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In this supplementary material, we prove Lemma 3 and
Theorem 4 in Section 2.3 of the main paper. Let us first
recall the definition of pseudo-dimension.

Definition 1 (Shattering Mohri et al., 2018, Def. 10.1)
Let G be a family of functions from X to R. A set
{x1, ..., xm} ⊂ X is said to be shattered by G if there
exist t1, ..., tm ∈ R such that,

f(x) =

∣∣∣∣∣∣∣

 sign(g(x1)− t1)

...
sign(g(xm)− tm)

 : g ∈ G


∣∣∣∣∣∣∣ = 2m.

Definition 2 (pseudo-dimension Mohri et al., 2018,
Def. 10.2)
Let G be a family of functions from X to R. Then, the
pseudo-dimension of G, denoted by Pdim(G), is the size
of the largest set shattered by G.

In the following we consider that the expected loss of any hy-
pothesis h ∈ F is defined by R(h) = E(X,Y )

[
`
(
Y, h(X)

)]
and its empirical loss by R̂(h) = 1

l

∑l
i=1 `

(
Y, h(X)

)
. To

prove Lemma 3 and Theorem 4, we need the following two
results.

Theorem 1 (Srebro, 2004, Theorem 35)
The number of sign configurations of m polynomials, each
of degree at most d, over n variables is at most

(
4edm
n

)n
for all m > n > 2.

Theorem 2 (Mohri et al., 2018, Theorem 10.6)
Let H be a family of real-valued functions and let G =
{x 7→ L(h(x), f(x)) : h ∈ H} be the family of loss func-
tions associated to H . Assume that the pseudo-dimension of
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G is bounded by d and that the loss function L is bounded
by M . Then, for any δ > 0, with probability at least δ over
the choice of a sample of size m, the following inequality
holds for all h ∈ H:

R(h) ≤ R̂(h) +M

√
2d log

(
em
d

)
m

+M

√
log
(
1
δ

)
2m

.

1. Proof of Lemma 3
We now prove Lemma 3 in Section 2.3 of the main paper.

Lemma 3 The pseudo-dimension of the real-valued func-
tion class F̃ with domain Mp × [q]× [q] defined by

F̃ = {(X, s, t) 7→
(
Φ(X)

)
st

: Φ(X) =

r∑
j=1

AjXA
>
j }

is upper bounded by pqr log( 8epq
r ).

Proof: It is well known that the pseudo-dimension of a
vector space of real-valued functions is equal to its dimen-
sion (Mohri et al., 2018, Theorem 10.5). Since F̃ is a
subspace of the p2q2-dimensional vector space{

(X, s, t) 7→
(
Φ(X)

)
st

: Φ ∈ L(Mp;Mq)
}

of real-valued functions with domain Mp × [q] × [q] the
pseudo-dimension of F̃ is bounded by p2q2.

Now, let m ≤ p2q2 and let {(Xk, sk, tk)}mk=1 be a set
of points that are pseudo-shattered by F̃ with thresh-
olds t1, · · · , tm ∈ R. Then for each binary labeling
(u1, · · · , um) ∈ {−,+}m, there exists Φ̃ ∈ F̃ such that
sign(Φ̃(Xk, sk, tk)− vk) = uk. Any function Φ̃ ∈ F̃ can
be written as

Φ̃(X, s, t) =
( r∑
j=1

AjXA
>
j

)
st
, (1)

where Aj ∈Mq×p,∀j ∈ [r]. If we consider the pqr entries
of Aj , j = 1, . . . , r, as variables, the set {Φ̃(Xk, sk, tk)−
vk}mk=1 can be seen (using Eq. 1) as a set of m polynomials
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of degree 2 over these variables. Applying Theorem 1 above,
we obtain that the number of sign configurations, which is

equal to 2m, is bounded by
(

8em
pqr

)pqr
. The result follows

since m ≤ p2q2. �

2. Proof of Theorem 4
In this section, we prove Theorem 4 in Section 2.3 of the
main paper.

Theorem 4 Let ` : Mq → R be a loss function satisfying

`(Y, Y ′) =
1

q2

∑
s,t

`′(Yst, Y
′
st)

for some loss function `′ : R→ R+ bounded by γ. Then for
any δ > 0, with probability at least 1 − δ over the choice
of a sample of size l, the following inequality holds for all
h ∈ F:

R(h) ≤ R̂(h)+γ

√
pqr log( 8epq

r ) log( l
pqr )

l
+γ

√
log
(
1
δ

)
2l

.

Proof: For any h : Mp → Mq we define h̃ : Mp × [q] ×
[q] → R by h̃(X, s, t) =

(
h(X)

)
st

. Let D denote the
distribution of the input-output data. We have

R(h) = E(X,Y )∼D[`(Y, h(X))]

=
1

q2

∑
s,t

E(X,Y )∼D[`′(Yst, h(X)st]

= E (X,Y )∼D
s,t∼U(q)

[`′(Yst, h̃(X, s, t))],

where U(q) denotes the discrete uniform distribution on [q].
It follows that R(h) = R(h̃). By the same way, we can
show that R̂(h) = R̂(h̃). The generalization bound is then
obtained using Theorem 2 above. �
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