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A. How Jacobian Matrix Forms a Constantly Scaled Orthonormal System
In this appendix, we derive equations corresponding to Eqs. (13) and (14) for the case of M > N . The guiding principle
of derivation is the same as in Section 4.2: examining the condition to minimize the expected loss. As in Section 4.2, we
assume that the encoder and the decoder are trained enough in terms of reconstruction error so that x ' x̂ holds and the
second term λ1h (D (x, x̂)) in Eq. (7) can be ignored.

We assume that the Jacobian matrix J(z) = ∂x/∂z = ∂gφ(z)/∂z ∈ RM×N is full-rank at every point z ∈ RN as
in Section 4.2. Based on Eq. (6), Eq. (4) and Taylor expansion, the difference x̆ − x̂ can be approximated by έ =∑N
i=1 εi(∂x/∂zi) ∈ RM . As in Section 4.2, the expectation of the third term in Eq. (7) is re-written as follows:

E
ε∼Pε(ε)

[
έ>A(x)έ

]
= σ2

N∑
j=1

(
∂x

∂zj

)>
A(x)

(
∂x

∂zj

)
. (20)

This equation has the same form as Eq. (10) except the differences in dimensions: ∂x/∂zj ∈ RM andA(x) ∈ RM×M in
Eq. (20) while ∂x/∂zj ∈ RN andA(x) ∈ RN×N in Eq. (10). We have essentially no difference from Section 4.2 so far.

However, from this point, we cannot follow the same way we used in Section 4.2 to derive the equation corresponding
to Eq. (13), due to the mismatch of M and N . Yet, as we show below, step-by-step modifications lead us to the same
conclusion.

Firstly, note that we can always regard gφ as a composition function by inserting a smooth invertible function ρ : RN → RN
and its inverse as follows:

gφ(z) = gφ(ρ−1(ρ(z))) = g̃φ(ρ(z)). (21)

Let y ∈ RN be an auxiliary variable defined by y = ρ(z). Due to the chain rule of differentiation, ∂x/∂z can be represented
as

∂x

∂z
=
∂x

∂y

∂y

∂z
= GB, (22)

where we defineG andB asG = ∂x/∂y ∈ RM×N ,B = (b1, . . . , bN ) = ∂z/∂y ∈ RN×N .

Since z and y have the same dimension N , the relationship between Pz(z) and Py(y) is described by |det(B)| (the
absolute value of Jacobian determinant), which corresponds to the volume change under the function ρ, as follows:

Pz(z) = |det(B)|Py(y). (23)

Thus the expectation of L in Eq. (7) can be approximated as follows:

E
ε∼Pε(ε)

[L] ' − log(|det(B)|)− log(Py(y))) + λ2σ
2

 N∑
j=1

(Gbj)
>
A(x) (Gbj)

 . (24)

To derive the minimization condition of the expected loss, we need further preparations. Let b̃ij denote the cofactor of
matrixB with regard to the element bij . We define a vector b̃j as follows:

b̃j =


b̃1j
b̃2j
...

b̃Nj

 . (25)

The following equation is a property of the cofactor (Strang, 2006):

b>i b̃j =

N∑
k=1

bkib̃kj = δij det(B). (26)
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In addition, since |det(B)| = (det(B)2)
1
2 = ((

∑N
k=1 bkj b̃kj)

2)
1
2 , we have the following result:

∂|det(B)|
∂bij

=
1

2
((

N∑
k=1

bkj b̃kj)
2)−

1
2 · 2(

N∑
k=1

bkj b̃kj)b̃ij =
det(B)

|det(B)|
b̃ij . (27)

Therefore, the following equations hold:

∂ log(|det(B)|)
∂bij

=
1

|det(B)|
∂|det(B)|

∂bij
=

1

|det(B)|
det(B)

|det(B)|
b̃ij =

det(B)

det(B)2
b̃ij =

1

det(B)
b̃ij , (28)

∂ log(|det(B)|)
∂bj

=
1

det(B)
b̃j . (29)

By differentiating the right hand side of Eq. (24) by bj and setting the result to zero, the following equation is derived as a
condition to minimize the expected loss:

2λ2σ
2G>A(x)Gbj =

1

det(B)
b̃j . (30)

Here we used Eq. (29). By multiplying b>i to this equation from the left and dividing the result by 2λ2σ
2, we have

(G bi)
>
A(x)(G bj) =

1

2λ2σ2

1

det(B)
b>i b̃j (31)

=
1

2λ2σ2
δij , (32)

where the second line follows from Eq. (26). SinceGbi = (∂x/∂y)(∂y/∂zi) = ∂x/∂zi andGbj = (∂x/∂y)(∂y/∂zj) =
∂x/∂zj , we can come back to the expression with the original variables x and z and reach the following conclusion:(

∂x

∂zi

)>
A(x)

(
∂x

∂zj

)
=

1

2λ2σ2
δij . (33)

Here the dimensions are different from Eq. (13) (∂x/∂zi, ∂x/∂zj ∈ RM andA(x) ∈ RM×M ) but the meaning is same:
the columns of the Jacobian matrix of two spaces ∂x/∂z1, . . . , ∂x/∂zN form a constantly-scaled orthonormal system with
respect to the inner product defined byA(x) at every point.

Now we can derive the second conclusion in the exactly same manner as in Section 4.2, although the dimensions are different
(vx,wx ∈ RM ,A(x) ∈ RM×M and vz,wz ∈ RN ):

vxA(x)wx =

N∑
i=0

N∑
j=0

(
∂x

∂zi
vzi

)>
A(x)

(
∂x

∂zj
wzj

)

=
1

2λ2σ2

N∑
i=0

vziwzi =
1

2λ2σ2
vz ·wz, (34)

which means the map is isometric in the sense of Eq. (2).

B. Product of Singular Values as a Generalization of the Absolute Value of Jacobian
Determinant

In this appendix, we show the following two arguments we stated in the last part of Section 4.2: i) when a region in RN is
mapped to RM by the decoder function, the ratio of the volume of the original region and its corresponding value is equal to
the product of singular values of Jacobian matrix, ii) this quantity can be expressed byA(x) under a certain condition. The
Jacobian matrix J(z) = ∂x/∂z = ∂gφ(z)/∂z ∈ RM×N is assumed to be full-rank as in Section 4.2 and Appendix A.

Let’s consider the singular value decomposition J(z) = U(z)Σ(z)V (z)>, where U(z) ∈ RM×M ,Σ(z) ∈
RM×N ,V (z) ∈ RN×N . Note that {V:,j(z)}Nj=1 is an orthonormal basis of RN and {U:,j(z)}Mj=1 is an orthonormal
basis of RM with respect to the standard inner product.
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Consider an N -dimensional hypercube c specified by {εV:,j(z)}Nj=1 (ε > 0) attached to z ∈ RN . When ε is small, the
effect of the decoder function on {εV:,j(z)}Nj=1 is approximated by J(z) = U(z)Σ(z)V (z)> and thus the mapped region
of c in RM is approximated by a region c̃ specified by {εJ(z)V:,j(z)}Nj=1 = {εsj(z)U:,j(z)}Nj=1, where s1(z) ≥ · · · ≥
sN (z) > 0 are the singular values of J(z) (remember full-rank assumption we posed).

Therefore, while the volume of the original hypercube c is εN , the corresponding value of c̃ ∈ RM is εNJsv(z), where we
define Jsv(z) as Jsv(z) = s1(z) · · · sN (z), that is, the product of the singular values of the Jacobian matrix J(z). This
relationship holds for any z ∈ RN and we can take arbitrary small ε. Thus, the ratio of the volume of an arbitrary region in
RN and its corresponding value in RM is also Jsv(z)∗.

Let’s move to the second argument. Note that Eq. (33) can be rewritten in the following form since J(z) =
(∂x/∂z1, . . . , ∂x/∂zN ):

J(z)>A(x)J(z) =
1

2λ2σ2
IN . (35)

Let 0 < α1(A(x)) ≤ · · · ≤ αN (A(x)) ≤ · · · ≤ αM (A(x)) be the eigenvalues ofA(x). If the condition

[O(M−N)×N IN ]U(z)>A(x)U(z)

[
IN

O(M−N)×N

]
= O(M−N)×N (36)

holds for all z ∈ RN , the following relation holds for Jsv(z):

Jsv(z) =

(
1

2λ2σ2

)N
2
(
α1(A(x)) · · ·αN (A(x))

)− 1
2

. (37)

HereO(M−N)×N ∈ R(M−N)×N denotes the matrix consisting of zeros.

To see this, let us first define S(z) ∈ RN×N as S(z) = diag(s1(z), . . . , sN (z)). Then J(z) =
U(z)>[S(z)O(M−N)×N ]>V (z). We obtain the following equation by substituting this expression of J(z) to Eq. (35):

V (z)[S(z)O(M−N)×N ]U(z)>A(x)U(z)

[
S(z)

O(M−N)×N

]
V (z)> =

1

2λ2σ2
IN . (38)

Furthermore, we get the following equation by multiplying Eq. (38) by S(z)−1V (z)> from the left and V (z)S(z)−1 from
the right:

[IN O(M−N)×N ]U(z)>A(x)U(z)

[
IN

O(M−N)×N

]
=

1

2λ2σ2
S(z)−2 (39)

This means U(z)>A(x)U(z) has the following form:

U(z)>A(x)U(z) =

[
1

2λ2σ2S(z)−2 C

C> D

]
, (40)

where C ∈ RN×(M−N) and D ∈ R(M−N)×(M−N). Note that the standard basis vectors of RN , namely, e(1) =
[1 · · · 0]>, . . . , e(N) = [0 · · · 1]> ∈ RN , are the eigenvectors of 1

2λ2σ2S(z)−2 and corresponding eigenvalues are
1

2λ2σ2s1(z)2 < · · · < 1
2λ2σ2sN (z)2 . According to the expression (40), the condition (36) means C> = O(M−N)×N ,

and thus C>e(j) = 0 for all j = 1, . . . N in this situation. Note also that the eigenvalues of U(z)>A(x)U(z) coincide
with those ofA(x). Therefore, if Eq. (36) holds, we have

α1(A(x)) =
1

2λ2σ2s1(z)2
, . . . , αN (A(x)) =

1

2λ2σ2sN (z)2
, (41)

due to the inclusion principle (Horn & Johnson, 2013). Eq. (37) follows from Eq. (41).

As mentioned before, when the metric function is square of L2 norm,A(x) is the identity matrix IM . In this case, Eq. (36)
holds and we have Jsv(z) = (1/2λ1σ

2)N/2†.

∗Consider covering the original region in RN by infinitesimal hypercubes.
†This can also be directly confirmed by taking determinants of Eq. (35) after substituting A(x) = IM .
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C. Effect of h(x)
In this section, the effects of h(d) is discussed. By training the encoder and the decoder to be exact inverse functions of each
other regarding the input data, the mapping becomes much rigidly isometric. Actually, for this purpose, it is important to
choose h(d) appropriately depending on metric function.

In this appendix we evaluate the behaviors of encoder and decoder in a one dimensional case using simple parametric linear
encoder and decoder. Lex x be a one dimensional data with the normal distribution:

Encoder

z=ax
Decoder

=bz

Probability of z

𝑃𝑧(𝑧)～ 𝑁 0, 𝑎𝜎𝑥
2

(Assume𝑃𝑧,𝜓 𝑧 = 𝑃𝑧(𝑧))

𝑥 ∈ 𝑅
𝑥~𝑁(0, 𝜎𝑥

2)
𝑥 𝑧

ො𝑥

h (|𝑥 − ො𝑥|2)

𝑎, 𝑏 = arg 𝑚𝑖𝑛(𝐸𝑥,𝜖 − log 𝑃𝑧,𝜓 𝑧 + 𝜆1 ℎ |𝑥 − ො𝑥|2 + 𝜆2|�ු� − ෬𝑥|2 )

Decoder

=b(z+ε)
෬𝑥

|𝑥 − ෬𝑥|2

𝜖~𝑁(0,1)

+

Figure 9. Simple encoder/decoder model to evaluate h(d)

x ∈ R,
x ∼ N (0, σx

2).

Lex z be a one dimensional latent variable. Following two linear encoder and decoder are provided with parameter a and b:

z = ax,

x̂ = bz.

Due to the above relationship, we have

Pz(z) = N (0, (aσx)2). (42)

Here, square error is used as metrics function D(x, y). The distribution of noise ε added to latent variable z is set to N(0, 1).
Then x̆ is derived by decoding z + ε as:

D(x, y) = |x− y|2,
ε ∼ N (0, 1),

x̆ = b(z + ε).

For simplicity, we assume parametric PDF Pz,ψ(z) is equal to the real PDF P (z). Because the distribution of latent variable
z follows N(0, (aσx)2), the entropy of z can be expressed as follows:

H(z) =

∫
−Pz(z) log(Pz(z))dz

= log(a) + log(σx
√

2πe). (43)

Using these notations, Eqs. (7) and (9) can be expressed as follows:

L = Ex∼N (0,σx
2), ε∼N (0,1)[− logPz(z) + λ1h(|x− x̂|2) + λ2|x̂, x̆|2]

= log(a) + log(σx
√

2πe) + λ1Ex∼N(0,σx
2)

[
h(|x− x̂|2)

]
+ λ2b

2. (44)
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At first, the case of h(d) = d is examined. By applying h(d) = d, Eq. (44) can be expanded as follows:

L = log(a) + log(σx
√

2πe) + λ1(ab− 1)2σx
2 + λ2b

2. (45)

By solving ∂L
∂a = 0 and ∂L

∂b = 0, a and b are derived as follows:

ab =
λ1σx

2 +
√
λ1

2σx4 − 2λ1σx2

2λ1σ2
x

,

a =
√

2λ2

(
λ1σx

2 +
√
λ1

2σx4 − 2λ1σx2

2λ1σ2
x

)
,

b = 1/
√

2λ2.

If λ1σx
2 � 1, these equations are approximated as next:

ab '
(

1− 1

2λ1σx2

)
,

a =
√

2λ2

(
1− 1

2λ1σx2

)
,

b = 1/
√

2λ2.

Here, ab is not equal to 1. That is, decoder is not an inverse function of encoder. In this case, the scale of latent space
becomes slightly bent in order to minimize entropy function. As a result, good fitting of parametric PDF Pz(z) ' Pz,ψ(z)
could be realized while proportional relationship Pz(z) ∝ Px(x) is relaxed.

Next, the case of h(d) = log(d) is examined. By applying h(d) = log(d) and introducing a minute variable ∆, Eq. (44) can
be expanded as follows:

L = log(a) + log(σx
√

2πe) + λ1 log
(

(ab− 1)
2

+ ∆
)

+ λ2b
2. (46)

By solving ∂Loss
∂a = 0 and ∂Loss

∂b = 0 and setting ∆→ 0, a and b are derived as follows:

ab = 1,

a =
√

2λ2, (47)

b = 1/
√

2λ2

Here, ab is equal to 1 and decoder becomes an inverse function of encoder regardless of the variance σx2. In this case, good
proportional relation Pz(z) ∝ Px(x) could be realized regardless of the fitting Pz,ψ(z) to Pz(z).

Considering from these results, there could be a guideline to choose h(d). If the parametric PDF Pz,ψ(z) has enough ability
to fit the real distribution Pz(z), h(d) = log(d) could be better. If not, h(d) = d could be an option.

D. Expansion of SSIM and BCE to Quadratic Forms
In this appendix, it is shown that SSIM and BCE can be approximated in quadratic forms with positive definite matrices
except some constants.

Structural similarity (SSIM) (Wang et al., 2004) is widely used for picture quality metric since it is close to human subjective
evaluation. In this appendix, we show (1− SSIM) can be approximated to a quadratic form such as Eq.(8).

Eq. (48) is a SSIM value between cropped pictures x and y with a W ×W window:

SSIMW×W (x,y) =
2µxµy

µx2 + µy2

2σxy
σx2 + σy2

. (48)

In order to calculate SSIM index for entire pictures, this window is shifted in a whole picture and all of SSIM values are
averaged. If (1− SSIMW×W (x,y)) is expressed in quadratic form, the average for a picture (1− SSIMpicture) can be
also expressed in quadratic form.
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Let ∆x be a minute displacement of x. Then SSIM between x and x+ ∆x can be expressed as follows:

SSIMW×W (x,x+ ∆x) = 1− µ∆x
2

2µx2
− σ∆x

2

2σx2
+O

(
(|∆x|/|x|)3

)
(49)

Then µ∆x
2 and σ∆x

2 can be expressed as follows:

µ∆x
2 = ∆x>Wm∆x, (50)

σ∆x
2 = ∆x>Wv∆x, (51)

where

Wm =
1

W 2


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 ,Wv =
1

W 2


W − 1 −1 . . . −1
−1 W − 1 . . . −1

...
...

. . .
...

−1 −1 . . . W − 1

 . (52)

It should noted that matrix Wm is positive definite and matrix Wv is positive semidefinite. As a result,
(1− SSIMW×W (x,y)) can be expressed in the following quadratic form with positive definite matrix:

1− SSIMW×W (x,x+ ∆x) ' ∆x>
(

1

2µx2
Wm +

1

2σx2
Wv

)
∆x. (53)

Binary cross entropy (BCE) is also a reconstruction loss function widely used in VAE (Kingma & Welling, 2014). BCE is
defined as follows:

BCE(x,y) =

M∑
i=1

(−xi log(yi)− (1− xi) log(1− yi)). (54)

BCE can be also approximated by a quadratic form with positive definite matrix. Let ∆x be a small displacement of x and
∆xi be its i-th component. Then BCE between x and x+ ∆x can be expanded as follows:

BCE(x,x+ ∆x) =
∑
i

(−xi log(xi + ∆xi)− (1− xi) log(1− xi −∆xi))

=
∑
i

(
−xi log

(
xi

(
1 +

∆xi
xi

))
− (1− xi) log

(
(1− xi)

(
1− ∆xi

1− xi

)))
=
∑
i

(
−xi log

(
1 +

∆xi
xi

)
− (1− xi) log

(
1− ∆xi

1− xi

))
+
∑
i

(−xi log(xi)− (1− xi) log(1− xi)). (55)

Here, the second term of the last equation is constant depending on x. The first term of the last equation is further expanded
as follows by using Maclaurin expansion of logarithm:∑

i

(
−xi

(
∆xi
xi
− ∆xi

2

2xi2

)
− (1− xi)

(
− ∆xi

1− xi
− ∆xi

2

2 (1− xi)2

)
+O

(
∆xi

3
))

=
∑
i

(
1

2

(
1

xi
+

1

1− xi

)
∆xi

2 +O
(
∆xi

3
))

. (56)

Then, let a matrixA(x) be defined as follows:

A(x) =


1
2

(
1
x1

+ 1
1−x1

)
0 . . .

0 1
2

(
1
x2

+ 1
1−x2

)
. . .

...
...

. . .

 .

(57)
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ObviouslyA(x) is a positive definite matrix. As a result, BCE between x and x+ ∆x can be approximated by a quadratic
form with x depending constant offset as follows:

BCE(x,x+ ∆x) ' ∆x>A(x)∆x+
∑
i

(−xi log(xi)− (1− xi) log(1− xi)). (58)

Note that BCE is typically used for binary data. In this case, the second term in Eq. (58) is always 0.

E. “Continuous PCA” Feature of Isometric Embedding for Riemannian Manifold
In this section, we explain that the isometric embedding realized by RaDOGAGA has a continuous PCA feature when the
following factorized probability density model is used:

Pz,ψ(z) =

N∏
i=1

Pzi,ψ(zi). (59)

Here, our definition of “continuous PCA” is the following. 1) Mutual information between latent variables are minimum and
likely to be uncorrelated to each other: 2) Energy of latent space is concentrated to several principal components, and the
importance of each component can be determined: 3) These features are held for all subspace of a manifold and subspace is
continuously connected.

Next we explain the reason why these feature is acquired. As explained in Appendix A, all column vectors of Jacobian matrix
of decoder from latent space to data space have the same norm and all combinations of pairwise vectors are orthogonal. In
other words, when constant value is multiplied, the resulting vectors are orthonormal. Because encoder is a inverse function
of decoder ideally, each row vector of encoder’s Jacobian matrix should be the same as column vector of decoder under
the ideal condition. Here, fortho,θ(x) and gortho,φ(zθ) are defined as encoder and decoder with these feature. Because the
latent variables depend on encoder parameter θ, latent variable is described as zθ = fortho,θ(x), and its PDF is defined
as Pz,θ(zθ). PDFs of latent space and data space have the following relation where Jsv(zθ) is the product of the singular
values of J(zθ) which is a Jacobian matrix between two spaces as explained in Section 4.2 and Appendix B.

Pz,θ(zθ) = Jsv(zθ)Px(x) ∝
( N∏
j=1

αj(A(x))

)− 1
2

Px(x). (60)

As described before, Pz,ψ(z) is a parametric PDF of the latent space to be optimized with parameter ψ.

By applying the result of Eqs. (24) and (31), Eq. (7) can be transformed as Eq. (61) where x̂ = gortho,φ(fortho,θ(x)).

Lortho = − log (Pz,ψ(zθ)) + λ1h (D(x, x̂)) +N/2.

s.t.

(
∂gortho,φ(zθ)

∂zθi

)>
A(x)

(
∂gortho,φ(zθ)

∂zθj

)
=

1

2λσ2
δij . (61)

Here, the third term of the right side is constant, this term can be removed from the cost function as follows:

L′ortho = − log (Pz,ψ(zθ)) + λ1h (D(x, x̂)) . (62)

Then the parameters of network and PDF are obtained according to the following equation:

θ, φ, ψ = arg min
θ,φ,ψ

(Ex∼Px(x)[L
′
ortho]). (63)

Ex∼Px(x)[L
′
ortho] in Eq. (63) can be transformed as the next:

Ex∼Px(x)[L
′
ortho] =

∫
Px(x) (− log (Pz,ψ(zθ)) + λ1 h (D(x, x̂))) dx

=

∫ (
Pz,θ(zθ)Jsv(zθ)

−1
)

(− log (Pz,ψ(zθ))) Jsv(zθ)dzθ + λ1

∫
Px(x) h (D(x, x̂)) dx. (64)
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At first, the first term of the third formula in Eq.(64) is examined. Let dzθ/i be a differential of (N − 1) dimensional latent
variables where i-th axis zθi is removed from the latent variable zθ. Then a marginal distribution of zθi can be derived from
the next equation:

Pz,θi(zθi) =

∫
Pz,θ(zθ)dzθ/i. (65)

By using Eqs.(59) and (65), the first term of the third formula in Eq. (64) can be expanded as:∫
Pz,θ(zθ) (− log (Pz,ψ(zθ))) dzθ =

∫
Pz,θ(zθ)

(
− log

(∏N
i=1 Pzi,ψ(zθi)∏N
i=1 Pz,θi(zθi)

))
dzθ

+

∫
Pz,θ(zθ)

(
− log

(
N∏
i=1

Pz,θi(zθi)

))
dzθ

=

N∑
i=1

∫ (∫
Pz,θ(zθ)dzθ/i

)(
− log

(
Pzi,ψ(zθi)

Pz,θi(zθi)

))
dzθi

+

N∑
i=1

∫ (∫
Pz,θ(zθ)dzθ/i

)
(− log (Pz,θi(zθi))) dzθi

=

N∑
i=1

DKL(Pz,θi(zθi)‖Pzi,ψ(zθi)) +

N∑
i=1

H(zθi). (66)

Here H(X) denotes the entropy of a variable X . The first term of the third formula is KL-divergence between marginal
probability Pz,θi(zθi) and factorized parametric probability Pzi,ψ(zθi). The second term of the third formula can be further
transformed using mutual information between latent variables I(zθ) and equation (60).

N∑
i=1

H(zθi) = H(zθ) + I(zθ) ' −
∫
Jsv(zθ)Px(x) log(Jsv(zθ)Px(x))Jsv(zθ)

−1dx+ I(zθ)

= H(x)−
∫
Px(x) log

( 1

2λ2σ2

)N
2
( N∏
j=1

αj(A(x))

)− 1
2

 dx+ I(zθ) (67)

At second, the second term of the third formula in Eq. (64) is examined. When x and x̂ are close, the following equation
holds.

D(x, x̂) ' (x− x̂)>A(x)(x− x̂). (68)

Note that with given distribution x ∼ Px(x), the first and the second term in the right side of Eq. (67) are fixed value.
Therefore, by using these expansions, Eq.(64) can be expressed as:

Ex∼Px(x)[L
′
ortho] '

N∑
i=1

DKL(Pz,θi(zθi)‖Pzi,ψ(zθi))

+I(zθ) + Ex
[
(x− x̂)>A(x)(x− x̂)

]
+ Const. (69)

Here, the real space RM is divided into a plurality of small subspace partitioning Ωx1, Ωx2, · · · . Note that RM is an inner
product space endowed with metric tensor A(x). Let Ωz1, Ωz2, · · · be the division space of the latent space z ∈ RN

corresponding to Ωx.

Then Eq. (69) can be rewritten as:

Ex∼Px(x)[L
′
ortho] '

N∑
i=1

DKL(Pz,θi(zθi)‖Pzi,ψ(zθi))

+
∑
k

(
I(zθ ∈ Ωzθk) + Ex∈Ωxk

[
(x− x̂)>A(x)(x− x̂)

])
+ Const. (70)
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For each subspace partitioning, Jacobian matrix for the transformation from Ωxk to Ωzθk forms constantly scaled orthonor-
mal system with respect toA(x). According to Karhunen-Loève Theory (Rao & Yip, 2000), the orthonormal basis which
minimize both mutual information and reconstruction error leads to be Karhunen-Loève transform (KLT). It is noted that the
basis of KLT is equivalent to PCA orthonormal basis.

As a result, when Eq. (70) is minimized, Jacobi matrix from Ωxk to Ωzθk for each subspace partitioning should be
KLT/PCA. Consequently, the same feature as PCA will be realized such as the determination of principal components etc.

From these considerations, we conclude that RaDOGAGA has a “continuous PCA” feature. This is experimentally shown in
Section 5.1 and Appendix F.6.

Ωzk

Latent Space RＮ

Subspace wise PCA

Inner product space RM 

for domain data with metric 𝑨𝑨 𝒙𝒙

Ωxk

Figure 10. Continuous KLT (PCA) Mapping from input domain to latent space. For all small subspace partitioning Ωxk domain space
(which is inner product space with metric tensor A(x)), mapping from Ωxk to Ωzθk can be regarded as PCA

F. Detail and Expansion Result of Experiment in Section 5.1
In this section, we will provide further detail and a result of the complemental experiment regarding section 5.1.

F.1. GDN Activation

GDN activation function (Ballé et al., 2016) is known to suitable for image compression. For implementation, we use a
TensorFlow library‖.

F.2. Other Training Information

The batch size is 64. The iteration number is 500,000. We use NVIDIA Tesla V100 (SXM2).
For RaDOGAGA, since our implementation was done based on the source code for image compression, entropy rate is
calculated as − log((Pz,ψ(z))/(M log 2), meaning bit per pixel. In addition, for RaDOGAGA, the second term of Eq. (7)
is always MSE in this experiment. This is because we found that the training with 1− SSIM as the reconstruction loss is
likely to diverge at the beginning step of the training. Therefore, we tried to start training with MSE and then fine-tuned
with 1− SSIM . Eventually, the result is almost the same as the case without finetuning. Therefore, to simplify the training
process, we do not usually finetune.

F.3. Generation of vz and wz

To evaluate the isometricity of the mapping, it is necessary to prepare random tangent vector vz and wz with a scattered
interior angle. We generate two different tangent vectors vz = {vz1, vz2, . . . , vzn} and wz = {wz1, wz2, . . . , wzn} in
the following manner. First, we prepare v′z ∈ RN as {1.0, 0.0, . . . 0.0}. Then, we sample α = {α1, α2, . . . , αn−1}
(α1···n−2 ∼ U (0, π) , αn−1 ∼ U (0, 2π)) to set w′ as the conversion of polar coordinate {r,α} ∈ RN to rectangular

‖https://github.com/tensorflow/compression/tree/master/docs/api_docs/python/tfc

https://github.com/tensorflow/compression/tree/master/docs/api_ docs/python/tfc
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coordinates, where r = 1. Thus, the distribution of interior angle of v′z andw′z also obey α1 ∼ U (0, π). Next, we randomly
rotate the plane RN in which interior angle of v′z and w′z is α1 in the following way (Teoh, 2005) and obtain vz and wz .

ρ = −cosα1

sinα1
v′z +

1

sinα1
w′z, τ = v′z,

then, (
vz
wz

)
=

[
− sinω cosω

cosω sinα1 − sinω cosα1 sinω sinα1 + cosω cosα1

](
ρ
τ

)
, (71)

where ω ∼ U (0, 2π) is the rotation angle of the plane. Note that since this is the rotation of the plane, the interior angle
between v and w is kept to α1. Finally, we normalize the norm of vz and vz to be 0.01.

F.4. Experiment with MNIST Dataset and BCE

Besides of the experiment in main paper, we conducted an experiment with MNIST dataset (LeCun et al., 1998)†† which
contains handwritten digits binary images with the image size of 28× 28. We use 60,000 samples in the training split. The
metric function is BCE, whereA(x) is approximated as Eq. (57). Autoencoder consists of FC layers with sizes of 1000,
1000, 128, 1000, and 1000. We attach softplus as activation function except for the last of the encoder and the decoder. In
this experiment, we modify the form of the cost function of beta-VAE as

L = −Lkl + λ1h (D (x, x̂)) + λ2D (x̂, x̆) , (72)

where x̂ is the output of the decoder without noise, and x̆ is the output of the decoder with the noise of reparameterization
trick. We set (λ1, λ2) as (10, 1) for beta-VAE and (0.01, 0.01) for RaDOGAGA. Optimization is done with Adam optimizer
with learning late 1 × 10−4 for beta-VAE 1 × 10−5 for RaDOGAGA. The batch size is 256 and the training iteration is
30,000. These parameters are determined to make the PSNR = 20 log10

(
MAX2

x

MSE

)
, where MAXx = 255, between input

and reconstruction image approximately 25 dB.

Figure 11 depicts the result. We can observe that map of RaDOGAGA is isometric as well even for the case the metric
function is BCE. Consequently, even if the metric function is complicated one, the impact of the latent variable on the
metric function is tractable. We expect this feature promotes further improving of metric learning, data interpolation, and so
on.
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Figure 11. Plot of vz ·wz (horizontal axis) and vx
>A(x)wx (vertical axis). In beta-VAE (left), the correlation is week while in our

method (right) we can observe proportionality.

F.5. Isometricity of Encoder Side

In Section 5.1, we showed the isometricty of decoder side because it is common to analyse the behavior of latent variables
by observing the decoder output such as latent traverse. We also clarify that the embedding by encoder f keep isometric.
Given two tangent vector vx and wx, vx>A(x)wx is compared to df(vx) · df(vx). df(wx) is also approximated by
f(x+ vx)− f(x). As Fig. 12 shows, the embedding to the latent space is isometric. Consequently, it is experimentally
supported that our method enables to embed data in Euclidean space isometrically. The result of the same experiment for the
case of the metric is 1− SSIM is provided in Appendix F.

††http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/


Rate-Distortion Optimization Guided Autoencoder for Isometric Embedding in Euclidean Latent Space

-1

1

−𝟑𝟑

r = 0.98

𝐝𝐝𝒇𝒇
(𝒗𝒗

𝒙𝒙)
�𝐝𝐝
𝒇𝒇(
𝒘𝒘
𝒙𝒙)

𝒗𝒗𝒙𝒙𝑨𝑨(𝒙𝒙) 𝒘𝒘𝒙𝒙

𝟑𝟑

0

0 𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟔𝟔

𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟒𝟒

(a) Variance of z

-1

1
r = 0.97

𝒗𝒗𝒙𝒙𝑨𝑨(𝒙𝒙) 𝒘𝒘𝒙𝒙

0

0

𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟒𝟒

𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟔𝟔−𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟔𝟔

𝐝𝐝𝒇𝒇
(𝒗𝒗

𝒙𝒙)
�𝐝𝐝
𝒇𝒇(
𝒘𝒘
𝒙𝒙)

(b)

Figure 12. vx>A(x)wx vs df(vx) · df(wx). The mapping by encoder is also isometric.

F.6. Additional Latent Traverse

In Section 5.1, the latent traverse for variables with the top 9 variances was provided. To further clarify whether the variance
is corresponding to visual impact, the latent traverse of RaDOGAGA for z0, z1, z2, z20, z21, z22, z200, z201, and z202 are
shown in Fig. 13. Apparently, a latent traverse with a larger σ makes a bigger difference in the image. When the σ2 gets
close to 0, there is almost no visual difference. Accordingly, the behavior as continuous PCA is clarified throughout the
entire variables.
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Figure 13. Latent space traversal of z. For the top-3 variables, pictures look significantly different. In the middle range(z20, z21, z22 ), the
difference is smaller than the upper three but still observable. For the bottom three, there is almost no difference.

G. Detail of the Experiment in Section 5.3
In this section, we provide further detail of experiment in Section 5.3.

G.1. Datasets

We describe the detail of following four public datasets:

KDDCUP99 (Dua & Graff, 2019) The KDDCUP99 10 percent dataset from the UCI repository is a dataset for cyber-attack
detection. This dataset consists of 494,021 instances and contains 34 continuous features and 7 categorical ones. We use one
hot representation to encode the categorical features, and eventually obtain a dataset with features of 121 dimensions. Since
the dataset contains only 20% of instances labeled -normal- and the rest labeled as -attacks-, -normal- instances are used as
anomalies, since they are in a minority group.

Thyroid (Dua & Graff, 2019) This dataset contains 3,772 data sample with 6-dimensional feature from patients and can be
divided in three classes: normal (not hypothyroid), hyperfunction, and subnormal functioning. We treat the hyperfunction
class (2.5%) as an anomaly and rest two classes as normal.
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Arrhythmia (Dua & Graff, 2019) This is dataset to detect cardiac arrhythmia containing 452 data sample with 274-
dimensional feature. We treat minor classes (3, 4, 5, 7, 8, 9, 14, and 15, accounting for 15% of the total) as anomalies, and
the others are treated as normal.

KDDCUP-Rev (Dua & Graff, 2019) To treat “normal” instances as majority in the KDDCUP dataset, we keep all “normal”
instances and randomly pick up “attack” instances so that they compose 20% of the dataset. In the end, the number of
instance is 121,597.

Data is max-min normalized toward dimension through the entire dataset.

G.2. Hyperparameter and Training Detail

Hyperparameter for RaDOGAGA is described in Table 2. First and second column is number of neurons. (λ1, λ2) is
determined experimentally. For DAGMM, the number of neuron is the same as Table 2. We set (λ1, λ2) as (0.1, 0.005)
referring Zong et al. (2018) except for Thyroid. Only for Thyroid, (λ1, λ2) is (0.1, 0.0001) since (0.1, 0.005) does not work
well with our implementation. Optimization is done by Adam optimizer with learning rate 1× 10−4 for all dataset. The
batch size is 1024 for all dataset. The epoch number is 100, 20000, 10000, and 100 respectively. We save and the test
models by every 1/10 epochs and early stop is applied. For this experiment, we use GeForce GTX 1080.

Table 2. Hyper parameter for RaDOGAGA
Dataset Autoencoder EN λ1(d) λ2(d) λ1((log(d)) λ2(log(d))
KDDCup99 60, 30, 8, 30, 60 10, 4 100 1000 10 100
Thyroid 30, 24, 6, 24, 30 10, 2 10000 1000 100 1000
Arrhythmia 10, 4, 10 10, 2 1000 1000 1000 100
KDDCup-rev 60, 30, 8, 30, 60 10, 2 100 100 100 100

G.3. Experiment with different network size

In addition to experiment in main page, we also conducted experiment with same network size as in Zong et al. (2018) with
parameters in Table 3

Table 3. Hyper parameter for RaDOGAGA(same network size as in Zong et al. (2018)
Dataset Autoencoder EN λ1(d) λ2(d) λ1((log(d)) λ2(log(d))
KDDCup99 60, 30, 1, 30, 60 10, 4 100 100 100 1000
Thyroid 12, 4, 1, 4, 12 10, 2 1000 10000 100 10000
Arrhythmia 10, 2, 10 10, 2 1000 100 1000 100
KDDCup-rev 60, 30, 1, 30, 60 10, 2 100 100 100 1000

Now, we provide results of setting in Table 3. In Table 4, RaDOGAGA- and DAGMM- are results of them and DAGMM is
result cited from Zong et al. (2018). Even with this network size, our method has boost from baseline in all dataset.
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Table 4. Average and standard deviations (in brackets) of Precision, Recall and F1
Dataset Methods Precision Recall F1

KDDCup

DAGMM 0.9297 0.9442 0.9369
DAGMM- 0.9338 (0.0051) 0.9484 (0.0052) 0.9410 (0.0051)
RaDOGAGA-(L2) 0.9455 (0.0016) 0.9608 (0.0018) 0.9531 (0.0017)
RaDOGAGA-(log) 0.9370 (0.0024) 0.9517 (0.0025) 0.9443 (0.0024)

Thyroid

DAGMM 0.4766 0.4834 0.4782
DAGMM- 0.4635 (0.1054) 0.4837 (0.1100) 0.4734 (0.1076)
RaDOGAGA-(L2) 0.5729 (0.0449) 0.5978 (0.0469) 0.5851 (0.0459)
RaDOGAGA-(log) 0.5729 (0.0398) 0.5978 (0.0415) 0.5851 (0.0406)

Arrythmia

DAGMM 0.4909 0.5078 0.4983
DAGMM- 0.4721 (0.0451) 0.4864 (0.0464) 0.4791 (0.0457)
RaDOGAGA-(L2) 0.4897 (0.0477) 0.5045 (0.0491) 0.4970 (0.0484)
RaDOGAGA-(log) 0.5044 (0.0364) 0.5197 (0.0375) 0.5119 (0.0369)

KDDCup-rev

DAGMM 0.937 0.939 0.938
DAGMM- 0.9491 (0.0163) 0.9498 (0.0158) 0.9494 (0.0160)
RaDOGAGA-(L2) 0.9761 (0.0057) 0.9761 (0.0056) 0.9761 (0.0057)
RaDOGAGA-(log) 0.9791 (0.0036) 0.9799 (0.0035) 0.9795 (0.0036)


