Supplementary Material for Partial Trace Regression and Low-Rank Kraus Decomposition

Hachem Kadri 1 Stéphane Ayache 1 Riikka Huusari 2 Alain Rakotomamonjy 3 4 Liva Ralaivola 4

In this supplementary material, we prove Lemma 3 and Theorem 4 in Section 2.3 of the main paper. Let us first recall the definition of pseudo-dimension.

Definition 1 (Shattering Mohri et al., 2018, Def. 10.1)
Let \(G \) be a family of functions from \(X \to \mathbb{R} \). A set \(\{x_1, \ldots, x_m\} \subset X \) is said to be shattered by \(G \) if there exist \(t_1, \ldots, t_m \in \mathbb{R} \) such that,
\[
 f(x) = \left\{ \begin{array}{ll}
 \text{sign}(g(x_1) - t_1) & : g \in G \\
 \vdots & \\
 \text{sign}(g(x_m) - t_m) &
 \end{array} \right\} = 2^m.
\]

Definition 2 (pseudo-dimension Mohri et al., 2018, Def. 10.2)
Let \(G \) be a family of functions from \(X \to \mathbb{R} \). Then, the pseudo-dimension of \(G \), denoted by \(\text{Pdim}(G) \), is the size of the largest set shattered by \(G \).

In the following we consider that the expected loss of any hypothesis \(h \in \mathcal{F} \) is defined by \(R(h) = \mathbb{E}_{(X,Y)}[\ell(Y, h(X))] \) and its empirical loss by \(\tilde{R}(h) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, h(X_i)) \). To prove Lemma 3 and Theorem 4, we need the following two results.

Theorem 1 (Srebro, 2004, Theorem 35)
The number of sign configurations of \(m \) polynomials, each of degree at most \(d \), over \(n \) variables is at most \(\left(\frac{4edm}{n} \right)^n \) for all \(m > n > 2 \).

Theorem 2 (Mohri et al., 2018, Theorem 10.6)
Let \(H \) be a family of real-valued functions and let \(G = \{ x \mapsto L(h(x), f(x)) : h \in H \} \) be the family of loss functions associated to \(H \). Assume that the pseudo-dimension of \(G \) is bounded by \(d \) and that the loss function \(L \) is bounded by \(M \). Then, for any \(\delta > 0 \), with probability at least \(1 - \delta \) over the choice of a sample of size \(m \), the following inequality holds for all \(h \in H \):
\[
 R(h) \leq \tilde{R}(h) + M \sqrt{\frac{2d \log \left(\frac{em}{\delta} \right)}{m}} + M \sqrt{ \log \frac{1}{\delta} }.
\]

1. Proof of Lemma 3

We now prove Lemma 3 in Section 2.3 of the main paper.

Lemma 3 The pseudo-dimension of the real-valued function class \(\mathcal{F} \) with domain \(\mathbb{M}_p \times [q] \times [q] \) defined by
\[
 \mathcal{F} = \{ (X, s, t) \mapsto (\Phi(X))_{st} : \Phi(X) = \sum_{j=1}^r A_j X A_j^\top \}
\]
is upper bounded by \(pqr \log \left(\frac{4pq r}{\delta} \right) \).

Proof: It is well known that the pseudo-dimension of a vector space of real-valued functions is equal to its dimension (Mohri et al., 2018, Theorem 10.5). Since \(\mathcal{F} \) is a subspace of the \(p^2q^2 \)-dimensional vector space
\[
 \{ (X, s, t) \mapsto (\Phi(X))_{st} : \Phi \in \mathcal{L}(\mathbb{M}_p, \mathbb{M}_q) \}
\]
of real-valued functions with domain \(\mathbb{M}_p \times [q] \times [q] \) the pseudo-dimension of \(\mathcal{F} \) is bounded by \(p^2q^2 \).

Now, let \(m \leq p^2q^2 \) and let \(\{(X_k, s_k, t_k)\}_{k=1}^m \) be a set of points that are pseudo-shattered by \(\mathcal{F} \) with thresholds \(t_1, \ldots, t_m \in \mathbb{R} \). Then for each binary labeling \((u_1, \ldots, u_m) \in \{-, +\}^m \), there exists \(\Phi \in \mathcal{F} \) such that \(\text{sign}(\hat{\Phi}(X_k, s_k, t_k) - v_k) = u_k \). Any function \(\hat{\Phi} \in \mathcal{F} \) can be written as
\[
 \hat{\Phi}(X, s, t) = \left(\sum_{j=1}^r A_j X A_j^\top \right)_{st}, \tag{1}
\]
where \(A_j \in \mathbb{M}_{q \times p}, \forall j \in [r] \). If we consider the \(pqr \) entries of \(A_j, j = 1, \ldots, r \), as variables, the set \(\{ \Phi(X_k, s_k, t_k) - v_k \}_{k=1}^m \) can be seen (using Eq. 1) as a set of \(m \) polynomials...
of degree 2 over these variables. Applying Theorem 1 above, we obtain that the number of sign configurations, which is equal to \(2^m\), is bounded by \(\left(\frac{8e}{pqr}\right)^{pqr}\). The result follows since \(m \leq p^2q^2\).

2. Proof of Theorem 4

In this section, we prove Theorem 4 in Section 2.3 of the main paper.

Theorem 4 Let \(\ell : \mathbb{M}_q \to \mathbb{R}\) be a loss function satisfying

\[
\ell(Y, Y') = \frac{1}{q^2} \sum_{s,t} \ell'(Y_{st}, Y'_{st})
\]

for some loss function \(\ell' : \mathbb{R} \to \mathbb{R}^+\) bounded by \(\gamma\). Then for any \(\delta > 0\), with probability at least \(1 - \delta\) over the choice of a sample of size \(l\), the following inequality holds for all \(h \in \mathcal{F}\):

\[
R(h) \leq \hat{R}(h) + \gamma \sqrt{\frac{pqr \log\left(\frac{8e}{pqr}\right) \log\left(\frac{l}{pqr}\right)}{l} + \gamma \frac{\log\left(\frac{1}{\delta}\right)}{2l}}.
\]

Proof: For any \(h : \mathbb{M}_p \to \mathbb{M}_q\) we define \(\hat{h} : \mathbb{M}_p \times [q] \times [q] \to \mathbb{R}\) by \(\hat{h}(X, s, t) = (h(X))_{st}\). Let \(\mathcal{D}\) denote the distribution of the input-output data. We have

\[
R(h) = \mathbb{E}_{(X,Y) \sim \mathcal{D}}[\ell(Y, h(X))]
\]

\[
= \frac{1}{q^2} \sum_{s,t} \mathbb{E}_{(X,Y) \sim \mathcal{D}}[\ell'(Y_{st}, h(X)_{st})]
\]

\[
= \mathbb{E}_{(X,Y) \sim \mathcal{D}}[\ell'(Y_{st}, \hat{h}(X, s, t))]
\]

where \(\mathcal{U}(q)\) denotes the discrete uniform distribution on \([q]\).

It follows that \(\hat{R}(h) = \hat{R}(\hat{h})\). By the same way, we can show that \(\hat{R}(h) = \hat{R}(\hat{h})\). The generalization bound is then obtained using Theorem 2 above.

References
