Supplementary Material for Partial Trace Regression and Low-Rank Kraus Decomposition

Hachem Kadri ${ }^{1}$ Stéphane Ayache ${ }^{1}$ Riikka Huusari ${ }^{2}$ Alain Rakotomamonjy ${ }^{34}$ Liva Ralaivola ${ }^{4}$

In this supplementary material, we prove Lemma 3 and Theorem 4 in Section 2.3 of the main paper. Let us first recall the definition of pseudo-dimension.

Definition 1 (Shattering Mohri et al., 2018, Def. 10.1)
Let G be a family of functions from X to \mathbb{R}. A set $\left\{x_{1}, \ldots, x_{m}\right\} \subset X$ is said to be shattered by G if there exist $t_{1}, \ldots, t_{m} \in \mathbb{R}$ such that,

$$
f(x)=\left|\left\{\left[\begin{array}{c}
\operatorname{sign}\left(g\left(x_{1}\right)-t_{1}\right) \\
\vdots \\
\operatorname{sign}\left(g\left(x_{m}\right)-t_{m}\right)
\end{array}\right]: g \in G\right\}\right|=2^{m}
$$

Definition 2 (pseudo-dimension Mohri et al., 2018, Def. 10.2)
Let G be a family of functions from X to \mathbb{R}. Then, the pseudo-dimension of G, denoted by $\operatorname{Pdim}(G)$, is the size of the largest set shattered by G.

In the following we consider that the expected loss of any hypothesis $h \in \mathcal{F}$ is defined by $R(h)=\mathbb{E}_{(X, Y)}[\ell(Y, h(X))]$ and its empirical loss by $\hat{R}(h)=\frac{1}{l} \sum_{i=1}^{l} \ell(Y, h(X))$. To prove Lemma 3 and Theorem 4, we need the following two results.

Theorem 1 (Srebro, 2004, Theorem 35)
The number of sign configurations of m polynomials, each of degree at most d, over n variables is at most $\left(\frac{4 e d m}{n}\right)^{n}$ for all $m>n>2$.

Theorem 2 (Mohri et al., 2018, Theorem 10.6)
Let H be a family of real-valued functions and let $G=$ $\{x \mapsto L(h(x), f(x)): h \in H\}$ be the family of loss functions associated to H. Assume that the pseudo-dimension of

[^0]G is bounded by d and that the loss function L is bounded by M. Then, for any $\delta>0$, with probability at least δ over the choice of a sample of size m, the following inequality holds for all $h \in H$:
$$
R(h) \leq \hat{R}(h)+M \sqrt{\frac{2 d \log \left(\frac{e m}{d}\right)}{m}}+M \sqrt{\frac{\log \left(\frac{1}{\delta}\right)}{2 m}}
$$

1. Proof of Lemma 3

We now prove Lemma 3 in Section 2.3 of the main paper.
Lemma 3 The pseudo-dimension of the real-valued function class $\tilde{\mathcal{F}}$ with domain $\mathbb{M}_{p} \times[q] \times[q]$ defined by

$$
\tilde{\mathcal{F}}=\left\{(X, s, t) \mapsto(\Phi(X))_{s t}: \Phi(X)=\sum_{j=1}^{r} A_{j} X A_{j}^{\top}\right\}
$$

is upper bounded by pqr $\log \left(\frac{8 e p q}{r}\right)$.
Proof: It is well known that the pseudo-dimension of a vector space of real-valued functions is equal to its dimension (Mohri et al., 2018, Theorem 10.5). Since $\tilde{\mathcal{F}}$ is a subspace of the $p^{2} q^{2}$-dimensional vector space

$$
\left\{(X, s, t) \mapsto(\Phi(X))_{s t}: \Phi \in \mathcal{L}\left(\mathbb{M}_{p} ; \mathbb{M}_{q}\right)\right\}
$$

of real-valued functions with domain $\mathbb{M}_{p} \times[q] \times[q]$ the pseudo-dimension of $\tilde{\mathcal{F}}$ is bounded by $p^{2} q^{2}$.
Now, let $m \leq p^{2} q^{2}$ and let $\left\{\left(X_{k}, s_{k}, t_{k}\right)\right\}_{k=1}^{m}$ be a set of points that are pseudo-shattered by $\tilde{\mathcal{F}}$ with thresholds $t_{1}, \cdots, t_{m} \in \mathbb{R}$. Then for each binary labeling $\left(u_{1}, \cdots, u_{m}\right) \in\{-,+\}^{m}$, there exists $\tilde{\Phi} \in \tilde{\mathcal{F}}$ such that $\operatorname{sign}\left(\tilde{\Phi}\left(X_{k}, s_{k}, t_{k}\right)-v_{k}\right)=u_{k}$. Any function $\tilde{\Phi} \in \tilde{\mathcal{F}}$ can be written as

$$
\begin{equation*}
\tilde{\Phi}(X, s, t)=\left(\sum_{j=1}^{r} A_{j} X A_{j}^{\top}\right)_{s t} \tag{1}
\end{equation*}
$$

where $A_{j} \in \mathbb{M}_{q \times p}, \forall j \in[r]$. If we consider the $p q r$ entries of $A_{j}, j=1, \ldots, r$, as variables, the set $\left\{\tilde{\Phi}\left(X_{k}, s_{k}, t_{k}\right)-\right.$ $\left.v_{k}\right\}_{k=1}^{m}$ can be seen (using Eq. 1) as a set of m polynomials
of degree 2 over these variables. Applying Theorem 1 above, we obtain that the number of sign configurations, which is equal to 2^{m}, is bounded by $\left(\frac{8 e m}{p q r}\right)^{p q r}$. The result follows since $m \leq p^{2} q^{2}$.

2. Proof of Theorem 4

In this section, we prove Theorem 4 in Section 2.3 of the main paper.

Theorem 4 Let $\ell: \mathbb{M}_{q} \rightarrow \mathbb{R}$ be a loss function satisfying

$$
\ell\left(Y, Y^{\prime}\right)=\frac{1}{q^{2}} \sum_{s, t} \ell^{\prime}\left(Y_{s t}, Y_{s t}^{\prime}\right)
$$

for some loss function $\ell^{\prime}: \mathbb{R} \rightarrow \mathbb{R}^{+}$bounded by γ. Then for any $\delta>0$, with probability at least $1-\delta$ over the choice of a sample of size l, the following inequality holds for all $h \in \mathcal{F}$:
$R(h) \leq \hat{R}(h)+\gamma \sqrt{\frac{p q r \log \left(\frac{8 e p q}{r}\right) \log \left(\frac{l}{p q r}\right)}{l}}+\gamma \sqrt{\frac{\log \left(\frac{1}{\delta}\right)}{2 l}}$.

Proof: For any $h: \mathbb{M}_{p} \rightarrow \mathbb{M}_{q}$ we define $\tilde{h}: \mathbb{M}_{p} \times[q] \times$ $[q] \rightarrow \mathbb{R}$ by $\tilde{h}(X, s, t)=(h(X))_{s t}$. Let \mathcal{D} denote the distribution of the input-output data. We have

$$
\begin{aligned}
R(h) & =\mathbb{E}_{(X, Y) \sim \mathcal{D}}[\ell(Y, h(X))] \\
& =\frac{1}{q^{2}} \sum_{s, t} \mathbb{E}_{(X, Y) \sim \mathcal{D}}\left[\ell^{\prime}\left(Y_{s t}, h(X)_{s t}\right]\right. \\
& =\mathbb{E}_{\substack{(X, Y) \sim \mathcal{D} \\
s, t \sim u(q)}}\left[\ell^{\prime}\left(Y_{s t}, \tilde{h}(X, s, t)\right)\right]
\end{aligned}
$$

where $\mathcal{U}(q)$ denotes the discrete uniform distribution on $[q]$. It follows that $R(h) \underset{\sim}{=} R(\tilde{h})$. By the same way, we can show that $\hat{R}(h)=\hat{R}(\tilde{h})$. The generalization bound is then obtained using Theorem 2 above.

References

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations of machine learning. MIT press, 2018.

Srebro, N. Learning with matrix factorizations. PhD thesis, MIT, 2004.

[^0]: ${ }^{1}$ Aix-Marseille University, CNRS, LIS, Marseille, France ${ }^{2}$ Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Espoo, Finland ${ }^{3}$ Université Rouen Normandie, LITIS, Rouen, France ${ }^{4}$ Criteo AI Lab, Paris, France. Correspondence to: Hachem Kadri hachem.kadri@univamu.fr.

 Proceedings of the $37^{\text {th }}$ International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s).

