-
dated at the end of the epoch; the exact form of the update
is given later for the different variants we consider.

Algorithm 3 Variance-Reduced Anytime Online-to-Batch
with Negative Momentum

1: Input: Gradient oracle F ′ and f ′, non-negative weights
(αt)

T
t=1 with α1 > 0, epoch lengths T1, T2, . . . , TS ,

online linear optimization algorithm A
2: Get the initial point x1 ∈ X from A
3: x̃← x1, x̄1 ← x1

4: for s = 1 to S do
5: Compute and store the full gradient f ′(x̃)
6: for t = T1:s−1 + 1 to T1:s do . Denote x̃t = x̃
7: Get the gradient estimate gt at x̄t by (17)
8: Send 〈αtgt, ·〉 as the next linear loss to A
9: Let xt+1 be the next iterate from A

10: Let x̄t+1 ← α1:tx̄t+αt+1xt+1+pt+1x̃t

α1:t+1+pt+1

11: end for
12: Update the snapshot point x̃.
13: end for
14: return the average iterate x̄T and the latest snapshot x̃.

5.1. Warm-Up: No Negative Momentum

First, we consider a version of our accelerated variance-
reduced method without negative momentum (pt = 0 for all
t), using the first iterate of each epoch (i.e., the last iterate
of the previous epoch s − 1 for s > 1) as the snapshot
point: In line 12, we let x̃ = x̄t+1, so that in every epoch
s ∈ [S], x̃t = x̄T1:s−1+1 for all t ∈ [T1:s−1 + 1, T1:s].
We use AO-FTRL with regularizer r1:t−1 = ηt

2 ‖ · ‖
2
2 as

the underlying algorithm A, with the snapshot used as the
optimistic gradient estimate: g̃t = f ′(x̃t−1). Then, we have
the following bound on the performance of the algorithm:

Theorem 6. Suppose that f , as well as F (·, ζ) for all ζ ∈ Ξ,
are a) convex; and, b) either L-smooth w.r.t. ‖ · ‖2 over
Rd or otherwise satisfying (2) for all x, y ∈ X . Further
suppose that (18) holds. Assume that Algorithm 3 is run
with epoch lengths Ts = min{τ, 2s−1} for some maximum
epoch length τ , snapshot update x̃ = x̄t+1 in line 12, αt =
t, and A selected as AO-FTRL with regularizer r1:t−1 =
ηt
2 ‖ · ‖

2
2 for ηt = 8Lτ2 and optimistic gradient estimates

g̃1 = 0 and g̃t = f ′(x̃t−1), t > 1. Then, for any T > τ ,

E [`(x̄T )]− `(x?) ≤
8Lτ2‖x?‖22 +

‖f ′(x̄1)‖22
8Lτ2

T (T + 1)
.

Proof. By Theorem 17 in Appendix E,

RT (x?) =
ηT
2
‖x?‖22 +

T∑
t=1

α2
t

2ηt
‖gt − g̃t‖22

bounds the linearized composite-objective regret ofA. Com-
bining with Corollary 2 and using B1:T ≥ 0,

E [`(x̄T )]− `(x?)

≤ 1

α1:T
E

[
ηT
2
‖x?‖22 +

T∑
t=1

α2
t

2ηt
‖gt − g̃t‖22 − B̄

f
2:T

]
.

Lemma 9 in Appendix C shows that

T∑
t=2

α2
t ‖gt − g̃t‖22 ≤ 16Lτ2B̄f2:T ,

which then can be used to cancel all terms but ‖g1 −
g̃1‖22/(2η1) from the summation above. Using g1 = f ′(x̄1)
and g̃1 = 0, and substituting ηt finishes the proof.

In the finite sum optimization setting, by selecting τ = n,

our algorithm achieves ε error after O
(
n log n+ n

√
L
ε

)
individual gradient evaluations, via a simple direct approach.
More complicated methods, such as Catalyst (Lin et al.,
2015), RPDG (Lan and Zhou, 2018), Katyusha (Allen-
Zhu, 2017) and related papers achieve an iteration com-

plexity of O
(
n log 1

ε +
√

nL
ε

)
, which has a better depen-

dence on n in the dominant second term. However, these
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methods use an indirect approach (as termed by Allen-Zhu
(2017)), where non-strongly-convex functions are optimized
by adding strongly-convex perturbations, and yet do not
achieve the near-optimal rate of Lan et al. (2019), which is
obtained using negative momentum and epoch averaging.
In the next section, we obtain this near-optimal bound.

5.2. Improved Variance-Reduced Acceleration

In this section, we use negative momentum to achieve a near-
optimal accelerated variance-reduced rate: we set pt > 0 in
Algorithm 3. In addition, unlike Theorem 6, the snapshot
point at the end of epoch s is now given by an average:

x̃s+1 =
1∑T1:s

t=T1:s−1+1 pt

T1:s∑
t=T1:s−1+1

pt x̄t . (20)

For simplicity, we assume φ = 0, so that ` = f .

A consequence of computing x̄t via (19) with pt > 0 is that
for all t = 1, 2, . . . , T ,

αt(x̄t − xt) = α1:t−1(x̄t−1 − x̄t) + pt(x̃t − x̄t) . (21)

Then, we will have the following error decomposition.

Lemma 7 (Regret Decomposition). For t ∈ [T ], let
αt, pt > 0, xt, x̃t ∈ Rd, and define x̄t as in Equation (19),
Bt = αtBf (x?, x̄t) and B̄ft = α1:t−1Bf (x̄t−1, x̄t). Then,
for all x? ∈ Rd,

f(x̄T )− f? =
1

α1:T

[
T∑
t=1

〈αtf ′(x̄t), xt − x?〉 −B1:T

−
T∑
t=2

B̄ft +

T∑
t=1

pt(f(x̃t)− f(x̄t)−Bf (x̃t, x̄t))

]
(22)

The above error decomposition, proved in Appendix D, is
similar to Lemma 1, but has an extra term due to the nega-
tive momentum, which will be helpful in further reducing
the error. Then, the next theorem, proved in Appendix D,
provides the improved convergence rate.

Theorem 8. Consider the conditions of Theorem 6, but
instead suppose that the snapshot update in Line 12 of
Algorithm 3 is given by (20), g̃t = gt−1, t > 1, we use pt
such that 0 < p1 ≤ 1 and pt ≥ 15Lα2

t

ηt
, t ≥ 1, and we

set ηt = 1860LTs(t) log(2t), where s(t) denotes the epoch
containing iteration t. Then, for any T ≥ 1,

E [`(x̄T )]− `(x?) ≤

3720LTs(T )‖x?‖22 +
‖f ′(x̄1)‖22
930L log 2 + 4(f(x̃1)− f?)
T 2

log(2T ).

The rate provided in Theorem 8 is optimal up to a logarith-
mic factor. In particular, for the finite sum setting, with

τ = n, the algorithm needs Õ
(
n log n+

√
nL
ε

)
individ-

ual gradient evaluations to reach ε error, matching the rate
recently obtained by Lan et al. (2019). Unlike in previous
work, our convergence guarantee holds for the last iterate
instead of a snapshot point or the average of the last epoch.

6. Conclusions
We demonstrated that online iterate averaging combined
with optimistic online learning can lead to accelerated rates
in several scenarios. The resulting algorithms and their
analyses are surprisingly simple and often yield the op-
timal rates. Exploring the full power of this method is
left for future work. In particular, it would be interesting
to extend this approach to obtain accelerated exponential
rates for variance-reduced optimization of strongly-convex
objectives, and remove the extra logarithmic terms in the
non-strongly-convex variance-reduction case.
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A. Proof of Theorem 3
Proof of Theorem 3. First, we bound the linear composite regret

∑T
t=1 αt (〈gt, xt − x?〉+ φ(xt)− φ(x?)) by a boundRT

that results in slightly better constants compared to (7). For t ∈ [T ], let ut, vt be any two vectors such that gt− g̃t = ut + vt,
and define Dt = rt−1(x?)− rt−1(xt). Then, Theorem 17 bounds the regret of the AO-FTRL updates made byA as follows:

T∑
t=1

(〈αtgt, xt − x?〉+ αtφ(xt)− αtφ(x?))−D1:T

≤
T∑
t=1

(
αt 〈gt − g̃t, xt − xt+1〉 −Bα1:tφ+r0:t−1(xt+1, xt)

)
≤

T∑
t=1

(
〈αtut + αtvt, xt − xt+1〉 −

βt
2
‖xt − xt+1‖2 −

1

2
‖xt − xt+1‖2(t)

)

≤
T∑
t=1

α2
t ‖vt‖2(t)∗

2
+

T∑
t=1

α2
t ‖ut‖2∗
2βt

, (23)

where the second step uses the strong-convexity of α1:tφ+r0:t−1, and the third step follows by the Fenchel-Young inequality
〈z, x〉− β

2 ‖x‖
2 ≤ 1

2β ‖z‖
2
∗. Now, let u1 = f ′(x̄1)− g̃1, ut = f ′(x̄t)−f ′(x̄t−1), t = 2, . . . , T , and vt = σt−σt−1, t ∈ [T ],

and notice that for all t = 2, . . . , T ,

α2
t ‖ut‖2∗
2βt

≤ α1:t−1‖ut‖2∗
2

=
α1:t−1

2
‖f ′(x̄t)− f ′(x̄t−1)‖2∗

≤ α1:t−1Bf (x̄t−1, x̄t) = B̄ft , (24)

using the assumption of α2
tβ
−1
t ≤ α1:t−1 and (2) with L = 1. Plugging the definitions of ut and vt into (23) and using (24),

we obtain
T∑
t=1

〈αtgt, xt − x?〉 ≤
T∑
t=1

(Dt + αtφ(xt)− αtφ(x?))

+

T∑
t=1

α2
t ‖σt − σt−1‖2(t)∗

2
+
α2

1‖f ′(x̄1)− g̃1‖2∗
2β1

+ B̄f2:T . (25)

Applying Corollary 2, combining with (25), and cancelling the matching B̄2:T terms concludes the proof.

B. Proof of Theorem 5
Proof of Theorem 5. Starting from Lemma 1, we plug-in the bound of composite AO-FTRL from Mohri and Yang (2016,
Theorem 3) (using ft ← 〈αtgt, ·〉):

T∑
t=1

αt (〈gt, xt − x?〉+ φ(xt)− φ(x?)) ≤ r0:T (x?) +

T∑
t=1

α2
t ‖gt − g̃t‖2(t)∗

≤ γR2

2

d∑
j=1

√√√√ T∑
t=1

α2
t (gt,j − g̃t,j)2 +

1

γ

d∑
j=1

T∑
t=1

α2
t (gt,j − g̃t,j)2√∑t
s=1 α

2
s(gs,j − g̃s,j)2

≤
(
γR2

2
+

2

γ

) d∑
j=1

√√√√ T∑
t=1

α2
t (gt,j − g̃t,j)2 ,

where the first inequality follows from Mohri and Yang (2016, Theorem 3) with the norm ‖y‖(t)∗ =
∑d
j=1

1
γηt,j

(yj)
2,

the second from the definitions using r0:T ≤
∑T
t=1

∑d
j=1

γR2

2 (ηt,j − ηt−1,j) =
∑d
j=1

γR2

2 ηT,j , and the third from the

standard inequality that
∑T
t=1 at/

√
a1:t ≤ 2

√
a1:T .
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Putting back into Corollary 2, we obtain

E [`(x̄T )− `?] ≤ 1

α1:T
E

(γR2

2
+

2

γ

) d∑
j=1

√√√√ T∑
t=1

α2
t (gt,j − g̃t,j)2 − B̄f2:T

 . (26)

Dropping the negative terms B̄f2:T , using Jensen’s inequality to take the expectation under the square-root, using αt = t and
applying the bound Gj completes the proof of the first part of the theorem.

To prove the second part, observe that for t > 1, because g̃t = gt−1, we have

|gt,j − g̃t,j | = |f ′j(x̄t) + σt,j − f ′j(x̄t−1)− σt−1,j | ≤ |σt,j |+ |σt−1,j |+ |f ′j(x̄t)− f ′j(x̄t−1)| .

Now, denote ∆1,j = |f ′j(x̄1)| and ∆t,j = |f ′j(x̄t)−f ′j(x̄t−1)|, t > 1. By Jensen’s inequality, (a+b+c)2 ≤ 3(a2 +b2 +c2)

for any real numbers a, b, c. In addition, for t > 1,
∑d
j=1 ∆2

t,j = ‖f ′(x̄t)− f ′(x̄t−1)‖22 ≤ 2LBf (x̄t−1, x̄t) by (2). Hence,

T∑
t=2

α2
t (gt,j − g̃t,j)2 ≤

T∑
t=2

3α2
t

[
σ2
t,j + σ2

t−1,j + ∆2
t,j

]
, (27)

on the one hand, and on the other hand

−B̄f2:T ≤ −
d∑
j=1

T∑
t=2

α1:t−1

2L
∆2
t,j .

Next, using α1 = 1 and g̃1 = 0, we have α2
1(g1,j − g̃1,j)

2 ≤ 2σ2
1,j + 2∆2

1,j by Jensen’s inequality. Putting back into (26),

E [`(x̄T )− `?] ≤ 1

α1:T

(γR2

2
+

2

γ

) d∑
j=1

E


√√√√2σ2

1,j + 2∆2
1,j +

T∑
t=2

3α2
t

[
σ2
t,j + σ2

t−1,j + ∆2
t,j

]− E
[
B̄f2:T

]
≤ 1

α1:T

d∑
j=1

(γR2

2
+

2

γ

)√√√√ T∑
t=1

6α2
tσ

2
j + 2E

[
∆2

1,j

]
+

T∑
t=2

3α2
tE
[
∆2
t,j

]
−

T∑
t=2

α1:t−1

2L
E
[
∆2
t,j

]
≤ 1

α1:T

d∑
j=1

(
γR2

2
+

2

γ

)√√√√ T∑
t=1

6α2
tσ

2
j + 2E

[
∆2

1,j

]

+
1

α1:T

d∑
j=1

(γR2

2
+

2

γ

)√√√√24L

T∑
t=2

α1:t−1

2L
E
[
∆2
t,j

]
−

T∑
t=2

α1:t−1

2L
E
[
∆2
t,j

] ,
using in the second step the concavity of the square root, Jensen’s inequality and the upper-bound E

[
σ2
s,j

]
≤ σj , s ≥ 1, and

in the last step αt = t and the fact that for t > 1, α2
t

α1:t−1
≤ 4. Next, we note that for a, b ≥ 0, 2

√
ab− b ≤ a. Therefore,

E [`(x̄T )− `?] ≤ 1

α1:T

d∑
j=1

(
γR2

2
+

2

γ

)√√√√ T∑
t=1

6α2
tσ

2
j + 2E

[
∆2

1,j

]
+

1

α1:T

d∑
j=1

6L

(
γR2

2
+

2

γ

)2

.

Separating the first square-root and using ∆ =
∑d
j=1

√
2E
[
∆2

1,j

]
completes the proof of the second part.
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C. Variance reduction for smooth functions
Lemma 9. Suppose the assumptions of Theorem 6 hold. Then

T∑
t=2

α2
tE
[
‖gt − g̃t‖22

]
≤ 16Lτ2B̄f2:T .

Proof. Fix time step t > 1 within epoch s > 1 (recall there is only one step, t = 1, in epoch s = 1). We consider two cases:

a) Time step t is the first time step in epoch s:

This implies that t = T1:s−1 + 1. In addition, x̃t = x̄t by definition, and x̃t−1 = x̄t′ where t′ = T1:s−2 + 1 is the first
iterate of epoch s− 1. Then,

E
[
‖gt − g̃t‖22|Ht

]
= E

[
‖F ′(x̄t, ζt)− F ′(x̃t, ζt) + f ′(x̃t)− f ′(x̃t−1)‖22 |Ht

]
= ‖f ′(x̃t)− f ′(x̃t−1)‖22 = ‖f ′(x̄t)− f ′(x̄t′)‖22

=

∥∥∥∥∥∥
T1:s−1∑

k=T1:s−2+1

(f ′(x̄k+1)− f ′(x̄k))

∥∥∥∥∥∥
2

2

≤ Ts−1

T1:s−1∑
k=T1:s−2+1

‖(f ′(x̄k+1)− f ′(x̄k))‖22

≤ 2Lτ̃t

t∑
k=t−τ̃t+1

Bf (x̄k, x̄k−1) ,

where the first inequality follows by Jensen’s inequality and the convexity of ‖ · ‖2, and the second inequality follows
because the smoothness assumption on that implies (2) holds for f and any x, y ∈ X , and we substitute τ̃t := Ts−1.

b) Time step t is not the first time step in epoch s:

In this case, let τ̃t = t− (T1:s−1 + 1) > 0 denote the number of time steps elapsed since the beginning of the epoch, so that
x̃t−1 = x̃t = x̄t−τ̃t . Then,

E
[
‖gt − g̃t‖22|Ht

]
= E

[
‖F ′(x̄t, ζt)− F ′(x̃t, ζt) + f ′(x̃t)− f ′(x̃t−1)‖22 |Ht

]
= E

[
‖F ′(x̄t, ζt)− F ′(x̄t−τ̃t , ζt)‖

2
2 |Ht

]
= E

∥∥∥∥∥∥
t∑

k=t−τ̃t+1

(F ′(x̄k, ζt)− F ′(x̄k−1, ζt))

∥∥∥∥∥
2

2

∣∣∣∣∣∣Ht


≤ τ̃t
t∑

k=t−τ̃t+1

E
[
‖ (F ′(x̄k, ζt)− F ′(x̄k−1, ζt)) ‖22|Ht

]
≤ 2τ̃tL

t∑
k=t−τ̃t+1

E
[
BF (·,ζt)(x̄k−1, x̄k)|Ht

]
= 2τ̃tL

t∑
k=t−τ̃t+1

Bf (x̄k−1, x̄k) ,

where the last inequality follows from the smoothness assumption that ensures (2) holds for F (·, ζt) and any x, y ∈ X , and
the last equality follows by (18).

Multiplying by α2
t and summing up for all t, we get
T∑
t=2

α2
t τ̃t

t∑
k=t−τ̃t+1

Bf (x̄k−1, x̄k) =

T∑
k=2

Bf (x̄k−1, x̄k)

T∑
t=2

α2
t τ̃t I {t− τ̃t + 1 ≤ k ≤ t} .
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Next, recall that by definition, Ts = min(τ, 2s−1) ≤ T1:s−1 + 1 for any s ≥ 1. Therefore, in case (a) above, t =
T1:s−2 + Ts−1 + 1 ≤ 2T1:s−2 + 2 = 2(t− τ̃t). Similarly, in case (b) above, t ≤ T1:s ≤ 2T1:s−1 + 1 ≤ 2(t− τ̃t). Thus,
using αt = t,

T∑
t=2

α2
t τ̃t I {t− τ̃t + 1 ≤ k ≤ t} ≤ α2

2k−2

T∑
t=2

τ̃t I {k ≤ t ≤ k + τ̃t − 1} ≤ 4τ2(k − 1)2 ≤ 8τ2α1:k−1 ,

using in the first step the fact that t ≤ 2(t− τ̃t) ≤ 2(k − 1) by the argument above and the condition inside the indicator
(which we also re-arranged), and in the second step αt = t and τ̃t ≤ Ts ≤ τ . Combining the above, we get

T∑
t=2

α2
tE
[
‖gt − g̃t‖22

]
≤ 16Lτ2

T∑
t=2

α1:t−1Bf (x̄t−1, x̄t) = 16Lτ2B̄f2:T ,

finishing the proof.

D. Improved variance-reduced rate for smooth functions
Proof of Lemma 7. The proof follows similar steps as the proof of Lemma 1, with the difference that we need to handle the
negative momentum term as well:

f(x̄T )− f? =
1

α1:T

T∑
t=1

αtf(x̄t)− f? +

:=εT︷ ︸︸ ︷
f(x̄T )− 1

α1:T

T∑
t=1

αtf(x̄t)

=
1

α1:T

T∑
t=1

αt(f(x̄t)− f?) + εT

=
1

α1:T

 T∑
t=1

〈αtf ′(x̄t), x̄t − x?〉 −
T∑
t=1

:=Bt︷ ︸︸ ︷
αtBf (x?, x̄t)

+ εT

=
1

α1:T

[
T∑
t=1

〈αtf ′(x̄t), xt − x?〉+

T∑
t=1

〈αtf ′(x̄t), x̄t − xt〉 −B1:T

]
+ εT

=
1

α1:T

[
T∑
t=1

〈αtf ′(x̄t), xt − x?〉 −B1:T

]
+

:=∆̃T︷ ︸︸ ︷
1

α1:T

T∑
t=1

〈αtf ′(x̄t), x̄t − xt〉+ εT (28)

Before evaluating ∆̃T , we consider the term,

∆T =
1

α1:T

[
T∑
t=2

〈f ′(x̄t), α1:t−1(x̄t−1 − x̄t)〉

]
+ εT

=
1

α1:T

[
T∑
t=2

α1:t−1 (f(x̄t−1)− f(x̄t)−Bf (x̄t−1, x̄t))

]
+ εT

=
1

α1:T

T∑
t=2

α1:t−1 (f(x̄t−1)− f(x̄t))−
1

α1:T

T∑
t=2

α1:t−1Bf (x̄t−1, x̄t) + εT

=
1

α1:T

T∑
t=1

αtf(x̄t)− f(x̄T ) + εT︸ ︷︷ ︸
:=0

− 1

α1:T

T∑
t=2

α1:t−1Bf (x̄t−1, x̄t)︸ ︷︷ ︸
:B̄f

t

(29)
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Let us now evaluate ∆̃T . We have :

∆̃T =
1

α1:T

T∑
t=1

〈αtf ′(x̄t), x̄t − xt〉+ εT

(21)
=

1

α1:T

T∑
t=1

〈f ′(x̄t), α1:t−1(x̄t−1 − x̄t) + pt(x̃t − x̄t)〉+ εT

=
1

α1:T

T∑
t=1

〈f ′(x̄t), α1:t−1(x̄t−1 − x̄t)〉+ εT︸ ︷︷ ︸
:=∆T

+
1

α1:T

T∑
t=1

pt〈f ′(x̄t), x̃t − x̄t〉

=
1

α1:T

T∑
t=1

pt〈f ′(x̄t), x̃t − x̄t〉 −
1

α1:T

T∑
t=2

B̄ft

=
1

α1:T

T∑
t=1

pt(f(x̃t)− f(x̄t)−Bf (x̃t, x̄t))−
1

α1:T

T∑
t=2

B̄ft

(30)

The second last equation comes directly from Equation 29. Hence, finally we have:

f(x̄T )− f? =
1

α1:T

[
T∑
t=1

〈αtf ′(x̄t), xt − x?〉 −B1:T −
T∑
t=2

B̄ft +

T∑
t=1

pt(f(x̃t)− f(x̄t)−Bf (x̃t, x̄t))

]
(31)

The following variance bound is standard in the literature (e.g., Allen-Zhu 2017, Lemma 2.4). For completeness, we provide
a proof using our assumptions and notation.
Lemma 10. Fix t ≥ 1 and assume that (18) holds, and gt is given by (17). Further assume that for all ζ, F (·, ζ) is convex
and L-smooth w.r.t. the 2-norm ‖ · ‖ over Rd or otherwise satisfies (2) for all x, y ∈ X . Then,

E[‖gt − f ′(x̄t)‖2] ≤ E
[
‖F ′(x̄t, ζt)− F ′(x̃t, ζt)‖2

]
≤ 2LE [Bf (x̃t, x̄t)] .

Proof. By the smoothness assumption on F (·, ζ), which implies (2), we have

‖F ′(x, ζ)− F ′(x′, ζ)‖2 ≤ 2L (F (x, ζ)− F (x′, ζ)− 〈F ′(x′, ζ), x− x′〉) , (32)

for all x, x′ ∈ X . Now, thanks to E
[
‖U − E [U ] ‖2

]
≤ E

[
‖U‖2

]
which holds for any random vector U , and noticing that

x̃t and x̄t are determined byHt by construction, we have

E
[
‖gt − f ′(x̄t)‖2 | Ht

]
= E

[
‖F ′(x̄t, ζt)− f ′(x̄t)− (F ′(x̃t, ζt)− f ′(x̃t))‖2 | Ht

]
≤ E

[
‖F ′(x̄t, ζt)− F ′(x̃t, ζt)‖2 | Ht

]
≤ 2LE [F (x̃t, ζt)− F (x̄t, ζt)− 〈F ′(x̄t, ζt), x̃t − x̄t〉 | Ht] (by (32))
= 2L [f(x̃t)− f(x̄t)− 〈f ′(x̄t), x̃t − x̄t〉] .

Taking the expectation of both sides finishes the proof.

Proof of Theorem 8. Note that Bf (x̃1, x̄1) = 0. Also since, φ = 0, `(x) = f(x) for all x, hence we will be using f instead
of ` in the proof. Let s(t) represents the epoch containing iteration t. From Lemma 7, we have :

f(x̄T )− f? =
1

α1:T

[
T∑
t=1

〈αtf ′(x̄t), xt − x?〉 −B1:T −
T∑
t=2

B̄ft +

T∑
t=1

pt(f(x̃t)− f(x̄t)−Bf (x̃t, x̄t))

]
. (33)

Now we have:

1

α1:T

[
T∑
t=1

〈αtf ′(x̄t), xt − x?〉

]
=

1

α1:T

[
T∑
t=1

〈αtf ′(x̄t)− αtgt + αtgt, xt − x?〉

]
=

1

α1:T

[
T∑
t=1

〈αtgt, xt − x?〉+ δ1:T

]
,
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where δt = αt〈f ′(x̄t)− gt, xt − x?〉. By (18), we have E[δt] = 0 for all t ∈ [T ]. By Theorem 17 in the appendix,

1

α1:T
E

[
T∑
t=1

〈αtgt, xt − x?〉

]
≤ RT (x?) =

ηT
2
‖x?‖22 +

T∑
t=1

α2
t

2ηt
E[‖gt − g̃t‖22] .

Putting back in (33), and using the fact that due to convexity of f , B1:T ≥ 0, we have:

E [f(x̄T )]− f(x?) ≤ 1

α1:T
E

[
ηT
2
‖x?‖22 +

T∑
t=1

α2
t

2ηt
‖gt − g̃t‖22 − B̄

f
2:T +

T∑
t=1

pt(f(x̃t)− f(x̄t)−Bf (x̃t, x̄t))

]
. (34)

Next, using g̃t = gt−1, t > 1, and applying Lemma 10, we have

T∑
t=2

α2
t

2ηt
E
[
‖gt − g̃t‖2

]
=

T∑
t=2

α2
t

2ηt
E
[
‖gt − f ′(x̄t) + f ′(x̄t−1)− gt−1 + f ′(x̄t)− f ′(x̄t−1)‖2

]
≤

T∑
t=2

3α2
t

2ηt
E
[
‖gt − f ′(x̄t)‖2 + ‖f ′(x̄t−1)− gt−1‖2 + ‖f ′(x̄t)− f ′(x̄t−1)‖2

]
≤

T∑
t=2

3α2
t

2ηt
E [2LBf (x̃t, x̄t) + 2LBf (x̃t−1, x̄t−1) + 2LBf (x̄t−1, x̄t)]

≤
T∑
t=1

3L(α2
t + α2

t+1)

ηt
E [Bf (x̃t, x̄t)] +

T∑
t=2

12L

ηt
E
[
B̄ft

]
,

where the second step uses Jensen’s inequality and the convexity of ‖·‖2, the third step follows by the smoothness assumption
on f and Lemma 10, and the fourth step follows by ηt+1 ≥ ηt and α2

t

α1:t−1
≤ 4. Putting back into (34) with g̃1 = 0,

E [f(x̄T )]− f(x?) ≤ 1

α1:T
E

ηT2 ‖x?‖22 +
α2

1

2η1
‖g1‖2 +

T∑
t=1

pt(f(x̃t)− f(x̄t))︸ ︷︷ ︸
ΓT


+

T∑
t=1

(
3L(α2

t + α2
t+1)

ηt
− pt

)
E [Bf (x̃t, x̄t)] +

T∑
t=2

(
12L

ηt
− 1

)
E
[
B̄ft

]
. (35)

Noticing that pt ≥ 15Lα2
t

ηt
≥ 3L(α2

t+α2
t+1)

ηt
and ηt ≥ 12L, the last two terms in (35) vanish.

In the rest of the proof, we will bound the term ΓT and use induction to get the final convergence rate. Let us denote
E[f(x̄t)− f?] with Dt and E[f(x̃t)− f?] with D̃s(t). Let us also represent the snapshot point for epoch s by x̃s. Hence,
D̃(s) = E[f(x̃s)]− f?. We also assume that T1:S < T ≤ T1:S+1. Then

T∑
t=1

pt(f(x̃t)− f(x̄t)) =

T∑
t=1

pt(D̃s(t) −Dt)

≤ p1D̃(1) +

S+1∑
s=2

D̃(s)

 T1:s∑
t=T1:s−1+1

pt

− S∑
s=1

 T1:s∑
t=T1:s−1+1

ptDt


.

(36)

From the definition of x̃s, we can apply Jensen’s inequality to get

T∑
t=1

pt(f(x̃t)− f(x̄t)) ≤ p1D̃(1) +

S∑
s=1

 T1:s∑
t=T1:s−1+1

ptDt

( ∑T1:s+1

t=T1:s+1 pt∑T1:s

t=T1:s−1+1 pt
− 1

)
︸ ︷︷ ︸

:=Θs

.
(37)
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Let us assume that for pt =
α2

t

γtTs(t)
∀ t ∈ [T1:s−1 + 1, T1:s] where αt = t and γt is an increasing sequence of positive

numbers. We rewrite the term Θs.

Θs =

( ∑T1:s+1

t=T1:s+1 pt∑T1:s

t=T1:s−1+1 pt
− 1

)
≤

(
Ts
Ts+1

∑T1:s+1

t=T1:s+1 t
2/γt∑T1:s

t=T1:s−1+1 t
2/γt

− 1

)
≤

(
Ts
Ts+1

(γT1:s)−1
∑T1:s+1

t=T1:s+1 t
2

(γT1:s)−1
∑T1:s

t=T1:s−1+1 t
2
− 1

)
.

We let s′ be the smallest index for which Ts = τ for all s > s′. Hence, for s > s′ we have following bound for Θs:

Θs ≤

(
Ts
Ts+1

∑T1:s+1

t=T1:s+1 t
2∑T1:s

t=T1:s−1+1 t
2
− 1

)
=

( ∑T1:s+1

t=T1:s+1 t
2∑T1:s

t=T1:s−1+1 t
2
− 1

)
=

( ∑T1:s+τ
t=T1:s+1 t

2∑T1:s−1+τ
t=T1:s−1+1 t

2
− 1

)

=

(∑T1:s−1+τ
t=T1:s−1+1 (t+ τ)2∑T1:s−1+τ

t=T1:s−1+1 t
2

− 1

)
=

(∑T1:s−1+τ
t=T1:s−1+1 (t+ τ)2 − t2∑T1:s−1+τ

t=T1:s−1+1 t
2

)
=

(∑T1:s−1+τ
t=T1:s−1+1 τ(2t+ τ)∑T1:s−1+τ

t=T1:s−1+1 t
2

)

≤ τ2(2T1:s−1 + 3τ)

(T1:s−1 + 1)2τ
≤ τ(2T1:s−1 + 3(T1:s−1 + 1))

(T1:s−1 + 1)2
≤ 5

τ

T1:s−1 + 1
= 5

Ts
T1:s−1 + 1

,

using in the last step the fact that s′ < s implies τ = Ts ≤ T1:s−1 + 1 (which follows because if Ts−1 = 2s−2, then
T1:s−1 + 1 = 2s−1 ≥ Ts, and is trivial if otherwise Ts−1 = τ ). Now let us consider the case when s ≤ s′. In that case,

Ts+1 ≤ 2s = 2Ts, which can be used to show
∑T1:s+1

t=T1:s+1 t
2∑T1:s

t=T1:s−1+1 t
2
≤ 2

(
T1:s+1

T1:s−1+1

)2

≤ 2
(
T1:s+2Ts

T1:s−1+1

)2

≤ 2
(

2s+1−1
2s−1

)2

≤ 32, so

Θs ≤

(
Ts
Ts+1

∑T1:s+1

t=T1:s+1 t
2∑T1:s

t=T1:s−1+1 t
2
− 1

)
≤

( ∑T1:s+1

t=T1:s+1 t
2∑T1:s

t=T1:s−1+1 t
2
− 1

)
≤ 31.

Hence,

DT ≤
1

α1:T

ηT
2
‖x?‖2 +

1

2η1
‖f ′(x1)‖2 + p1D̃(1) +

S∑
s=1

Θs

T1:s∑
t=T1:s−1+1

α2
t

γtTs
Dt


≤ 1

T 2

ηT ‖x?‖2 +
1

η1
‖f ′(x1)‖2 + 2p1D̃(1) +

S∑
s=1

Θs

T1:s∑
t=T1:s−1+1

2t2

γtTs
Dt

 .
(38)

In the above equation, we can choose γt = 124 log(2t) then we have:

DT ≤
1

T 2

ηT ‖x?‖2 +
1

η̂
‖f ′(x1)‖2 + 2p1D̃(1) +

S∑
s=1

Θs

T1:s∑
t=T1:s−1+1

2t2

124 log(2t) Ts
Dt

 . (39)

Now, it is important to remember that pt ≥ 15Lα2
t

ηt
, which is satisfied if ηt = 1860LTs(t) log(2t). We now use (39) to prove

the following statement by induction:

DT ≤
Ts(T ) log(2T )

T 2

[
3720L‖x?‖2 +

2

η1
‖f ′(x1)‖2 + 4p1D̃(1)

]
=
CTs(T ) log(2T )

T 2
,

where C = 3720L‖x?‖2 + 2
η1
‖f ′(x1)‖2 + 4p1D̃(1).

For T = 1, the bound is satisfied trivially, since C ≥ 2D1 by (35). Next, let T > 1, and assume the induction hypothesis
holds for all t ≤ T − 1. Then, we have:

DT ≤
1

T 2

ηT ‖x?‖2 +
1

η1
‖f ′(x1)‖2 + 2p1D̃(1) +

S∑
s=1

Θs

T1:s∑
t=T1:s−1+1

2t2

124 log(2t) Ts
Dt
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≤ 1

T 2

ηT ‖x?‖2 +
1

η1
‖f ′(x1)‖2 + 2p1D̃(1) +

S∑
s=1

Θs

T1:s∑
t=T1:s−1+1

2

124
C


=

1

T 2

[
ηT ‖x?‖2 +

1

η1
‖f ′(x1)‖2 + 2p1D̃(1) +

S∑
s=1

ΘsTs
2

124
C

]
,

where the second step uses the induction hypothesis on Dt for t < T . Then, on the one hand, if S ≤ s′, we have:

DT ≤
1

T 2

[
ηT ‖x?‖2 +

1

η1
‖f ′(x1)‖2 + 2p1D̃(1) + 31(log(TS) + 1)

2TS
124

C

]
=

1

T 2

[
ηT ‖x?‖2 +

1

η1
‖f ′(x1)‖2 + 2p1D̃(1) + log(2T )

TS
2
C

]
,

where in the first step we use Ts ≤ TS , the earlier bound Θs ≤ 31 for s ≤ s′, and S = log2(2S−1) + 1 = log2(TS) + 1,
and in the second step we use 1 = log2(2). On the other hand, if S > s′:

DT ≤
1

T 2

ηT ‖x?‖2 +
1

η1
‖f ′(x1)‖2 + 2p1D̃(1) +

s′∑
s=1

Θs
2TS
124

C +
S∑

s=s′+1

Θs
2TS
124

C


≤ 1

T 2

[
ηT ‖x?‖2 +

1

η1
‖f ′(x1)‖2 + 2p1D̃(1) + 31(log(τ) + 1)

2TS
124

C +

S∑
s=s′+1

5
τ

(s− s′)τ
2TS
124

C

]

≤ 1

T 2

[
ηT ‖x?‖2 +

1

η1
‖f ′(x1)‖2 + 2p1D̃(1) + 31 log(2τ)

2TS
124

C + 5 log (S − s′ + 1)
2TS
124

C

]
≤ 1

T 2

[
ηT ‖x?‖2 +

1

η1
‖f ′(x1)‖2 + 2p1D̃(1) + 31 log(2τ)

2TS
124

C + 31 log (S − s′)2TS
124

C

]
≤ 1

T 2

[
ηT ‖x?‖2 +

1

η1
‖f ′(x1)‖2 + 2p1D̃(1) + log(2T )

TS
2
C

]
.

In the derivations above, the second step follows because by the definition of s′, s′ ≤ log(τ) + 1 and also T1:s′ + 1 = 2s
′ ≥

Ts′+1 = τ . The third step uses 1 = log2(2) and
∑S
s=s′+1 1/(s − s′) =

∑S−s′
j=1 1/j ≤ log(S − s′ + 1). The fourth step

uses log(j + 1) ≤ 6 log(j) for any j > 1. The fifth step uses (S − s′)τ ≤ T1:S < T .

Hence, in both cases, we have

DT ≤
1

T 2

[
ηT ‖x?‖2 +

1

η1
‖f ′(x1)‖2 + 2p1D̃(1) + log(2T )

TS
2
C

]

≤ 1

T 2

ηT ‖x?‖2 +
1

η1
‖f ′(x1)‖2 + 2p1D̃(1)︸ ︷︷ ︸

≤CTs(T ) log(2T )

2

+
CTs(T ) log(2T )

2


≤
CTs(T ) log(2T )

T 2
,

using that TS ≤ TS+1 = Ts(T ). This concludes the proof.

E. Regret bounds for online linear optimization
In this section, we provide the conditions and regret-boundRT for vanilla AO-FTRL, which is used by Theorems 3 and 5,
as well as the SVRG results. The analysis is based on Joulani et al. (2017; 2020).

Theorem 17. Let φ : X → R be a convex function. For t ∈ [T ], let rt : X → R, αt > 0, gt, g̃t ∈ Rd, xt ∈ X be such that
the AO-FTRL update (4) is well-defined and xt is given by (4) for all t ∈ [T ]. Suppose that for all t ∈ [T ], rt−1 is convex
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and the objective in the AO-FTRL update (4) has finite value at the optimum xt. Then, for any x ∈ X ,

T∑
t=1

αt (〈gt, xt − x〉+ φ(xt)− φ(x)) ≤
T∑
t=1

(
rt−1(x)− rt−1(xt)−Bα1:tφ+r0:t−1(xt+1, xt)

)
+

T∑
t=1

αt 〈gt − g̃t, xt − xt+1〉 . (40)

If, in addition, for all t ∈ [T ], Bα1:tφ+r0:t−1
(xt+1, xt) ≥ 1

2‖ · ‖
2
(t) for some norm ‖ · ‖(t), then

T∑
t=1

αt (〈gt, xt − x〉+ φ(xt)− φ(x)) ≤
T∑
t=1

(rt−1(x)− rt−1(xt)) +

T∑
t=1

α2
t

2
‖gt − g̃t‖2(t)∗ . (41)

Proof. The assumption that φ and rt are real-valued and defined on X ensures that they are proper, which, together with
convexity ensures that α1:tφ+ r0:t−1 is directionally differentiable (Bauschke and Combettes, 2011, Prop. 17.2). Together
with the assumption that the AO-FTRL objective in (4) is finite-valued, we guarantee Assumption 1 of Joulani et al. (2020),
while their Assumption 5 is satisfied given that the combined linear-composite function αt(〈gt, ·〉 + φ) is convex. The
first bound (40) then follows from the intermediate bound C.1 in the proof of Theorem 6 of Joulani et al. (2020), using
x∗ ← x, gt ← αtgt, g̃T+1 ← 0, pt ← 0, t ∈ [T ], q̃t ← rt + αt+1φ, t ∈ {0} ∪ [T − 1], and q̃T ← 0. The second
bound (41) follows from the statement of Theorem 6 of Joulani et al. (2020), using using x∗ ← x, pt ← 0, t ∈ [T ], and
q̃t ← rt + αt+1φ, t ∈ {0} ∪ [T − 1], noting that Assumption 8 of Joulani et al. (2020) is the extra condition we have
assumed in the second part of the theorem.
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