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Abstract

State-of-the-art neural machine translation mod-
els generate a translation from left to right and
every step is conditioned on the previously gen-
erated tokens. The sequential nature of this
generation process causes fundamental latency
in inference since we cannot generate multiple
tokens in each sentence in parallel. We pro-
pose an attention-masking based model, called
Disentangled Context (DisCo) transformer, that
simultaneously generates all tokens given differ-
ent contexts. The DisCo transformer is trained
to predict every output token given an arbitrary
subset of the other reference tokens. We also de-
velop the parallel easy-first inference algorithm,
which iteratively refines every token in parallel
and reduces the number of required iterations.
Our extensive experiments on 7 translation di-
rections with varying data sizes demonstrate that
our model achieves competitive, if not better, per-
formance compared to the state of the art in non-
autoregressive machine translation while signif-
icantly reducing decoding time on average. Our
code is available at https://github.com/
facebookresearch/DisCo.

1. Introduction
State-of-the-art neural machine translation systems use au-
toregressive decoding where words are predicted one-by-
one conditioned on all previous words (Bahdanau et al.,
2015; Vaswani et al., 2017). Non-autoregressive machine
translation (NAT, Gu et al., 2018), on the other hand, gen-
erates all words in one shot and speeds up decoding at the
expense of performance drop. Parallel decoding results in
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conditional independence and prevents the model from prop-
erly capturing the highly multimodal distribution of target
translations (Gu et al., 2018). One way to remedy this fun-
damental problem is to refine model output iteratively (Lee
et al., 2018; Ghazvininejad et al., 2019). This work pursues
this iterative approach to non-autoregressive translation.1

In this work, we propose a transformer-based architecture
with attention masking, which we call Disentangled Context
(DisCo) transformer, and use it for non-autoregressive de-
coding. Specifically, our DisCo transformer predicts every
word in a sentence conditioned on an arbitrary subset of
the rest of the words. Unlike the masked language models
(Devlin et al., 2019; Ghazvininejad et al., 2019) where the
model only predicts the masked words, the DisCo trans-
former can predict all words simultaneously, leading to
faster inference as well as a substantial performance gain
when training data are relatively large.

We also introduce a new inference algorithm for iterative
parallel decoding, parallel easy-first, where each word is
predicted by attending to the words that the model is more
confident about. This decoding algorithm allows for predict-
ing all tokens with different contexts in each iteration and
terminates when the output prediction converges, contrast-
ing with the constant number of iterations (Ghazvininejad
et al., 2019). Indeed, we will show in a later section that
this method substantially reduces the number of required
iterations without loss in performance.

Our extensive empirical evaluations on 7 translation direc-
tions from standard WMT benchmarks show that our ap-
proach achieves competitive performance to state-of-the-art
non-autoregressive and autoregressive machine translation
while significantly reducing decoding time on average.

2. DisCo Transformer
We introduce our DisCo transformer for non-autoregressive
translation (Fig. 1). We propose a DisCo objective as an ef-
ficient alternative to masked language modeling and design
an architecture that computes the objective in a single pass.

1Refinement requires several sequential steps, but we abuse
the term non-autoregressive generation to mean a broad family of
methods that generate the target in parallel for simplicity.

https://github.com/facebookresearch/DisCo
https://github.com/facebookresearch/DisCo
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Figure 1. DisCo Transformer. W and p denote word and positional
embeddings respectively. We simulate three disentangled contexts
to predict A, B, and C (Yn) given {C}, {A, C}, and {B} (Y n

obs)
respectively. Dashed lines indicate masked-out attention connec-
tions to Y n

mask and Yn itself. K and V are direct projections of
wn + pn (thus contextless) for all layers to avoid leakage.

2.1. DisCo Objective

Similar to masked language models (Devlin et al., 2019), a
conditional masked language model (CMLM, Ghazvinine-
jad et al., 2019) predicts randomly masked target tokens
Ymask given a source text X and the rest of the target tokens
Yobs. Namely, for every sentence pair in bitext X and Y ,

P (Ymask|X,Yobs) = Transformer(X,Yobs)

Ymask ∼ RS(Y ) Yobs = Y \ Ymask

where RS denotes random sampling of masked tokens.2

CMLMs have proven successful in parallel decoding for ma-
chine translation (Ghazvininejad et al., 2019), video caption-
ing (Yang et al., 2019a), and speech recognition (Nakayama
et al., 2019). However, the fundamental inefficiency with
this masked language modeling objective is that the model
can only be trained to predict a subset of the reference tokens
(Ymask) for each network pass unlike a normal autoregressive
model where we predict all Y from left to right. To address
this limitation, we propose a Disentangled Context (DisCo)
objective.3 The objective involves prediction of every token
given an arbitrary (thus disentangled) subset of the other
tokens. For every 1 ≤ n ≤ N where |Y | = N , we predict:

P (Yn|X,Y n
obs) = Transformer(X,Y n

obs)

Y n
obs ∼ RS(Y \ Yn)

2BERT (Devlin et al., 2019) masks a token with probability
0.15 while CMLMs (Ghazvininejad et al., 2019) sample the num-
ber of masked tokens uniformly from [1, N ].

3We distinguish this from disentangled representation.

2.2. DisCo Transformer Architecture

Simply computing conditional probabilities P (Yn|X,Y n
obs)

with a vanilla transformer decoder will necessitate N sep-
arate transformer passes for each Y n

obs. We introduce the
DisCo transformer to compute these N contexts in one shot:

P (Y1|X,Y 1
obs), · · · , P (YN |X,Y N

obs) = DisCo(X,Y )

In particular, our DisCo transformer makes crucial use of
attention masking to achieve this computational efficiency.
Denote input word and positional embeddings at position
n by wn and pn. For each position n in Y , the vanilla
transformer computes self-attention:4

kn, vn, qn = Proj(wn + pn)

hn = Attention(K,V, qn)

K,V = Concat
(
{km}Nm=1

)
, Concat

(
{vm}Nm=1

)
We modify this attention computation in two aspects. First,
we separate query input from key and value input to avoid
feeding the token we predict. Then we only attend to keys
and values that correspond to observed tokens (Kn

obs, V n
obs)

and mask out the connection to the other tokens (Y n
mask and

Yn itself, dashed lines in Fig. 1).

kn, vn = Proj(wn + pn) qn = Proj(pn)

hn = Attention(Kn
obs, V

n
obs, qn)

Kn
obs = Concat ({km|Ym ∈ Y n

obs})
V n
obs = Concat ({vm|Ym ∈ Y n

obs})

2.3. Stacked DisCo Transformer

Unfortunately stacking DisCo transformer layers is not
straightforward. Suppose that we compute the nth position
in the jth layer from the prevous layer’s output as follows:

kjn, v
j
n = Proj(wn + hj−1n ) qjn = Proj(hj−1n )

hjn = Attention(Kn,j
obs , V

n,j
obs , q

j
n)

In this case, however, any cyclic relation between positions
will cause information leakage. Concretely, assume that
Y = [A,B] and N = 2. Suppose also that Y 1

obs = B and
Y 2
obs = A, and thus there is a cycle that position 1 can see B

and position 2 can see A. Then the output state at position 1
in the first layer h11 becomes a function of B:

h11(B) = Attention(k12(B), v12(B), q11)

Since position 2 can see position 1, the output state at posi-
tion 2 in the second layer h22 is computed by

h22 = Attention
(
k21(h

1
1(B)), v21(h

1
1(B)), q22

)
4For simplicity, here we omit fully-connected layers, layer-

norm, residual connections, and cross attention to the encoder.
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But h22 will be used to predict the token at position 2 i.e., B,
and this will clearly make the prediction problem degener-
ate. To avoid this cyclic leakage, we make keys and values
independent of the previous layer’s output hj−1n :

kjn, v
j
n = Proj(wn + pn) qjn = Proj(hj−1n )

hjn = Attention(Kn,j
obs , V

n,j
obs , q

j
n)

In other words, we decontextualize keys and values in
stacked DisCo layers.

2.4. Training Loss

We use a standard transformer as an encoder and stacked
DisCo layers as a decoder. For each Yn in Y where
|Y | = N , we uniformly sample the number of visible to-
kens from [0, N − 1], and then we randomly choose that
number of tokens from Y \Yn as Y n

obs, similarly to CMLMs
(Ghazvininejad et al., 2019). We optimize the negative log
likelihood loss from P (Yn|X,Y n

obs) (1 ≤ n ≤ N). Again
following CMLMs, we append a special token to the encoder
and project the vector to predict the target length for parallel
decoding. We add the negative log likelihood loss from this
length prediction to the loss from word predictions.

2.5. DisCo Objective as Generalization

We designed the DisCo transformer to compute conditional
probabilities at every position efficiently, but here we note
that the DisCo transformer can be readily used with other
training schemes in the literature. We can train an autore-
gressive DisCo transformer by always setting Y n

obs = Y<n.
XLNet (Yang et al., 2019b) is also a related variant of a
transformer that was introduced to produce general-purpose
contextual word representations. The DisCo transformer
differs from XLNet in two critical ways. First, XLNet
consists of separate context stream and query stream atten-
tion. This means that we need to double the amount of
expensive attention and fully connected layer computation
in the transformer. Another difference is that XLNet is only
trained to predict tokens in permuted order. The DisCo trans-
former can be trained for the permutation objective by set-
ting Y n

obs = {Yi|z(i) < z(n)} where z(i) indicates the rank
of the ith element in the new order. Baevski et al. (2019)
train their two tower model with the cloze objective again
for general-purpose pretraining. We can train our DisCo
transformer with this objective by setting Y n

obs = {Y6=n}.
The proposed DisCo objective provides generalization that
encompasses all of these special cases.

3. Inference Algorithms
In this section, we discuss inference algorithms for our
DisCo transformer. We first review mask-predict from prior
work as a baseline and introduce a new parallelizable infer-

ence algorithm, parallel easy-first (Alg. 1).

3.1. Mask-Predict

Mask-predict is an iterative inference algorithm introduced
in Ghazvininejad et al. (2019) to decode a conditional
masked language model (CMLM). The target length N is
first predicted, and then the algorithm iterates over two steps:
mask where it tokens with lowest probability are masked
and predict where those masked tokens are updated given
the other N − it tokens. The number of masked tokens it
decays from N with a constant rate over a fixed number of
iterations T . Specifically, at iteration t,

it =

⌊
N · T − t+ 1

T

⌋
Y t
obs = {Y t−1

j |j ∈ topk
n

(pt−1n , k = N − it)}

Y t
n, p

t
n =

{
(arg)maxw P (Yn = w|X,Y t

obs) if Y t
n 6∈ Y t

obs

Y t−1
n , pt−1n otherwise

This method is directly applicable to our DisCo transformer
by fixing Y n,t

obs regardless of the position n.

3.2. Parallel Easy-First

An advantage of the DisCo transformer over a CMLM is
that we can predict tokens in all positions conditioned on dif-
ferent context simultaneously. The mask-predict inference
can only update masked tokens given the fixed observed
tokens Y t

obs, meaning that we are wasting the opportunity
to improve upon Y t

obs and to take advantage of broader con-
text present in Y t

mask. We develop an algorithm, parallel
easy-first (Alg. 1), which makes predictions in all positions,
thereby benefiting from this property. Concretely, in the first
iteration, we predict all tokens in parallel given source text:

Y 1
n , pn = (arg)max

w
P (Yn = w|X)

Then, we get the easy-first order z where z(i) denotes the
rank of pi in descending order. At iteration t > 1, we update
predictions for all positions by

Y n,t
obs =

{
Y t−1
i |z(i) < z(n)

}
Y t
n, p

t
n = (arg)max

w
P
(
Yn = w|X,Y n,t

obs

)
Namely, we update each position given previous predictions
on the easier positions. In a later section, we will explore
several variants of choosing Y n,t

obs and show that this easy-
first strategy performs best despite its simplicity.

3.3. Length Beam

Following Ghazvininejad et al. (2019), we apply length
beam. In particular, we predict top K lengths from the distri-
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Algorithm 1 Parallel Easy-First with Length Beam
Source sentence: X
Predicted lengths: N1, · · · , NK

Max number of iterations: T
for k ∈ {1, 2, ...,K} do

for n ∈ {1, 2, ..., Nk} do
Y 1,k
n , pkn = (arg)maxw P (yn = w|X)

end for
Get the easy-first order zk by sorting pk and let zk(i)
be the rank of the ith position.

end for
for t ∈ {2, ..., T} do

for k ∈ {1, ...,K} do
for n ∈ {1, 2, ..., Nk} do

Y n,t
obs = {Y t−1,k

i |zk(i) < zk(n)}
Y t,k
n , pt,kn = (arg)max

w
P
(
Yn = w|X,Y n,t

obs

)
end for

end for

k∗ = argmax
k

Nk∑
n=1

log
(
pt,kn

)
/Nk

if Y t−1,k∗
= Y t,k∗

then return Y t,k∗

end for
return Y T,k∗

bution in length prediction and run parallel easy-first simul-
taneously. In order to speed up decoding, we terminate if the
one with the highest average log score

∑N
n=1 log(p

t
n)/N

converges. It should be noted that for parallel easy-first,
Y t = Y t−1 means convergence because Y n,t

obs = Y n,t+1
obs

for all positions n while mask-predict may keep updating
tokens even after because Y t

obs changes over iterations. See
Alg. 1 for full pseudo-code. Notice that all for-loops are par-
allelizable except the one over iterations t. In the subsequent
experiments, we use length beam size of 5 (Ghazvinine-
jad et al., 2019) unless otherwise noted. In Sec. 5.2, we
will illustrate that length beam facilitates decoding both the
CMLM and DisCo transformer.

4. Experiments
We conduct extensive experiments on standard machine
translation benchmarks. We demonstrate that our DisCo
transformer with the parallel easy-first inference achieves
comparable performance to, if not better than, prior work
on non-autoregressive machine translation with substan-
tial reduction in the number of sequential steps of trans-
former computation. We also find that our DisCo trans-
former achieves more pronounced improvement when bitext
training data are large, getting close to the performance of

autoregressive models.

4.1. Experimental Setup

Benchmark datasets We evaluate on 7 directions from
four standard datasets with various training data sizes:
WMT14 EN-DE (4.5M pairs), WMT16 EN-RO (610K
pairs), WMT17 EN-ZH (20M pairs), and WMT14 EN-FR
(36M pairs, en→fr only). These datasets are all encoded
into subword units by BPE (Sennrich et al., 2016).5 We
use the same preprocessed data and train/dev/test splits as
prior work for fair comparisons (EN-DE: Vaswani et al.,
2017; EN-RO: Lee et al., 2018; EN-ZH: Hassan et al., 2018;
Wu et al., 2019; EN-FR: Gehring et al., 2017; Ott et al.,
2018). We evaluate performance with BLEU scores (Pa-
pineni et al., 2002) for all directions except that we use
SacreBLEU (Post, 2018)6 in en→zh again for fair compar-
ison with prior work (Ghazvininejad et al., 2019). For all
autoregressive models, we apply beam search with b = 5
(Vaswani et al., 2017; Ott et al., 2018) and tune length
penalty of α ∈ [0.0, 0.2, · · · , 2.0] in validation. For parallel
easy-first, we set the max number of iterations T = 10 and
use T = 4, 10 for constant-time mask-predict.

4.2. Baselines and Comparison

There has been a flurry of recent work on non-autoregressive
machine translation (NAT) that finds a balance between par-
allelism and performance. Performance can be measured
using automatic evaluation such as BLEU scores (Papineni
et al., 2002). Latency is, however, challenging to compare
across different methods. For models that have an autore-
gressive component (e.g., Kaiser et al., 2018; Ran et al.,
2019), we can speed up sequential computation by caching
states. Further, many of prior NAT approaches generate
varying numbers of translation candidates and rescore them
using an autoregressive model. The rescoring process typ-
ically costs overhead of one parallel pass of a transformer
encoder followed by a decoder. Given this complexity
in latency comparison, we highlight two state-of-the-art
iteration-based NAT models whose latency is comparable
to our DisCo transformer due to the similar model structure.
See Sec. 6 for descriptions of more work on NAT.

CMLM As discussed earlier, we can generate a transla-
tion with mask-predict from a CMLM (Ghazvininejad et al.,
2019). We can directly compare our DisCo transformer
with this method by the number of iterations required.7 We

5We run joint BPE on all language pairs except EN-ZH.
6SacreBLEU hash: BLEU+case.mixed+lang.en-

zh+numrefs.1+smooth.exp+test.wmt17+tok.zh+version.1.3.7.
7Caching contextless key and value computation in the DisCo

transformer gives us a slight speedup, but it is relatively minor as
compared to expensive attention and fully connected computation.
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Table 1. The performance of non-autoregressive machine translation methods on the WMT14 EN-DE and WMT16 EN-RO test data. The
Step columns indicate the average number of sequential transformer passes. Shaded results use a small transformer (dmodel = dhidden =
512). Our EN-DE results show the scores after conventional compound splitting (Luong et al., 2015; Vaswani et al., 2017).

Model en→de de→en en→ro ro→en
n: # rescored candidates Step BLEU Step BLEU Step BLEU Step BLEU
Gu et al. (2018) (n = 100) 1 19.17 1 23.20 1 29.79 1 31.44
Wang et al. (2019) (n = 9) 1 24.61 1 28.90 – – – –
Li et al. (2019) (n = 9) 1 25.20 1 28.80 – – – –
Ma et al. (2019) (n = 30) 1 25.31 1 30.68 1 32.35 1 32.91
Sun et al. (2019) (n = 19) 1 26.80 1 30.04 – – – –
Ran et al. (2019) 1 26.51 1 31.13 1 31.70 1 31.99
Shu et al. (2020) (n = 50) 1 25.1 – – – – – –
Iterative NAT Models
Lee et al. (2018) 10 21.61 10 25.48 10 29.32 10 30.19
Ghazvininejad et al. (2019) (CMLM) 4 25.94 4 29.90 4 32.53 4 33.23

10 27.03 10 30.53 10 33.08 10 33.31
Gu et al. (2019b) (LevT) 7+ 27.27 – – – – 7+ 33.26
Our Implementations
CMLM + Mask-Predict 4 26.73 4 30.75 4 33.02 4 33.27
CMLM + Mask-Predict 10 27.39 10 31.24 10 33.33 10 33.67
DisCo + Mask-Predict 4 25.83 4 30.15 4 32.22 4 32.92
DisCo + Mask-Predict 10 27.06 10 30.89 10 32.92 10 33.12
DisCo + Easy-First 4.82 27.34 4.23 31.31 3.29 33.22 3.10 33.25
AT Models
Vaswani et al. (2017) (base) N 27.3 – – – – – –
Vaswani et al. (2017) (large) N 28.4 – – – – – –
Our Implementations
AT Transformer Base (EN-RO teacher) N 27.38 N 31.78 N 34.16 N 34.46
AT Transformer Base + Distillation N 28.24 N 31.54 – – – –
AT Transformer Large (EN-DE teacher) N 28.60 N 31.71 – – – –

provide results obtained by running their code.8

Levenshtein Transformer Levenshtein transformer
(LevT) is a transformer-based iterative model for parallel
sequence generation (Gu et al., 2019b). Its iteration
consists of three sequential steps: deletion, placeholder
prediction, and token prediction. Unlike the CMLM with
the constant-time mask-predict inference, decoding in
LevT terminates adaptively under certain condition. Its
latency is roughly comparable by the average number of
sequential transformer runs. Each iteration consists of three
transformer runs except that the first iteration skips the
deletion step. See Gu et al. (2019b) for detail.

Hyperparameters We generally follow the hyperparame-
ters for a transformer base (Vaswani et al., 2017; Ghazvinine-
jad et al., 2019): 6 layers for both the encoder and decoder,
8 attention heads, 512 model dimensions, and 2048 hidden
dimensions. We sample weights from N (0, 0.02), initial-

8https://github.com/facebookresearch/
Mask-Predict

ize biases to zero, and set layer normalization parameters
to β = 0, γ = 1 (Devlin et al., 2019). For regularization,
we tune the dropout rate from [0.1, 0.2, 0.3] based on dev
performance in each direction, and apply weight decay with
0.01 and label smoothing with ε = 0.1. We train batches
of approximately 128K tokens using Adam (Kingma & Ba,
2015) with β = (0.9, 0.999) and ε = 10−6. The learning
rate warms up to 5 · 10−4 in the first 10K steps, and then
decays with the inverse square-root schedule. We train all
models for 300K steps apart from en→fr where we make
500K steps to account for the data size. We measure the dev
BLEU score at the end of each epoch to avoid stochasticity,
and average the 5 best checkpoints to obtain the final model.
We use 16 Telsa V100 GPUs and accelerate training by
mixed precision floating point (Micikevicius et al., 2018),
and implement all models with fairseq (Ott et al., 2019).

Distillation Similar to previous work on non-
autoregressive translation (e.g., Gu et al., 2018; Lee
et al., 2018), we apply sequence-level knowledge dis-
tillation (Kim & Rush, 2016) by training every model

https://github.com/facebookresearch/Mask-Predict
https://github.com/facebookresearch/Mask-Predict


Non-autoregressive Machine Translation with Disentangled Context Transformer

in all directions on translations produced by a standard
left-to-right transformer model (transformer large for
EN-DE, EN-ZH, and EN-FR and base for EN-RO). We
also present results obtained from training a standard
autoregressive base transformer on the same distillation
data for comparison. We assess the impact of distillation
in Sec. 5.1 and demonstrate that distillation is still a key
component in our non-autoregressive models.

4.3. Results and Discussion

Seen in Table 1 are the results in the four directions from the
WMT14 EN-DE and WMT16 EN-RO datasets. First, our
re-implementations of CMLM + Mask-Predict outperform
Ghazvininejad et al. (2019) (e.g., 31.24 vs. 30.53 in de→en
with 10 steps). This is probably due to our tuning on the
dropout rate and weight averaging of the 5 best epochs based
on the validation BLEU performance (Sec. 4.1).

Our DisCo transformer with the parallel easy-first inference
achieves at least comparable performance to the CMLM
with 10 steps despite the significantly fewer steps on aver-
age (e.g., 4.82 steps in en→de). The one exception is ro→en
(33.25 vs. 33.67), but DisCo + Easy-First requires only 3.10
steps, and CMLM + Mask-Predict with 4 steps achieves
similar performance of 33.27. The limited advantage of our
DisCo transformer on the EN-RO dataset suggests that we
benefit less from the training efficiency of the DisCo trans-
former on the small dataset (610K sentence pairs). DisCo +
Mask-Predict generally underperforms DisCo + Easy-First,
implying that the mask-predict inference, which fixes Y n

obs

across all positions n, fails to utilize the flexibility of the
DisCo transformer. DisCo + Easy-First also accomplishes
significant reduction in the average number of steps as com-
pared to the adaptive decoding in LevT (Gu et al., 2019b)
while performing competitively. As discussed earlier, each
iteration in inference on LevT involves three sequential
transformer runs, which undermine the latency improve-
ment.

Overall, our implementations compare well with other NAT
models from prior work. We achieve competitive perfor-
mance to the standard autoregressive models with the same
transformer base configuration on the EN-DE dataset except
that the autoregressive model with distillation performs com-
parably to the transformer large teacher in en→de (28.24 vs.
28.60). Nonetheless, we still see a large gap between the au-
toregressive teachers and our NAT results in both directions
from EN-RO, illustrating a limitation of our remedy for the
trade-off between decoding parallelism and performance.

Tables 2 and 3 show results from the EN-ZH and EN-FR
datasets where the bitext data are larger (20M and 36M
sentence pairs). In both cases we see similar (yet more pro-
nounced) patterns to the EN-DE and EN-RO experiments.
Particularly noteworthy is that DisCo with the parallel easy-

first inference and dropout tuning yields 34.63 points, a gain
of 1.4 BLEU improvement over Ghazvininejad et al. (2019)
in en→zh despite the average of 5.44 steps.

Table 2. WMT17 EN-ZH test results.

Model en→zh zh→en
Step BLEU Step BLEU

Ghazvininejad et al. 4 32.63 4 21.90
(2019) 10 33.19 10 23.21
Our Implementations
CMLM + Mask-Predict 4 33.58 4 22.57
CMLM + Mask-Predict 10 34.24 10 23.76
DisCo + Mask-Predict 4 33.61 4 22.42
DisCo + Mask-Predict 10 34.51 10 23.68
DisCo + Easy-First 5.44 34.63 5.90 23.83
AT Transformer Base N 34.74 N 23.77
+ Distillation N 35.09 N 24.53
AT Trans. Large (teacher) N 35.01 N 24.65

Table 3. WMT14 EN-FR test results.

Model en→fr Train
Step BLEU Time

CMLM + Mask-Predict 4 40.21 53 hCMLM + Mask-Predict 10 40.55
DisCo + Mask-Predict 4 39.59

37 hDisCo + Mask-Predict 10 40.27
DisCo + Easy-First 4.29 40.66
Vaswani et al. (2017) (base) N 38.1 –
Vaswani et al. (2017) (large) N 41.8 –
Ott et al. (2018) (teacher) N 43.2 –
AT Transformer Base N 41.27 28 h
+ Distillation N 42.03 28 h

4.4. Decoding Speed

We saw the the DisCo transformer with the parallel easy-first
inference achieves competitive performance to the CMLM
while reducing the number of iterations. Here we compare
them in terms of the wall-time speedup with respect to the
standard autoregressive model of the same base configura-
tion (Fig. 2). For each decoding run, we feed one sentence
at a time and measure the wall time from when the model
is loaded until the last sentence is translated, following the
setting in Gu et al. (2019b). All models are implemented
in fairseq (Ott et al., 2019) and run on a single Nvidia
V100 GPU. We can confirm that the average number of
iterations directly translates to decoding time; the average
number of iterations of the DisCo transformer with T = 10
was 5.44 and the measured speedup lies between T = 5, 6
of the CMLM. Note that fairseq implements effcient
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Figure 2. Relative decoding speedup on the en→zh test data with
respect to the standard autoregressive model (indicated as N). T
and b denote the (max) number of iterations and beam size respec-
tively. The length beam size is all set to 5.

decoding of autoregressive models by caching hidden states.
The average length of generated sentences in the autoregres-
sive model was 25.16 (4.6x steps compared to 5.44 steps),
but we only gained a threefold speedup from DisCo.

5. Analysis and Ablations
In this section, we give an extensive analysis on our appo-
rach along training and inference dimensions.

5.1. Training

Training Efficiency In Sec. 2.1, we discussed the funda-
mental inefficiency of CMLM training—a CMLM model is
trained to only predict a subset of the target words. DisCo
addresses this problem by its architecture that allows for
predicting every word given a randomly chosen subset of
the target words. Seen in Fig. 3 are results on the en→de
test data with varying batch sizes. We can see that DisCo
is more robust to smaller batch sizes, supporting our claim
that it provides more efficient training.

Distillation We assess the effects of knowledge distilla-
tion across different models and inference configurations
(Table 4). Consistent with previous models (Gu et al., 2018;
Zhou et al., 2020), we find that distillation facilitates all
of the non-autoregressive models. Moreover, the DisCo
transformer benefits more from distillation compared to the
CMLM under the same mask-predict inference. This is in
line with Zhou et al. (2020) who showed that there is cor-
relation between the model capacity and distillation data
complexity. The DisCo transformer uses contextless keys
and values, resulting in reduced capacity. Autoregressive
translation also improves with distillation from a large trans-
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Figure 3. EN→DE test results with varying batch size.

former, but the difference is relatively small. Finally, we can
observe that the gain from distillation decreases as we incor-
porate more global information in inference (more iterations
in NAT cases and larger beam size in AT cases).

Table 4. Effects of distillation across different models and infer-
ence. All results are BLEU scores from the dev data. T and b
denote the max number of iterations and beam size respectively.

en→de ro→en
Model T raw dist. ∆ raw dist. ∆
CMLM + MaskP 4 22.7 25.5 2.8 33.2 34.8 1.6
CMLM + MaskP 10 24.5 25.9 1.4 34.5 34.9 0.4
DisCo + MaskP 4 21.4 24.6 3.2 32.3 34.1 1.8
DisCo + MaskP 10 23.6 25.3 1.7 33.4 34.3 0.9
DisCo + EasyF 10 23.9 25.6 1.7 34.0 35.0 1.0
AT Base (b = 1) N 25.5 26.4 0.9 – – –
AT Base (b = 5) N 26.1 26.8 0.7 – – –

AT with Contextless KVs We saw that a decoder with
contextless keys and values can still retain performance in
non-autoregressive models. Here we use a decoder with
contextless keys and values in autoregressive models. The
results (Table 5) show that it is able to retain performance
even in autoregressive models regardless of distillation, sug-
gesting further potential of our approach.

Table 5. Test results (BLEU) from AT with contextless keys and
values.

AT en→de de→en ro→en
Decoder raw dist. raw dist. raw
Contextless 27.09 27.86 30.91 31.46 34.25
Original 26.85 27.69 31.33 31.09 34.46
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Easy-First Training So far we have trained our models to
predict every word given a random subset of the other words.
But this training scheme yields a gap between training and
inference, which might harm the model. We attempt to
make training closer to inference by training the DisCo
transformer in the easy-first order. Similarly to the inference,
we first predict the easy-first order by estimating P (Yn|X)
for all n. Then, use that order to determine Y n

obs.9 The
overall loss will be the sum of the negative loglikelihood of
these two steps. Seen in Table 6 are the results on the dev
sets of en→de and ro→en. In both directions, this easy-first
training does not ameliorate performance, suggesting that
randomness helps the model. Notice also that the average
number of iterations in inference decreases (4.03 vs. 4.29,
2.94 vs. 3.17). The model gets trapped in a sub-optimal
solution with reduced iterations due to lack of exploration.

Table 6. Dev results from bringing training closer to inference.

en→de ro→en
Training Variant Step BLEU Step BLEU
Random Sampling 4.29 25.60 3.17 34.97
Easy-First Training 4.03 24.76 2.94 34.96

5.2. Inference

Alternative Inference Algorithms Here we compare var-
ious decoding strategies on the DisCo transformer (Table 7).
Recall in the parallel easy-first inference (Sec. 3.2), we find
the easy-first order by sorting the probabilities in the first it-
eration and compute each position’s probability conditioned
on the easier positions from the previous iteration. We eval-
uate two alternative orderings: left-to-right and right-to-left.
We see that both of them yield much degraded performance.
We also attempt to use even broader context than paral-
lel easy-first by computing the probability at each position
based on all other positions (all-but-itself, Y n,t

obs = Y t−1
6=n ).

We again see degraded performance, suggesting that cyclic
dependency (e.g., Y t−1

m ∈ Y n,t
obs and Y t−1

n ∈ Y m,t
obs ) breaks

consistency. For example, a model can have two output
candidates: “Hong Kong” and “New York” (Zhang et al.,

9This training process can be seen as the hard EM algorithm
where the easy-first order is a latent variable.

Table 7. Dev results with different decoding strategies.

en→de ro→en
Inference Strategy Step BLEU Step BLEU
Left-to-Right Order 6.80 21.25 4.86 33.87
Right-to-Left Order 6.79 20.75 4.67 34.38
All-But-Itself 6.90 20.72 4.80 33.35
Parallel Easy-First 4.29 25.60 3.17 34.97
Mask-Predict 10 25.34 10 34.54

2020). In this case, we might end up producing “Hong York”
due to this cyclic dependency. These results suggest that the
easy-first ordering we introduced is a simple yet effective
approach.

Example Translation Seen in Fig. 4 is a translation exam-
ple in de→en when decoding the same DisCo transformer
with the mask-predict or parallel easy-first inference. In
both algorithms, iterative refinement resolves structural in-
consistency, such as repetition. Parallel easy-first succeeds
in incorporating more context in early stages whereas mask-
predict continues to produce inconsistent predictions (“my
my activities”) until more context is available later, resulting
in one additional iteration to land on a consistent output.

Length Beam Fig. 5 shows performance of the CMLM
and DisCo transformer with varying size of length beam. All
cases benefit from multiple candidates with different lengths
to a certain point, but DisCo + Easy-First improves most.
This can be because parallel easy-first relies on the easy-
first order as well as the length, and length beam provides
opportunity to try multiple orderings.

Iterations vs. Length We saw that parallel easy-first in-
ference substantially reduced the number of required itera-
tions. We hypothesize that the algorithm effectively adapts
the number of iterations based on the difficulty, which is
reminiscent of a dynamic halting mechanism (Graves, 2016;
Dehghani et al., 2019). To see this, we compare the number
of required iterations and the generated sentence length as
a proxy for difficulty (Fig. 6). Similarly to the experiments
above, we set the max iteration and length beam to be 10
and 5 respectively. While the number of required iterations
vary to a certain degree, we see that long sentences tend to
require more iterations to converge.

6. Related and Future Work
In addition to the work discussed above, prior and concur-
rent work on non-autoregressive translation developed ways
to mitigate the trade-off between decoding parallelism and
performance. As in this work, several prior and concurrent
work proposed methods to iteratively refine (or insert) out-
put predictions (Mansimov et al., 2019; Stern et al., 2019;
Gu et al., 2019a; Chan et al., 2019a;b; Ghazvininejad et al.,
2020b; Li et al., 2020; Saharia et al., 2020). Other ap-
proaches include adding a lite autoregressive module to
parallel decoding (Kaiser et al., 2018; Sun et al., 2019;
Ran et al., 2019), partially decoding autoregressively (Stern
et al., 2018; 2019), rescoring output candidates autoregres-
sively (e.g., Gu et al., 2018), mimicking hidden states of
an autoregressive teacher (Li et al., 2019), training with
different objectives than vanilla negative log likelihood (Li-
bovický & Helcl, 2018; Wang et al., 2019; Shao et al., 2020;
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X: Als Präsident würde ich meine Unternehmungen jedoch ganz einstellen.
Y: And if I became president, then I would end my business activity.
t Mask-Predict t Parallel Easy-First
1 As Pres. as Pres. , I would stop stop my doing altogether . 1 As Pres. as Pres. , I would stop stop my doing altogether .
2 However , as Pres. , I would stop my my doing altogether . 2 As , , Pres. , I would stop doing my activities altogether .
3 However , as Pres. , I would stop my my activities altogether . 3 However , as however , I would stop doing my business altogether .
4 However , as Pres. , I would stop my my activities altogether . 4 However , as Pres. , I would stop doing my business altogether
5 However , as Pres. , I would stop doing my activities altogether .
1 As Pres. as Pres. , I would stop stop my doing altogether . 1 As Pres. as Pres. , I would stop stop my doing altogether .
2 However , as Pres. , I would stop my my doing altogether . 2 As , , Pres. , I would stop doing my activities altogether .

3 However , as Pres. , I would stop my my activities altogether . 1 As Pres. as Pres. , I would stop stop my doing altogether .
4 However , as Pres. , I would stop my my activities altogether . 2 As , , Pres. , I would stop doing my activities altogether .

Figure 4. An example of inference iterations in de→en from the dev set when max iteration T is 5. (Pres. stands for President). We show
how each of the underscored words were generated in the bottom section. Prediction is conditioned on highlighted tokens.
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Figure 5. EN→FR dev results with varying length beam size.

Ghazvininejad et al., 2020a; Li et al., 2020), reordering in-
put sentences (Ran et al., 2019), generating with an energy-
based inference network (Tu et al., 2020), training on addi-
tional data from an autoregressive model (Zhou & Keung,
2020), and modeling with latent variables (Ma et al., 2019;
Shu et al., 2020).

While this work took iterative decoding methods, our DisCo
transformer can be combined with other approaches for
efficient training. For example, Li et al. (2019) trained
two separate non-autoregressive and autoregressive models,
but it is possible to train a single DisCo transformer with
both autoregressive and random masking and use hidden
states from autoregressive masking as a teacher. We leave
integration of the DisCo transformer with more approaches
to non-autoregressive translation for future.

We also note that our DisCo transformer can be used for
general-purpose representation learning. In particular, Liu
et al. (2019) found that masking different tokens in every
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Figure 6. # Refinement steps vs. target length on the WMT14
en→de test data.

epoch outperforms static masking in BERT (Devlin et al.,
2019). Our DisCo transformer would allow for making a
prediction at every position given arbitrary context, provid-
ing even more flexibility for large-scale pretraining.

7. Conclusion
We presented the DisCo transformer that predicts every
word in a sentence conditioned on an arbitrary subset of
the other words. We developed an inference algorithm that
takes advantage of this efficiency and further speeds up
generation without loss in translation quality. Our results
provide further support for the claim that non-autoregressive
translation is a fast viable alternative to autoregressive trans-
lation. Nonetheless, a discrepancy still remains between
autoregressive and non-autoregressive performance when
knowledge distillation from a large transformer is applied to
both. We will explore ways to narrow this gap in the future.
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