
Sets Clustering

A. The Combinatorial Complexity of the Sets
Clustering

The following definition of a query space encapsulates all
the ingredients required to formally define an optimization
problem.

Definition A.1 (Query space; see Definition 4.2 in (Braver-
man et al., 2016)). Let P be a set called input set. Let
Q be be a (possibly infinite) set called query set. Let
f : P × Q → R be a cost function. The tuple (P, Q, f)
is called a query space. A sets clustering query space is a
query space (P, Q, f) where P is an (n,m)-set, Q is the
set Xk, and f = D̃; see Section 2.

In what follows we define some measure of combinatorial
complexity for a query space.

Definition A.2 (Definition 4.5 in (Braverman et al., 2016)).
For a query space (P, Q, f), a query C ∈ Q and r ∈ [0,∞)
we define

range(P, C, r) =
{
P ∈ P

∣∣f(P, c) ≤ r
}
.

Let ranges(P, Q, f) = {range (P, C, r)|C ∈ Q, r ≥ 0},
the VC-dimension of (P, ranges(P, Q, f)) is the smallest
integer d′ such that for everyH ⊆ P we have∣∣{range(C, r)

∣∣C ∈ Q, r ∈ [0,∞)
}∣∣ ≤ |H|d′ .

The dimension of the query space (P, Q, f) is the VC-
dimension of (P, ranges(P, Q, f)).

Lemma A.3 (Variant of Theorem 8.4, (Anthony & Bartlett,
2009)). Suppose h is a function from Rd×Rn to {0, 1} and
let

H =
{
h(a, x)

∣∣a ∈ Rd, x ∈ Rn
}

be the class determined by h. Suppose that h can be
computed by an algorithm that takes as an input a pair
(a, x) ∈ Rd × Rn and returns h(a, x) after no more than t
operations of the following types:

• the arithmetic operations +,−,×, and / on real num-
bers,

• jumps conditioned on >,≥, <,≤,=, and 6= compar-
isons of real numbers, and

• outputs 0 or 1.

Then the V C-dimension of H is O (dt).

We now bound the dimension of a query space (P,Xk, D̃)
as in Definition A.2.

Lemma A.4. Let (P,Xk, D̃) be a sets clustering query
space; see Definition A.1. Then the dimension d′ of
(P,Xk, D̃) is bounded by ∈ O(md2k2).

Proof. For P ∈ P , C ∈ Xk, and r ∈ R, let hP (C, r) = 1
if D̃(P,C) ≥ r and 0 otherwise. Then we observe
that the V C-dimension of the class of functions H ={
hP : Xk × R→ [0,∞)

∣∣P ∈ P} in Lemma A.3 is equiva-
lent to the dimension d′ of the given query space. Therefore,
we now show that the V C-dimension of H is bounded by
O(md2k2).

Note that it takes t = O(mdk) arithmetic operations to
evaluate hP (C, r). Furthermore, any element in Xk × R
can be represented as a vector in (dk + 1)-dimensional
space. Hence by Lemma A.3, the V C-dimension of H is
O(dk ·mdk) = O(md2k2).

B. Main theorems with full proof
B.1. Proof of Lemma 4.1

Lemma B.1. Let k ≥ 1 be an integer, A,B ⊆ X and
C ∈ Xk. If D̃(A∪B,C) 6= D̃(B,C) then D̃(A∪B,C) =
D̃(A,C).

Proof. By definition, D̃(A ∪ B,C) =

min
{
D̃(A,C), D̃(B,C)

}
. By the assumption of

the lemma, D̃(A ∪ B,C) 6= D̃(B,C). Therefore,
D̃(A ∪B,C) = D̃(A,C)

Lemma B.2. Let A = {a1, · · · , an} ⊆ X and put b ∈ X .
Let B = (A \ {a1}) ∪ {b} = {b, a2, · · · , an} ⊆ X . Then
for every C ∈ Xk we have that

D̃(A,C) ≤ ρ
(
D̃(B,C) + D̃(a1, b)

)
.

Proof. By definition, we have that

D̃(A,C)

= min
{
D̃(a1, C), D̃(A \ {a1} , C)

}
≤ min

{
ρ
(
D̃(a1, b) + D̃(b, C)

)
,

D̃(A \ {a1} , C)
}

≤ min
{
ρ
(
D̃(a1, b) + D̃(b, C)

)
,

ρ
(
D̃(A \ {a1} , C) + D̃(a1, b)

)}
≤ ρmin

{
D̃(b, C), D̃(A \ {a1} , C)

}
+ ρD̃(a1, b)

= ρD̃(B,C) + ρD̃(a1, b),

where the first inequality is by the weak triangle inequality
by Lemma 2.2, and the last derivation is by the definition of
B.

Lemma 4.1. Let P be an (n,m)-set, k ≥ 1 be an integer
and (X , D̃) be as in Definition 2.1. Let (Pm,Bm) be the

Sets Clustering

output of a call to RECURSIVE-ROBUST-MEDIAN(P, k);
see Algorithm 1. Then, for every P ∈ Pm we have that

sup
C∈Xk

D̃(P,C)∑
Q∈P

D̃(Q,C)
∈ O(1) ·

(
1

|Pm|

)
.

Proof. In what follows, we use the variables and notations
from Algorithm 1. Put P ∈ Pm, i ∈ [m], and consider the
ith iteration of the “for” loop at Line 4 of Algorithm 1. Put
C ∈ Xk.

Let

Pi−1 =
{
Q ∈ Pi−1

∣∣D̃(T(Q,Bi−1), C) = D̃(Bi−1, C)
}

be the union of sets Q ∈ Pi−1 whose closest point to the
query C after the projection on Bi−1 is one of the points of
Bi−1. First we prove that

D̃(T(P,Bi−1), C)∑
Q∈Pi−1

D̃(T(Q,Bi−1), C)
≤ 3ρ2

D̃(T(P,Bi), C)∑
Q∈Pi

D̃(T(Q,Bi), C)

+
4ρ

|Pi|
(3)

by the following case analysis: (i)
∣∣∣Pi−1∣∣∣ ≥ |Pi−1|

2 , i.e.,
more than half the sets satisfy that their closest point to C
is amongst their projected points onto Bi−1, and (ii) Other-

wise, i.e.,
∣∣∣Pi−1∣∣∣ < |Pi−1|

2 .

Case (i):
∣∣∣Pi−1∣∣∣ ≥ |Pi−1|

2 . By Line 7 we have

Pi ⊆ Pi−1 ⊆ · · · ⊆ P0 = P. (4)

Therefore,∑
Q∈Pi−1

D̃(T(Q,Bi−1), C) ≥
∑

Q∈Pi−1

D̃(T(Q,Bi−1), C)

(5)

=
∑

Q∈Pi−1

D̃(Bi−1, C) ≥
∣∣Pi−1∣∣

2
D̃(Bi−1, C), (6)

where (5) holds since Pi−1 ⊆ Pi−1, the first derivation
in (6) is by the definition of Pi−1, and the second derivation
in (6) is by the assumption of Case (i). This proves (3) for
Case (i) as

D̃(T(P,Bi−1), C)∑
Q∈Pi−1

D̃(T(Q,Bi−1), C)
≤ D̃(Bi−1, C)∑

Q∈Pi−1

D̃(T(Q,Bi−1), C)

≤ D̃(Bi−1, C)
|Pi−1|

2 D̃(Bi−1, C)
=

2

|Pi−1|
≤ 2

|Pi|
, (7)

where the first inequality holds since Bi−1 ⊆ T(P,Bi−1)
by Definition 2.5, and the second inequality is by (6).

Case (ii):
∣∣∣Pi−1∣∣∣ < |Pi−1|

2 . Let γ = 1/(2k). Let P̂i−1, bi

and Pi be as defined in Lines 5, 6, and 7 respectively, and
identify Bi−1 =

{
b1, · · · , bi−1

}
for i ≥ 2 or Bi−1 = ∅ for

i = 1. Let

OPTi = min
C′∈Xk

∑
P̂∈closest(P̂i−1,C′,1/2)

D̃(P̂ , C ′). (8)

For every Q ∈ Pi−1, substituting A = proj(Q,Bi−1) and
B = Bi−1 in Lemma B.1 proves that{

Q
∈ Pi−1

D̃
(
proj(Q,Bi−1) ∪ Bi−1, C

)
6= D̃(Bi−1, C)

}
⊆
{

Q
∈ Pi−1

D̃
(
proj(Q,Bi−1) ∪ Bi−1, C

)
= D̃(proj(Q,Bi−1), C)

} (9)

We now obtain that∣∣∣∣{ Q
∈ Pi−1

D̃
(
T(Q,Bi−1), C

)
= D̃

(
proj(Q,Bi−1), C

)}∣∣∣∣
=

∣∣∣∣{ Q
∈ Pi−1

D̃
(
proj(Q,Bi−1) ∪ Bi−1, C

)
= D̃

(
proj(Q,Bi−1), C

) }∣∣∣∣ (10)

≥
∣∣∣∣{ Q
∈ Pi−1

D̃
(
proj(Q,Bi−1) ∪ Bi−1, C

)
6= D̃

(
Bi−1, C

) }∣∣∣∣ (11)

=

∣∣∣∣{Q ∈ Pi−1 D̃
(
T(Q,Bi−1), C

)
6= D̃(Bi−1, C)

}∣∣∣∣ (12)

=
∣∣Pi−1 \ Pi−1∣∣ ≥ ∣∣Pi−1∣∣

2
, (13)

where (10) and (12) is by substitutingP = Q and B = Bi−1
in Definition 2.5, (11) is by (9), the first derivation in (13) is
by the definitions of Pi−1 and Pi−1, and the last inequality
is by the assumption of Case (ii).

Recall that by Line 5,

P̂i−1 =
{

proj(Q,Bi−1)
∣∣Q ∈ Pi−1} ,

and let

Z =
{
Q ∈ Pi−1

∣∣proj(Q,Bi−1) ∈ closest(P̂i−1, C, 1/2)
}
.

Since Z contains the |Z| ≤ |P
i−1|
2 sets Q ∈ Pi−1 with the

smallest D̃(proj(Q,Bi−1), C), for any set Z ′ ⊆ Pi−1 such
that |Z ′| ≥ |P

i−1|
2 , we have∑

Q∈Z
D̃(proj(Q,Bi−1), C) ≤

∑
Q∈Z′

D̃(proj(Q,Bi−1), C).

(14)

Sets Clustering

By the assumption of Case (ii),∣∣∣Pi−1 \ Pi−1∣∣∣ ≥ ∣∣Pi−1∣∣
2

, (15)

and by the definition of Z, we have{
proj(Q,Bi−1)

∣∣Q ∈ Z} = closest(P̂i−1, C, 1/2). (16)

Therefore, ∑
Q̂∈closest(P̂i−1,C,1/2)

D̃(Q̂, C)

=
∑
Q∈Z

D̃(proj(Q,Bi−1), C)

≤
∑

Q∈Pi−1\Pi−1

D̃(proj(Q,Bi−1), C),

(17)

where the first derivation is by (16) and the last derivation is
by substituting Z ′ = Pi−1\Pi−1 in (14). By the definitions
of Pi−1 and Pi−1, for every Q ∈ Pi−1 \ Pi−1, we have

D̃(T(Q,Bi−1), C) = D̃(proj(Q,Bi−1), C). (18)

Hence,

OPTi ≤
∑

Q̂∈closest(P̂i−1,C,1/2)

D̃(Q̂, C) (19)

≤
∑

Q∈Pi−1\Pi−1

D̃(proj(Q,Bi−1), C) (20)

=
∑

Q∈Pi−1\Pi−1

D̃(T(Q,Bi−1), C) (21)

≤
∑

Q∈Pi−1

D̃(T(Q,Bi−1), C), (22)

where (19) holds by the definition of OPTi, (20) is by (17),
and (21) is by (18).

Recall that P ∈ Pm, identify

closepairs(P,Bm) =
{

(p̂1, b̂1), · · · , (p̂m, b̂m)
}
,

as in Definition 2.5 (i). Also by Definition 2.5, for every
i ∈ [m] we have

D̃(proj(P,Bi−1), b̂i)

= D̃(P \ {p̂1, · · · , p̂i−1} , b̂i)

= D̃(p̂i, b̂i).

(23)

Since P ∈ Pi and γ = 1
2k , we have by Line 7 that

proj(P,Bi−1) ∈ closest(P̂i−1,
{
bi
}
, (1− τ)γ/2). (24)

Observe that in the definition of OPTi in (8), the largest
cluster in every setC ′ of k centers contains at least |P̂

i−1|
2k =

γ|P̂i−1| points by the Pigeonhole Principle. Therefore,
since the cost of the closest (1− τ)γ|P̂i−1| sets for b̂i is a
2-approximation for the optimal set of γ|P̂i−1| points, we
have ∑

Q∈closest(P̂i−1,{b̂i},(1−τ)γ)
D̃(Q, b̂i)

≤ 2 min
{b}∈X1

∑
Q∈closest(P̂i−1,{b},γ)

D̃(Q, b)

≤ 2 ·OPTi.

(25)

Therefore,

D̃(p̂i, b̂i) = D̃(proj(P,Bi−1), b̂i) (26)

≤ 2 ·

∑
Q∈closest(P̂i−1,{b̂i},(1−τ)γ)

D̃(Q, b̂i)

(1− τ)γ
∣∣∣P̂i−1∣∣∣ (27)

≤ 2 ·

∑
Q∈closest(P̂i−1,{b̂i},(1−τ)γ)

D̃(Q, b̂i)

|Pi|
(28)

≤ 4OPTi
|Pi|

, (29)

where (26) is by (23), (27) is by combining Markov’s
Inequality with (24), (28) follows since |Pi| =
(1−τ)γ

2 |Pi−1| ≤ (1− τ)γ|Pi−1|, and (29) is by (25).

Now, since the sets T(P,Bi−1) and T(P,Bi) differ by at
most one point, i.e.,

T(P,Bi) =
(
T(P,Bi−1) \ {p̂i}

)
∪
{
b̂i

}
,

by substituting A = T(P,Bi−1), and B = T(P,Bi) in
Lemma B.2, we obtain that

D̃(T(P,Bi−1), C) ≤ ρD̃(T(P,Bi), C) + ρD̃(p̂i, b̂i).
(30)

By the previous inequality we obtain

D̃(T(P,Bi−1), C)∑
Q∈Pi−1

D̃(T(Q,Bi−1), C)
≤ ρ D̃(T(P,Bi), C)∑

Q∈Pi−1

D̃(T(Q,Bi−1), C)

+ ρ
D̃(p̂i, b̂i)∑

Q∈Pi−1

D̃(T(Q,Bi−1), C)
.

(31)

Sets Clustering

We now bound the rightmost term of (31) as

ρ
D̃(p̂i, b̂i)∑

Q∈Pi−1

D̃(T(Q,Bi−1), C)
≤ ρD̃(p̂i, b̂i)

OPTi
(32)

≤ ρ 4OPTi
|Pi|OPTi

= 4ρ
1

|Pi|
, (33)

where (32) is by (22), and the first derivation in (33) is
by (29).

We now bound the middle term of (31). By identifying
closepairs(Q,Bm) =

{
(q̂1, b̂1), · · · , (q̂m, b̂m)

}
for every

Q ∈ Pi, we have,

∑
Q∈Pi

D̃(T(Q,Bi), C)

≤ ρ
∑
Q∈Pi

D̃(T(Q,Bi−1), C) + ρ
∑
Q∈Pi

D̃(q̂i, b̂i) (34)

≤ ρ
∑
Q∈Pi

D̃(T(Q,Bi−1), C) + ρ
∣∣Pi∣∣ 2OPTi

|Pi|
(35)

≤ ρ
∑

Q∈Pi−1

D̃(T(Q,Bi−1), C) + 2ρOPTi (36)

≤ (ρ+ 2ρ)
∑

Q∈Pi−1

D̃(T(Q,Bi−1), C), (37)

where (34) follows similarly to (30), (35) holds similarly
to (29) for the set Q instead of P , (36) holds since Pi ⊆
Pi−1 by (4) and (37) is by (22). Thus, by (37), the middle
term of (31) is bounded by

ρ
D̃(T(P,Bi), C)∑

Q∈Pi−1

D̃(T(Q,Bi−1), C)
≤ 3ρ2

D̃(T(P,Bi), C)∑
Q∈Pi

D̃(T(Q,Bi), C)
.

(38)

By combining (31), (33) and (38), we get that

D̃(T(P,Bi−1), C)∑
Q∈Pi−1

D̃(T(Q,Bi−1), C)

≤ 3ρ2
D̃(T(P,Bi), C)∑

Q∈Pi
D̃(T(Q,Bi), C)

+ 4ρ
1

|Pi|
.

(39)

Now (3) holds by taking the maximum between the bounds
of Case (i) in (7), and the bound of Case (ii) in (39).

We can now apply (3) recursively over every i ∈ [m] to

obtain that

D̃(P,C)∑
Q∈P

D̃(Q,C)
=

D̃(T(P,B0), C)∑
Q∈P0

D̃(T(Q,B0), C)
(40)

≤ (3ρ)2m
D̃(T(P,Bm), C)∑

Q∈Pm
D̃(T(Q,Bm), C)

+ 4ρ
∑
i∈[m]

(3ρ2)i−1

|Pi|
.

(41)

Also, for every Q ∈ Pm observe that |Q| = |Bm| = m,
hence

T(Q,Bm) = Bm =
{
b̂1, · · · , b̂m

}
.

Thus, for every Q ∈ Pm and C ∈ Xk

D̃(T(Q,Bm), C) = D̃
({

b̂1, · · · , b̂m
}
, C
)

(42)

Lemma 4.1 now holds as

D̃(P,C)∑
Q∈P

D̃(Q,C)
≤ (3ρ2)m

|Pm|
+ 4ρ

∑
i∈[m]

(3ρ2)i−1

|Pi|
(43)

≤ (3ρ2)m

|Pm|
+ 4ρ

∑
i∈[m]

(3ρ2)i−1

|Pm|
(44)

≤ (3ρ2)m

|Pm|
+

4ρ

|Pm|
· (3ρ2)m−1 − 1

(3ρ2)− 1
(45)

≤ (3ρ2)m

|Pm|
+

4ρ

|Pm|
· (3ρ2)m (46)

≤ 5ρ(3ρ2)m

|Pm|
, (47)

where (43) holds by plugging (42) in (40), (44) holds since
|Pm| ≤

∣∣Pi∣∣ for every i ∈ [m], (45) holds by summing
the geometric sequence, and inequalities (46) and (47) hold
since ρ ≥ 1.

B.2. Proof of Theorem 4.2

Theorem 4.2. Let P be an (n,m)-set, k ≥ 1 be an integer,
(X , D̃) be as in Definition 2.1, and ε, δ ∈ (0, 1). Let (S, v)
be the output of a call to CORESET(P, k, ε, δ). Then

(i) |S| ∈ O
((

md logn
ε

)2
km+4

)
.

(ii) With probability at least 1− δ, (S, v) is an ε-coreset
for (P,Xk, D̃); see Section 1.4.

(iii) (S, v) can be computed in O(n log(n)(k)m) time.

Proof. (i): Let J denote the number of while iterations
in Algorithm 2, and for every j ∈ [J] let P0

(j), P
m
(j) and

Sets Clustering

Bm(j) denote respectively the sets P0, Pm and Bm at the jth
while iteration of Algorithm 2.

By Line 7 of Algorithm 1, we observe that the output set
Pm is of size |Pm| ≥ |P|

(bk)m for some constant b, where P
is the input set to the algorithm. Therefore, the size of Pmj
returned at Line 7 of algorithm 2 in the jth while iteration is

∣∣∣Pm(j)∣∣∣ ≥
∣∣∣P0

(j)

∣∣∣
(bk)m

. (48)

By (48) and Line 11 of Algorithm 2, we obtain that

∣∣∣P0
(j+1)

∣∣∣ ≤ ∣∣∣P0
(j)

∣∣∣− ∣∣∣Pm(j)∣∣∣ ≤ ∣∣∣P0
(j)

∣∣∣−
∣∣∣P0

(j)

∣∣∣
(bk)m

=
∣∣∣P0

(j)

∣∣∣ (1− 1

(bk)m

)
=
∣∣∣P0

(1)

∣∣∣ (1− 1

(bk)m

)j
= n

(
1− 1

(bk)m

)j
,

(49)

where the second derivation is by (48). Combining that∣∣∣P0
(J)

∣∣∣ ≥ 1 with (49) we conclude that

J ≤ (bk)m log n. (50)

Therefore, by Lines 9 and 14 of Algorithm 2, the total
sensitivity computed at Line 16 of Algorithm 2 is equal to

t =
∑
P∈P

s(P) ≤
∑
j∈[J]

 ∑
P∈Pm

(j)

b∣∣∣Pm(j)∣∣∣
+O(1)

=
∑
j∈[J]

b+O(1) = Jb+O(1) ≤ (bk)m+1 log n.

By this and Line 17 of Algorithm 2,

|S| = (bk)m+1 log n

ε2

(
log
(
(bk)m+1 log n

)
d′ + log

(
1

δ

))
.

where d′ = O(md2k2) is the dimension of the sets clus-
tering query space (P,Xk, D̃); see Section A. By simple
derivations we obtain that:

|S| ∈ O

((
md log n

ε

)2

km+4

)
.

(ii): The pair (Pm(j),B
m
(j)) satisfy Lemma 4.1 for every j ∈

[J]. Hence, with an appropriate b (determined from the
proof of Lemma 4.1), for every P ∈ Pm(j) the value s(P)
defined at Lines 9 and 14 satisfies for every C ∈ Xk that

s(P) =
b∣∣∣Pm(j)∣∣∣ ≥

D̃(P,C)∑
Q∈P0

(j)

D̃(Q,C)
≥ D̃(P,C)∑

Q∈P
D̃(Q,C)

.

By Theorem 3.1, a sample S of |S| ≤
bt
ε2

(
log (t)d′ + log

(
1
δ

))
is an ε-coreset for (the sets

clustering query space) (P,Xk, D̃). Therefore, by Theo-
rem 3.1, the pair (S, v) computed at Lines 17–19 satisfies
Property (ii) of Theorem 4.2.

Computational time. Consider a call
RECURSIVE-ROBUST-MEDIAN(P, k) to Algorithm 1
where P is an (n,m)-set. The ith iteration of the for loop

at Line 4 takes O
(
n
(

1
(4k)

)i−1
+ k4

)
time. Summing

over all the m iterations yields a total running time of
O(n+mk4).

Consider the call (Pm,Bm) :=
RECURSIVE-ROBUST-MEDIAN(P0, k) at Line 7 of
Algorithm 2, which dominates the running time of this
algorithm. This call is made J times (in each of the J
iterations of the while loop). The set P0 at the ith call is of

size si = O

(
n
(

1− 1
(4k)

)i−1)
. Therefore, the ith such

call takes O(si + mk4) time. Summing this running time
over every i ∈ [J], where J ≤ (bk)m log n by (50), yields
a total running time of

J ·mk4 + n

J∑
i=1

(
1− 1

(4k)

)i−1
∈ O (n log(n)(bk)m) .

C. Polynomial Time Approximation Scheme
The following theorem states that given n polynomials in
d (constant number of) variables of constant degree, then
the space Rd can be decomposed into a polynomial (nd)
number of cells, such that for every d variables C from the
cell ∆ the sign sequence of all the polynomials is the same
cell.

Theorem C.1 (Theorem 3.4 in (Chazelle et al., 1991)). Let
d be a constant and let F = {pl1, · · · ,pln} be a set of n
multivariate polynomials of constant degree with range Rd
and image R. It is possible to split Rd into O

(
n2d−2

)
cells

∆(F) = {∆i}, with the property that for every polynomi-
als pli and every cell ∆j it holds that pli is either positive,
negative, or equal to 0 on the entire cell ∆j . This decompo-
sition, including a set of points A = {ai} with ai ∈ ∆i can
be found in time O

(
n2d−1 log n

)
.

C.1. Proof of Theorem 4.4

Theorem 4.4. Let P be an (n,m)-set in Rd, w : P →
[0,∞) be a weights function, k ≥ 1 be an integer, α ≥ 1
and δ ∈ [0, 1). Let D̃ be a loss function as in Definition 2.1
for X = Rd. Let ALG be an algorithm that solves the
case where k = m = 1, i.e., it takes as input a set Q ⊆

Sets Clustering

X , a weights function u : Q → [0,∞) and the failure
probability δ, and in time T (n) outputs ĉ ∈ X that with
probability at least 1 − δ satisfies

∑
q∈Q u(q) · D̃(q, ĉ) ≤

α·minc∈X
∑
q∈Q u(q)·D̃(q, c). Then in T (n)·(nmk)O(dk)

time we can compute Ĉ ∈ Xk such that with probability at
least (1− k · δ) we have∑
P∈P

w(P) · D̃(P, Ĉ) ≤ α · min
C∈Xk

∑
P∈P

w(P) · D̃(P,C).

Proof. What follows is a constructive proof for the theorem.
Algorithm 4 gives a suggested implementation.

Identify P = {P1, · · · , Pn} where Pi =
{
pi1, · · · , pim

}
for

every i ∈ [n].

First we define a set of n2m2k2 polynomials as follows.
For every i, i′ ∈ [n], j, j′ ∈ [m], `, `′ ∈ [k] and vector
x = (xT1

∣∣· · · ∣∣xTk) ∈ Rdk of dk unknowns (x1, · · · , xk are
vectors in Rd) , let

pli,j,`,i′,j′,`′(x) =
∥∥pij − x`∥∥2 − ∥∥∥pi′j′ − x`′∥∥∥2

be a polynomial in those dk unknowns, of degree at most
2, and let F be a set that contains all those polynomi-
als. Here, each polynomial in F contains up to 2d vari-
ables, and |F| = n2m2k2. A polynomial pli,j,`,i′,j′,`′(x)

is positive iff pi
′

j′ is closer to x`′ than the distance be-
tween pij and x`. Therefore, given a possible assignment
x′ = (x′

T
1

∣∣· · · ∣∣x′Tk) ∈ Rdk for the dk unknowns, the vector
of sign values of the polynomials in F when plugging x′

corresponds to a clustering of P into k clusters centered
at x′T1 , · · · , x′

T
k , and indicates which point in each input

m-set is the closest to this cluster center, and vice versa, as
follows. Given x′, the first cluster C1 ⊆ Rd contains all the
points pij such that for every j′ ∈ [m] and `′ ∈ [k],∥∥pij − x1∥∥2 ≤ ∥∥pij′ − x`′∥∥2 .
Which, by the definition of the polynomials in F , means
that for every j′ ∈ [m] and `′ ∈ [k],

sign(pli,j,1,i,j′,`′(x
′)) = −1.

This enables us to compute the points C1, · · · , Ck ⊆ Rd of
each cluster that are induced by the sign sequence ofF when
plugging x′. Given those clusters C1, · · · , Ck ⊆ Rd, we can
apply ALG to each such cluster Ci (since m = k = 1), to
obtain, with probability at least 1 − δ, the optimal point
ĉi ∈ Rd that minimizes

∑
p∈Ci D̃(p, z) over every z ∈ Rd,

and its cost costi =
∑
p∈Ci D̃(p, ĉi). The sum

∑k
i=1 costi

is the total cost of this clustering option of P .

Since ALG is used to compute k centers of k clusters, the
probability that ĉ1, · · · , ĉk are the optimal centers is at least
1− kδ.

By Theorem C.1, we can decompose Rdk into |∆(F)| =
(nmk)O(dk) cells {∆j}, such that the sign of each polyno-
mial pli ∈ F in an entire cell ∆j ∈ ∆(F) is the same,
i.e., the sign sequence of all the polynomials in F is the
same over the entire cell ∆′. Hence, the number of different
such sign sequences is at most the number of different cells,
which is (nmk)O(dk).

By iterating over every cell ∆′ ∈ ∆(F) and taking the sign
sequence of the polynomials inF in this cell, we would have
covered all the different sign sequences, which correspond
to all the feasible clustering options of P into k clusters.
For each option we can evaluate the total cost as described
above, and pick the clustering with the smallest total cost.

The running time of such an algorithm is dominated by the
computation of such an arrangement of Rdk, and by call-
ing ALG |∆(F)| times; once for each region ∆′ ∈ ∆(F).
Computing this arrangement takes nmkO(dk) time by Theo-
rem C.1 and produces |∆(F)| ∈ (nmk)O(dk) cells. Now it
takes T (n) ·(nmk)O(dk) total time for the calls to ALG.

C.2. Proof of Corollary 4.5

Corollary 4.4 (PTAS for sets-k-means). Let P be an
(n,m)-set, k ≥ 1 be an integer, and put ε ∈

(
0, 12
]

and
δ ∈ (0, 1). Let OPT be the cost of the sets-k-means. Then

in n log(n)(k)m +
(

logn
ε dmkm

)O(dk)

time we can com-

pute Ĉ ∈ Xk such that with probability at least 1− k · δ,

∑
P∈P

min
p∈P,c∈Ĉ

‖p− c‖2 ≤ (1 + 4ε) ·OPT.

Proof. We will first compute a coreset for the input P and
the given cost function D̃ and query setXk, and then find the
sets-k-means for the (weighted) coreset using Theorem 4.4.

Recall that in this sets-k-means problem, D̃(P,C) =

minp∈P,c∈C ‖p− c‖2 for every P,C ⊆ Rd.

Let (S, v) be an output of a call to CORESET(P, k, ε, δ); see
Algorithm 2. Then by Theorem 4.2, (S, v) is an ε-coreset

for (P,Xk, D̃) of size |S| ∈ O

((
mdk logn

ε

)2
kO(m)

)
with probability at least 1 − δ which is computed in
O (n log(n)(bk)m) ; see Section 1.4.

Let Q ⊆ X be a set of size |Q| = n and let u : Q→ [0,∞)
be a weights function. Let ALG be an algorithm that takesQ
and u as input and returns the point c∗ :=

∑
q∈Q u(q)·q∑
q∈Q u(q)

∈ X .
Observe that c∗ minimizes its sum of weighted squared

Sets Clustering

distances to the points of Q, i.e.,∑
q∈Q

u(q)D̃(q, c∗) =
∑
q∈Q

u(q) ‖q − c∗‖2

= min
c∈X

∑
q∈Q

u(q) ‖q − c‖2 = min
c∈X

∑
q∈Q

u(q)D̃(q, c).

Furthermore, observe that c∗ can be computed in T (n) =
O(n) time.

Plugging P = S, w = v,Q, u, ALG, α = 1 and T (|S|) =
O(|S|) in Theorem 4.4 yields that in (|S|mk)O(dk) ∈(

logn
ε dmkm

)O(dk)

time we can compute Ĉ ∈ Xk such
that with probability at least 1− k · δ,∑
P∈S

v(P) · D̃(P, Ĉ) = min
C∈Xk

∑
P∈S

v(P) · D̃(P,C). (51)

Hence, the total running time for obtaining Ĉ is(
logn
ε dmkm

)O(dk)

+O (n log(n)(bk)m).

Corollary 4.5 now holds as∑
P∈P

min
p∈P,c∈Ĉ

‖p− c‖2 =
∑
P∈P

D̃(P, Ĉ)

≤ 1

1− ε
·
∑
P∈S

v(P) · D̃(P, Ĉ) (52)

≤ (1 + 2ε) ·
∑
P∈S

v(P) · D̃(P, Ĉ) (53)

= (1 + 2ε) · min
C∈Xk

∑
P∈S

v(P) · D̃(P,C) (54)

≤ (1 + 2ε)(1 + ε) · min
C∈Xk

∑
P∈P

D̃(P,C) (55)

≤ (1 + 4ε) · min
C∈Xk

∑
P∈P

D̃(P,C) (56)

= (1 + 4ε) · min
C∈Xk

∑
P∈P

min
p∈P,c∈C

‖p− c‖2 ,

where (52) and (55) hold since (S, v) is an ε-coreset for
(P,Xk, D̃), (53) and (56) hold since ε ≤ 1

2 and (54) is
by (51).

C.3. Suggested implementation

In this section we give a suggested implementation for the
constructive proof of Theorem 4.4; see Algorithm 4.

Overview of Algorithm 4. Algorithm 4 gets as input a set
P of m-sets, an integer k ≥ 1, an error parameter ε ∈ (0, 1)
and the probability of failure δ ∈ (0, 1). The algorithm
returns as output a set Ĉ ∈ Xk of k centers that approximate
the optimal cost of the k-means for set

Algorithm 4 PTAS(P, w, k, ALG)

1: Input: An (n,m)-set P , a weights function w : P →
[0,∞), a positive integer k, and an algorithm ALG as in
Theorem 4.4.

2: Output: A set Ĉ ∈ arg min
C∈Xk

∑
P∈P

w(P)D̃(P,C);

see Theorem 4.4.
3: Identify P = {P1, · · · , Pn} where Pi ={

pi1, · · · , pim
}

for every i ∈ [n].
4: Define w′(p) := w(P) for every p ∈ P and P ∈ P .
5: Let x = (xT1

∣∣· · · ∣∣xTk)T ∈ Rdk be a vector of dk un-
knowns.

6: for every i, i′ ∈ [n], j, j′ ∈ [m], `, `′ ∈ [k] do

7: pli,j,`,i′,j′,`′(x) =
∥∥pij − x`∥∥2 − ∥∥∥pi′j′ − x`′∥∥∥2

{A polynomial of degree 2 containing up to 2d un-
knowns from x. If this polynomial is positive iff pi

′

j′

is closer to x`′ than the distance between pij and x`.}
8: F := F ∪

{
pli,j,`,i′,j′,`′(x)

}
9: end for

10: Compute a decomposition of Rdk into cells ∆(F) =
{∆j} as described in Theorem C.1, and let A contain a
representative a ∈ ∆′ from each cell ∆′ ∈ ∆(F).

11: min =∞
12: for every a ∈ A do
13: sum = 0
14: for every ` ∈ [k] do

15: C` :=

pij
i ∈ [n], j ∈ [m] s.t.
∀j′ ∈ [m], `′ ∈ [k]

sign
(
pli,j,`,i,j′,`′(a)

)
= −1

{The points of cluster number ` defined by the
sign sequence of the cell representative a ∈ A.}

16: (ĉ`, cost`) := ALG(C`, w′).
{Compute the optimal center (k = 1) ĉ` of the set
C` ⊆ Rd (m = 1) and its cost cost`, for a given
cost function.}

17: sum = sum+ cost`
18: end for
19: if sum < min then
20: min = sum
21: Ĉ = {ĉ1, · · · , ĉk}
22: end if
23: end for
24: Return Ĉ

D. Robust Median
D.1. Proof of Lemma 5.1

Algorithm 3 overview: The algorithm relies on the 2 fol-
lowing observations: (i) To compute a robust approximation
of the entire data, it suffices to compute a robust approxima-
tion of a randomly sampled subset of this data of sufficient
size; see Line 4 of Algorithm 3 and Lemma D.1, (ii) If b is a

Sets Clustering

robust approximation of some input set of elements, then by
the (weak) triangle inequality for singletons, one of those
elements is a constant factor approximation for b; see Line 5
of Algorithm 3.

Lemma D.1. Let P be an (n,m)-set, k ≥ 1, δ, γ ∈ (0, 1),
and τ ∈ (0, 1/10). Pick uniformly, i.i.d, a (multi)-set S of

|S| = c

τ4γ2

(
md2 + log

(
1

δ

))
elements from P , where c is a sufficiently large universal
constant. Then with probability at least 1 − δ, any ((1 −
τ)γ, τ, 2)-median of S is also a (γ, 4τ, 2)-median of P .

Proof. For every P ∈ P and b ∈ X1 define fP (b) =
D̃(P, b). Let F =

{
fP
∣∣P ∈ P} and FS =

{
fP
∣∣P ∈ S}.

Observe that by Definition 4.2 in (Feldman & Langberg,
2011), the dimension of the function space (F,X1) is
equivalent to the dimension d′ = md2 of the query
space (P, X1, D̃). Since FS is a random sample of
c

τ4γ2

(
d′ + log

(
1
δ

))
= c

τ4γ2

(
md2 + log

(
1
δ

))
functions,

sampled i.i.d from F , Lemma D.1 now holds by Theo-
rem 9.6 in (Feldman & Langberg, 2011) which states that
a ((1 − τ)γ, τ, 2)-median of FS (which in our case is a
((1 − τ)γ, τ, 2)-median of S) is a (γ, 4τ, 2)-median of F
(which in our case is a (γ, 4τ, 2)-median of P).

Lemma 5.1 (based on Lemma 9.6 in (Feldman & Langberg,
2011)). Let P be an (n,m)-set, k ≥ 1, δ ∈ (0, 1) and
(X , D̃) be as in Definition 2.1. Let q ∈ X be the output
of a call to MEDIAN(P, k, δ); see Algorithm 3. Then with
probability at least 1 − δ, q is a (1/(2k), 1/6, 2)-median
for P ; see Definition 2.4. Furthermore, q can be computed
in O

(
tb2k4 log2

(
1
δ

))
time, where t is the time it takes to

compute D̃(P,Q) for P,Q ∈ P .

Proof. Let γ = 1/(2k) and τ = 1/24. For a sufficient con-
stant b, the random sample S in Line 4 satisfies Lemma D.1.
Therefore,

a (23/(48k), 1/24, 2)-median of S is also a
(1/(2k), 1/6, 2)-median of P.

(57)

Let q∗S be the (23/(48k), 0, 0)-median of S, and let q′S be
the closest point in S to q∗S , i.e.,

q′S ∈ arg min
q∈Q:Q∈S

D̃(q∗S , q).

By the weak triangle inequality from Lemma 2.2, we
have that D̃(P, q′S) ≤ 2ρD̃(P, q∗S) for every P ∈ S,
i.e., that q′S is a 2-approximation for q∗S . This yields
that q′S is a (23/(48k), 0, 2)-median of S, which is also
a (23/(48k), 1/6, 2)-median of S . Hence, one of the points
of S is a (23/(48k), 1/6, 2)-median of S. Therefore, the

Figure 6. exact-mean via sets Voronoi diagram. A set of
n = 4 pairs on the plane (m = d = 2) and its sets Voronoi
diagram which is computed as follows: (i) A set voronoi diagram
is computed for each pair (m-set) to obtain a set of hyperplanes,
(ii) an arrangement of those hyperplanes is then computed, which
results in a partition of R2 into the cells which are presented above.
Each cell corresponds to a selection of representatives, one from
each pair. The sets-mean c∗ (solid star) is also the 1-mean of the
representative points shown in solid circles, which correspond to
this Voronoi cell. Any other point (empty star) inside the same
Voronoi cell as c∗ admits the same set of representatives. There-
fore, to compute c∗, it suffices to exhaustive search over all the
Voronoi.

point q computed at Line 5 and returned in Line 6 is such
a (23/(48k), 1/6, 2)-median of S, which by (57) is also a
(1/(2k), 1/6, 2)-median of P .

The computation time of Algorithm 3 is dominated
by Line 5, which can be implemented in t|S|2 =
tb2k4 log2

(
1
δ

)
time by simply computing the pairwise dis-

tances between every two sets in S and using order statis-
tics.

E. Implemented Algorithms
exact-mean(P) is implemented by what we call sets
Voronoi diagram; see Fig. 6.

k-means(P, k). We focused on the sets-k-means case
(see Section 1 and Table 1), where the clustering algo-
rithm we applied is a modified version of the the well
know Lloyd algorithm (Lloyd, 1982) as follows. The
algorithm starts by an initial k random centers C ⊆{
p ∈ P

∣∣P ∈ P}. It then assigns every P ∈ P to its closest
center cP = arg minc∈C D̃(P, c). Finally, it replaces every
c ∈ C with the sets-mean of the (possibly weighted) sets{
P ∈ P

∣∣cP = c
}

in its cluster. It repeats this process till
convergence, but no more than 12 iterations. The sets-mean
is computed as follows.

approx-mean(P, t). As explained in Section 1, comput-
ing the sets-mean c∗ is a non-trivial and time consuming
task. However, at least |P| /2 of the input sets P ∈ P satisfy

that D̃(P, c∗) ≤ 2
∑
Q∈PD̃(Q,c∗)

n . By the triangle inequality
for singletons (Lemma 2.2), it follows immediately that the
closest point p ∈ P to c∗ is a 3-approximation for c∗. There-
fore, with probability at least 1/2, one of the points of a

Sets Clustering

randomly sampled input set is a good approximation. We
can amplify this probability by sampling t ≥ 1 such sets.

Handling sets of different sizes. For example in dataset
(ii), each newspaper Pi consists of different number of para-
graphs and hence is represented by a different number |Pi|
of vectors. Let z denote the maximal such set size. To com-
pute a coreset for such dataset P , we first partition P into z
sets P = P1∪· · ·∪Pz where Pi contains all the sets P ∈ P
of size |P | = i. Then, for every i ∈ [z], we plug P0 = Pi
at Lines 5– 14 of Algorithm 2 to compute s(P) for every
P ∈ Pi. In other words, we compute the sensitivity bound
for each set on its own. We compute the total sensitivity
ti :=

∑
P∈Pi si(P) of each set Pi and t :=

∑
i∈[m] ti to

be their total. We then simply perform Lines 17– 21.

