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1. Supplementary Material
We start by reviewing the classical EM algorithm for GMM,
as in Algorithm 1.

Theorem 1.1 (Multivariate Mean Value Theorem (Rudin
et al., 1964)). Let U be an open set of Rd. For a differen-
tiable functions f : U 7→ R it holds that ∀x, y ∈ U, ∃c such
that f(x)− f(y) = ∇f(c) · (x− y).

Lemma 1.2 (Componentwise Softmax function σj(v) is
Lipschitz continuous). For d > 2, let σj : Rd 7→ (0, 1) be
the softmax function defined as σj(v) = evj∑d

l=1 e
vl

Then σj

is Lipschitz continuous, with K ≤
√

2.

Proof. We need to find the K such that for all x, y ∈ Rd,
we have that ‖σj(y)− σj(x)‖ ≤ K ‖y − x‖. Observ-
ing that σj is differentiable and that if we apply Cauchy-
Schwarz to the statement of the Mean-Value-Theorem we
derive that ∀x, y ∈ U, ∃c such that ‖f(x)− f(y)‖ ≤
‖∇f(c)‖F ‖x− y‖. So to show Lipschitz continuity it is
enough to select K ≤ ‖∇σj‖∗F = maxc∈Rd ‖∇σj(c)‖.

The partial derivatives dσj(v)
dvi

are σj(v)(1 − σj(v))
if i = j and −σi(v)σj(v) otherwise. So
‖∇σj‖2F =

∑d−1
i=1 (−σ(v)iσj(v))2 + σj(v)2(1 −

σj(v))2 ≤
∑d−1
i=1 σ(v)iσj(v) + σj(v)(1 − σj(v)) ≤

σj(v)
∑d−1
i=0 σi(v) + 1− σj(v) ≤ 2σj(v) ≤ 2. In our case

we can deduce that: ‖σj(y)− σj(x)‖ ≤
√

2 ‖y − x‖ so
K ≤

√
2.

Definition 1 (Exponential Family (Murphy, 2012)). A prob-
ability density function or probability mass function p(v|ν)
for v = (v1, · · · , vm) ∈ Vm, where V ⊆ R, ν ∈ Rp is said
to be in the exponential family if can be written as:

p(v|ν) := h(v) exp{o(ν)TT (v)−A(ν)}
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where:

• ν ∈ Rp is called the canonical or natural parameter of
the family,

• o(ν) is a function of ν (which often is just the identity
function),

• T (v) is the vector of sufficient statistics: a function
that holds all the information the data v holds with
respect to the unknown parameters,

• A(ν) is the cumulant generating function, or log-
partition function, which acts as a normalization factor,

• h(v) > 0 is the base measure which is a non-
informative prior and de-facto is scaling constant.

Lemma 1.3 (Error in the responsibilities of the exponential
family). Let vi ∈ Rn be a vector, and let {p(vi|νj)}kj=1

be a set of k probability distributions in the exponential
family, defined as p(vi|νj) := hj(vi)exp{oj(νj)TTj(vi)−
Aj(νj)}. Then, if we have estimates for each exponent with
error ε, then we can compute each rij such that |rij−rij | ≤√

2kε for j ∈ [k].

Proof. The proof follows from rewriting the responsibility
of Equation (1) as:

rij :=
hj(vi) exp{oj(νj)TT (vi)−Aj(νj) + log θj}
k∑
l=1

hl(vi) exp{ol(νl)TT (vi)−Al(νl) + log θl}

(6)
In this form, it is clear that the responsibilities can be seen a
softmax function, and we can use Theorem 1.2 to bound the
error in computing this value.

Let Ti ∈ Rk be the vector of the exponent, that is tij =
oj(νj)

TT (vi) − Aj(νj) + log θj . In an analogous way
we define Ti the vector where each component is the es-
timate with error ε. The error in the responsibility is de-
fined as |rij − rij | = |σj(Ti) − σj(Ti)|. Because the
function σj is Lipschitz continuous, as we proved in Theo-
rem 1.2 with a Lipschitz constant K ≤

√
2, we have that,

|σj(Ti) − σj(Ti)| ≤
√

2
∥∥Ti − Ti∥∥. The result follows as∥∥Ti − Ti∥∥ < √kε.
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Algorithm 1 Expectation-Maximization for GMM
Require: Dataset V , tolerance τ > 0.
Ensure: A GMM γt = (θt,µt,Σt) that maximizes locally

the likelihood `(γ;V ) up to tolerance τ .

1: Select γ0 = (θ0,µ0,Σ0) using classical initialization
strategies described in Subsection 1.2.

2: t = 0
3: repeat
4: Expectation

∀i, j, calculate the responsibilities as:

rtij =
θtjφ(vi;µ

t
j ,Σ

t
j)∑k

l=1 θ
t
lφ(vi;µtl ,Σ

t
l)

(1)

5: Maximization
Update the parameters of the model as:

θt+1
j ← 1

n

n∑
i=1

rtij (2)

µt+1
j ←

∑n
i=1 r

t
ijvi∑n

i=1 r
t
ij

(3)

Σt+1
j ←

∑n
i=1 r

t
ij(vi − µ

t+1
j )(vi − µt+1

j )T∑n
i=1 r

t
ij

(4)

6: t=t+1
7: until
8:

|`(γt−1;V )− `(γt;V )| < τ (5)

9: Return γt = (θt,µt,Σt)

1.1. Quantum procedures and further preliminaries

A qubit is a mathematical representation of a quantum me-
chanical object as a l2 normalized vector of length 2 on C2.
The state of a n-qubit system (a register of a quantum com-
puter) is the tensor product of the single qubits: a unitary
vector |x〉 ∈ H⊗n ' C2n . In other words, with logn qubits
we can describe a quantum state |ψ〉 =

∑
i∈[n] αi |i〉 with∑

i∈[n] |αi|2 = 1. The values αi are called amplitudes of
the quantum state |i〉. The evolution of a quantum system
is described by unitary matrices U . A matrix U is said to
be unitary if UU† = U†U = I . From this fact it follows
that unitary matrices are norm-preserving, and thus can be
used as suitable mathematical description of pure quantum
evolutions.

The dataset is represented by a matrix V ∈ Rn×d, i.e. each
row is a vector vi ∈ Rd for i ∈ [n] that represents a single
data point. A matrix U is said to be unitary if UU† =

U†U = I . The cluster centers, called centroids, at time
t are stored in the matrix Ct ∈ Rk×d, such that the jth

row ctj for j ∈ [k] represents the centroid of the cluster
Ctj . We denote as V≥τ the matrix

∑`
i=0 σiuiv

T
i where σ`

is the smallest singular value which is greater than τ . With
nnz(V ) is the number of non-zero elements of the rows of
V . Let κ(V ) be the condition number of V : that is the ratio
between the biggest and the smallest (non-zero) singular
value. We recommend Nielsen and Chuang (Nielsen &
Chuang, 2002) for an introduction to the subject.

To prove our results, we are going to use the quantum pro-
cedures listed hereafter.

Claim 1.4. (Kerenidis & Prakash, 2020) Let θ be the angle
between vectors x, y, and assume that θ < π/2. Then,
‖x− y‖ ≤ ε implies ‖|x〉 − |y〉‖ ≤

√
2ε
‖x‖ . Where |x〉 and

|y〉 are two unit vectors in `2 norm.

We will also use Claim 4.5 from (Kerenidis et al., 2019a).

Claim 1.5. (Kerenidis et al., 2019a) Let εb be the error
we commit in estimating |c〉 such that ‖|c〉 − |c〉‖ < εb,
and εa the error we commit in the estimating the norms,
| ‖c‖ − ‖c‖| ≤ εa ‖c‖. Then ‖c− c‖ ≤ √η(εa + εb).

Theorem 1.6 (Amplitude estimation and amplification
(Brassard et al., 2002)). If there is unitary operator U
such that U |0〉l = |φ〉 = sin(θ) |x, 0〉 + cos(θ) |G, 0⊥〉
then sin2(θ) can be estimated to multiplicative error η in
time O( T (U)

η sin(θ) ) and |x〉 can be generated in expected time

O( T (U)
sin(θ) ).

We also need some state preparation procedures. These
subroutines are needed for encoding vectors in vi ∈ Rd into
quantum states |vi〉. An efficient state preparation procedure
is provided by the QRAM data structures. We stress the fact
that our results continue to hold, no matter how the efficient
quantum loading of the data is provided. For instance, the
data can be accessed through a QRAM, through a block
encoding, or when the data can be produced by quantum
circuits.

Theorem 1.7 (QRAM data structure (Kerenidis & Prakash,
2017)). Let V ∈ Rn×d, there is a data structure to store
the rows of V such that,

1. The time to insert, update or delete a single entry vij
is O(log2(n)).

2. A quantum algorithm with access to the data struc-
ture can perform the following unitaries in time T =
O(log2N).

(a) |i〉 |0〉 → |i〉 |vi〉 for i ∈ [n].
(b) |0〉 →

∑
i∈[n] ‖vi‖ |i〉.



Quantum Expectation-Maximization for Gaussian mixture models

In our algorithm we will also use subroutines for quantum
linear algebra. For a symmetric matrix M ∈ Rd×d with
spectral norm ‖M‖ = 1, the running time of these algo-
rithms depends linearly on the condition number κ(M) of
the matrix, that can be replaced by κτ (M), a condition
threshold where we keep only the singular values bigger
than τ , and the parameter µ(M), a matrix dependent param-
eter defined as

µ(M) = min
p∈P

(‖M‖F ,
√
s2p(M)s2(1−p)(MT )),

for sp(M) := maxi∈[n] ‖mi‖pp where ‖mi‖p is the `p
norm of the i-th row of M , and P is a finite set of size
O(1) ∈ [0, 1]. Note that µ(M) ≤ ‖M‖F ≤

√
d as we have

assumed that ‖M‖ = 1. The running time also depends
logarithmically on the relative error ε of the final outcome
state. (Chakraborty et al., 2018; Gilyén et al., 2018).

Theorem 1.8 (Quantum linear algebra (Chakraborty et al.,
2018; Gilyén et al., 2018) ). Let M ∈ Rd×d such that
‖M‖2 = 1 and x ∈ Rd. Let ε, δ > 0. If we have quantum
access to M and the time to prepare |x〉 is Tx, then there
exist quantum algorithms that with probability at least 1−
1/poly(d) return a state |z〉 such that ‖|z〉 − |Mx〉‖ ≤ ε in
time Õ((κ(M)µ(M) + Txκ(M)) log(1/ε)).

Theorem 1.9 (Quantum linear algebra for matrix products
(Chakraborty et al., 2018) ). Let M1,M2 ∈ Rd×d such
that ‖M‖1 = ‖M‖2 = 1 and x ∈ Rd, and a vector x ∈
Rd for which we have quantum access. Let ε > 0. Then
there exist quantum algorithms that with probability at least
1−1/poly(d) returns a state |z〉 such that ‖|z〉 − |Mx〉‖ ≤
ε in time Õ((κ(M)(µ(M1)TM1

+ µ(M2)TM2
)) log(1/ε)),

where TM1
, TM2

is the time needed to index the rows of M1

and M2.

The linear algebra procedures above can also be applied to
any rectangular matrix V ∈ Rn×d by considering instead

the symmetric matrix V =

(
0 V
V T 0

)
.

The final component needed for the QEM algorithm is an
algorithm for vector state tomography that will be used to
recover classical information from the quantum states corre-
sponding to the new centroids in each step. We report here
two kind of vector state tomography. The `2 tomography
has stronger guarantees on the output, while the `∞ is faster.

Theorem 1.10 (`∞ Vector state tomography). (Kereni-
dis et al., 2019b) Given access to unitary U such that
U |0〉 = |x〉 and its controlled version in time T (U), there is
a tomography algorithm with time complexityO(T (U) log d

δ2 )

that produces unit vector X̃ ∈ Rd such that
∥∥∥X̃ − x∥∥∥

∞
≤ δ

with probability at least (1− 1/poly(d)).

Theorem 1.11 (Vector state tomography (Kerenidis &
Prakash, 2018)). Given access to unitary U such that

U |0〉 = |x〉 and its controlled version in time T (U),
there is a tomography algorithm with time complexity
O(T (U)d log d

ε2 ) that produces unit vector x̃ ∈ Rd such that
‖x̃− x‖2 ≤ ε with probability at least (1− 1/poly(d)).

Lemma 1.12 (Distance / Inner Products Estimation (Kereni-
dis et al., 2019a; Wiebe et al., 2014; Lloyd et al., 2013)).
Assume for a data matrix V ∈ Rn×d and a centroid matrix
C ∈ Rk×d that the following unitaries |i〉 |0〉 7→ |i〉 |vi〉 ,
and |j〉 |0〉 7→ |j〉 |cj〉 can be performed in time T and the
norms of the vectors are known. For any ∆ > 0 and ε > 0,
there exists a quantum algorithm that computes

|i〉 |j〉 |0〉 7→ |i〉 |j〉 |d2(vi, cj)〉 ,

where|d2(vi, cj) − d2(vi, cj)| 6 ε with probability at
least1− 2∆, or

|i〉 |j〉 |0〉 7→ |i〉 |j〉 |(vi, cj)〉 ,

where |(vi, cj) − (vi, cj)| 6 ε with probability at least

1− 2∆ in time Õ
(
‖vi‖‖cj‖T log(1/∆)

ε

)
.

1.2. Initialization strategies for EM

Unlike k-means clustering, choosing a good set of initial
parameters for a mixture of Gaussian is by no means triv-
ial, and in multivariate context is known that the solution
is problem-dependent. There are plenty of proposed tech-
niques, and here we describe a few of them. Fortunately,
these initialization strategies can be directly translated into
quantum subroutines without impacting the overall running
time of the quantum algorithm.

The simplest technique is called random EM, and consists
in selecting initial points at random from the dataset as
centroids, and sample the dataset to estimate the covariance
matrix of the data. Then these estimates are used as the
starting configuration of the model, and we may repeat the
random sampling until we get satisfactory results.

A more standard technique borrows directly the initialization
strategy of k-means++ proposed in (Arthur & Vassilvitskii,
2007), and extends it to make an initial guess for the covari-
ance matrices and the mixing weights. The initial guess for
the centroids is selected by sampling from a suitable, easy
to calculate distribution. This heuristic works as following:
Let c0 be a randomly selected point of the dataset, as first
centroid. The other k− 1 centroids are selected by selecting
a vector vi with probability proportional to d2(vi, µl(vi)),
where µl(vi) is the previously selected centroid that is the
closest to vi in `2 distance. These centroids are then used as
initial centroids for a round of k-means algorithm to obtain
µ0

1 · · ·µ0
j . Then, the covariance matrices can be initialized

as Σ0
j := 1

|Cj |
∑
i∈Cj (vi − µj)(vi − µj)

T , where Cj is the
set of samples in the training set that have been assigned to
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the cluster j in the previous round of k-means. The mixing
weights are estimated as Cj/n. Eventually Σ0

j is regularized
to be a PSD matrix.

There are other possible choices for parameter initialization
in EM, for instance, based on Hierarchical Agglomerative
Clustering (HAC) and the CEM algorithm. In CEM we
run one step of EM, but with a so-called classification step
between E and M. The classification step consists in a hard-
clustering after computing the initial conditional probabil-
ities (in the E step). The M step then calculates the initial
guess of the parameters (Celeux & Govaert, 1992). In the
small EM initialization method we run EM with a differ-
ent choice of initial parameters using some of the previous
strategies. The difference here is that we repeat the EM
algorithm for a small number of iterations, and we keep
iterating from the choice of parameters that returned the
best partial results. For an overview and comparison of
different initialization techniques, we refer to (Blömer &
Bujna, 2013; Biernacki et al., 2003).

Quantum initialization strategies For the initialization
of γ0 in the quantum algorithm we can use the same ini-
tialization strategies as in classical machine learning. For
instance, we can use the classical random EM initialization
strategy for QEM.

A quantum initialization strategy can also be given using
the k-means++ initializion strategy from (Kerenidis et al.,
2019a), which returns k initial guesses for the centroids
c01 · · · c0k consistent with the classical algorithm in time(
k2 2η1.5

ε
√

E(d2(vi,vj))

)
, where E(d2(vi, vj)) is the average

squared distance between two points of the dataset, and
ε is the tolerance in the distance estimation. From there, we
can perform a full round of q-means algorithm and get an
estimate for µ0

1 · · ·µ0
k. With q-means and quantum access

to the centroids, we can create the state

|ψ0〉 :=
1√
n

n∑
i=1

|i〉 |l(vi)〉 . (7)

Where l(vi) is the label of the closest centroid to the i-th
point. By sampling S ∈ O(d) points from this state we
get two things. First, from the frequency fj of the second
register we can have a guess of θ0

j ← |Cj |/n ∼ fj/S. Then,
from the first register we can estimate Σ0

j ←
∑
i∈S(vi −

µ0
j )(vi−µ0

j )
T . Sampling O(d) points and creating the state

in Equation (7) takes time Õ(dkη) by Theorem 1.12 and the
minimum finding procedure described in (Kerenidis et al.,
2019a).

Techniques illustrated in (Miyahara et al., 2019) can also
be used to quantize the CEM algorithm which needs a hard-
clustering step. Among the different possible approaches,
the random and the small EM greatly benefit from a faster

algorithm, as we can spend more time exploring the space
of the parameters by starting from different initial seeds,
and thus avoid local minima of the likelihood.

1.3. Special cases of GMM.

What we presented in the main manuscript is the most gen-
eral model of GMM. For simple datasets, it is common to
assume some restrictions on the covariance matrices of the
mixtures. The translation into a quantum version of the
model should be straightforward. We distinguish between
these cases:

1. Soft k-means. This algorithm is often presented as a
generalization of k-means, but it can actually be seen
as special case of EM for GMM - albeit with a differ-
ent assignment rule. In soft k-means, the assignment
function is replaced by a softmax function with stiff-
ness parameter β. This β represents the covariance
of the clusters. It is assumed to be equal for all the
clusters, and for all dimensions of the feature space.
Gaussian Mixtures with constant covariance matrix (i.e.
Σj = βI for β ∈ R) can be interpreted as a kind of
soft or fuzzy version of k-means clustering. The proba-
bility of a point in the feature space being assigned to
a certain cluster j is:

rij =
e−β‖xi−µi‖

2∑k
l=1 e

−β‖xi−µl‖2

where β > 0 is the stiffness parameter.

2. Spherical. In this model, each component has its own
covariance matrix, but the variance is uniform in all
the directions, thus reducing the covariance matrix to
a multiple of the identity matrix (i.e. Σj = σ2

j I for
σj ∈ R).

3. Diagonal. As the name suggests, in this special case
the covariance matrix of the distributions is a diagonal
matrix, but different Gaussians might have different
diagonal covariance matrices.

4. Tied. In this model, the Gaussians share the same
covariance matrix, without having further restriction
on the Gaussian.

5. Full. This is the most general case, where each of
the components of the mixture have a different, SDP,
covariance matrix.

1.4. Proofs

In this section we report all the proof of the theorems that we
used to prove the main result. The numbering of the lemmas
follows the numbering defined in the main manuscript.
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Lemma 3.2 (Quantum Gaussian Evaluation). Suppose we
have quantum access to a matrix V ∈ Rn×d, the centroid
µ ∈ Rd and the covariance matrix Σ ∈ Rd×d of a multivari-
ate Gaussian distribution φ(v|µ,Σ), as well as an estimate
for log(det(Σ)). Then for ε1 > 0, there exists a quantum
algorithm that with probability 1− γ performs the mapping,

• UG,ε1 : |i〉 |0〉 → |i〉 |si〉 such that |si − si| < ε1,
where si = − 1

2 ((vi − µ)TΣ−1(vi − µ) + d log 2π +
log(det(Σ))) is the exponent for the Gaussian proba-
bility density function.

The running time of the algorithm is,

TG,ε1 = O

(
κ2(Σ)µ(Σ) log(1/γ)

ε1
η

)
. (8)

Proof. We use quantum linear algebra and inner product es-
timation to estimate the quadratic form (vi−µ)TΣ−1(vi−µ)
to error ε1. First, we decompose the quadratic form as
vTi Σ−1vi − 2vTi Σ−1µ+ µTΣ−1µ and separately approxi-
mate each term in the sum to error ε1/4.

We describe the procedure to estimate µTΣ−1vi =∥∥Σ−1vi
∥∥ ‖µ‖ 〈µ|Σ−1vi〉, the other estimates are obtained

similarly. We use the quantum linear algebra subroutines
in Theorem 1.8 to construct |Σ−1vi〉 up to error ε3 � ε1
in time O(κ(Σ)µ(Σ)log(1/ε3)) and estimate

∥∥Σ−1vi
∥∥ up

to error ε1 in time O(κ(Σ)µ(Σ)log(1/ε3)/ε1) which gives
us the mapping |i〉 |0〉 7→ |i〉 |‖Σ−1vi‖〉. We then use quan-
tum inner product estimation (Theorem 1.12) to estimate
〈µ,Σ−1vi〉 to additive error ε1

4‖µ‖‖Σ−1vi‖ . The procedure
estimates (µ,Σ−1vi) within additive error ε1/4. The pro-
cedure succeeds with probability 1 − γ and requires time
O(κ(Σ)µ(Σ) log(1/γ) log(1/ε3)

ε1
‖µ‖

∥∥Σ−1vi
∥∥). Using similar

estimation procedure for vTi Σ−1µ and µTΣ−1µ, we obtain
an estimate for 1

2 ((vi − µ)TΣ−1(vi − µ) within error ε1.

Recall that (through Lemma ??) we also have an esti-
mate of the log-determinant to error ε1. Thus we ob-
tain an approximation for − 1

2 ((vi − µ)TΣ−1(vi − µ) +
d log 2π + log(det(Σ))) within error 2ε1. We have the
upper bound,

∥∥Σ−1vi
∥∥ ≤ ∥∥Σ−1

∥∥ ‖vi‖ ≤ κ(Σ) ‖vi‖,
as ‖Σ‖ = 1. Further observing that ‖u‖ ≤ √η and
‖vi‖ ≤

√
η, the running time for this computation is

O
(
κ2(Σ)µ(Σ) log(1/γ) log(1/ε3)

ε1
η
)

.

Lemma 3.3 (Calculating responsibilities). Suppose we
have quantum access to a GMM with parameters γt =
(θt,µt,Σt). There are quantum algorithms that can:

1. Perform the mapping |i〉 |j〉 |0〉 7→ |i〉 |j〉 |rij〉 such
that |rij − rij | ≤ ε1 with probability 1 − γ in time:
TR1,ε1 = Õ(k1.5 × TG,ε1)

2. For a given j ∈ [k], construct state |Rj〉 such that∥∥∥∥|Rj〉 − 1√
Zj

n∑
i=0

rij |i〉
∥∥∥∥ < ε1 where Zj =

n∑
i=0

r2
ij

with high probability in time: TR2,ε1 = Õ(k2×TR1,ε1)

Proof. For the first statement, let’s recall the definition of
responsibility: rij =

θjφ(vi;µj ,Σj)∑k
l=1 θlφ(vi;µl,Σl)

. With the aid of

UG,ε1 of Lemma 3.2 we can estimate log(φ(vi|µj ,Σj)) for
all j up to additive error ε1, and then using the current
estimate of θt, we can calculate the responsibilities and
create the state,

1√
n

n∑
i=0

|i〉
( k⊗
j=1

|j〉 |log(φ(vi|µj ,Σj)〉
)
⊗ |rij〉 .

The estimate rij is computed by evaluating a weighted soft-
max function with arguments log(φ(vi|µj ,Σj) for j ∈ [k].
The estimates log(φ(vi|µj ,Σj) are then uncomputed. The
runtime of the procedure is given by calling k times Lemma
3.2 for Gaussian estimation (the arithmetic operations to
calculate the responsibilities are absorbed).

Let us analyze the error in the estimation of rij . The
responsibility rij is a softmax function with arguments
log(φ(vi|µj ,Σj)) that are computed upto error ε1 using
Lemma 3.2. As the softmax function has a Lipschitz con-
stant K ≤

√
2 by Lemma 1.3, we choose precision for

Lemma 3.2 to be ε1/
√

2k to get the guarantee |rij − rij | ≤
ε1. Thus, the total cost of this step is TR1,ε1 = k1.5TG,ε1 .

Now let’s see how to encode this information in the am-
plitudes, as stated in the second claim of the Lemma. We
estimate the responsibilities rij to some precision ε and
perform a controlled rotation on an ancillary qubit to obtain,

1√
n
|j〉

n∑
i=0

|i〉 |rij〉
(
rij |0〉+

√
1− rij2 |1〉

)
. (9)

We then undo the circuit on the second register and perform
amplitude amplification on the rightmost auxiliary qubit
being |0〉 to get |Rj〉 := 1

‖Rj‖
∑n
i=0 rij |i〉. The runtime

for amplitude amplification on this task is O(TR1,ε ·
√
n

‖Rj‖ ).

Let us analyze the precision ε required to prepare |Rj〉
such that

∥∥|Rj〉 − |Rj〉∥∥ ≤ ε1. As we have estimates
|rij − rij | < ε for all i, j, the `2-norm error

∥∥Rj −Rj∥∥ =√∑n
i=0 |rij − rij |2 <

√
nε. Applying Claim 1.4, the

error for the normalized vector |Rj〉 can be bounded as∥∥|Rj〉 − |Rj〉∥∥ < √
2nε
‖Rj‖ . By the Cauchy-Schwarz inequal-

ity we have that ‖Rj‖ ≥
∑n
i rij√
n

. We can use this to obtain

a bound
√
n

‖Rj‖ <
√
n∑
i rij

√
n = O(1/k), using the dataset
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assumptions in the main manuscript. If we choose ε such
that

√
2nε
‖Rj‖ < ε1, that is ε ≤ ε1/k then our runtime becomes

TR2,ε1 := Õ(k2 × TR1,ε1).

Lemma 1.13 (Computing θt+1). We assume quantum ac-
cess to a GMM with parameters γt and let δθ > 0 be a
precision parameter. There exists an algorithm that esti-
mates θ

t+1 ∈ Rk such that
∥∥∥θt+1 − θt+1

∥∥∥ ≤ δθ in time

Tθ = O

(
k3.5η1.5κ

2(Σ)µ(Σ)

δ2
θ

)

Proof. An estimate of θt+1
j can be recovered from the fol-

lowing operations. First, we use Lemma 3.3 (part 1) to
compute the responsibilities to error ε1, and then perform
the following mapping, which consists of a controlled rota-
tion on an auxiliary qubit:

1√
nk

n,k∑
i=1
j=1

|i〉 |j〉 |rijt〉 7→

1√
nk

n,k∑
i=1
j=1

|i〉 |j〉
(√

rij
t |0〉+

√
1− rijt |1〉

)
(10)

The previous operation has a cost of TR1,ε1 , and the proba-
bility of getting |0〉 is p(0) = 1

nk

∑n
i=1

∑k
j=1 r

t
ij = 1

k .

Recall that θt+1
j = 1

n

∑n
i=1 r

t
ij by definition.

Let Zj =
∑n
i=1 rij

t and define state |
√
Rj〉 =(

1√
Zj

∑n
i=1

√
rij

t |i〉
)
|j〉. After amplitude amplifi-

cation on |0〉 we have the state,

|
√
R〉 :=

1√
n

n,k∑
i=1
j=1

√
rij

t |i〉 |j〉

=

k∑
j=1

√
Zj
n

(
1√
Zj

n∑
i=1

√
rij

t |i〉

)
|j〉

=

k∑
j=1

√
θj
t+1 |

√
Rj〉 . (11)

The probability of obtaining outcome |j〉 if the second reg-
ister is measured in the standard basis is p(j) = θj

t+1
.

An estimate for θt+1
j with precision ε can be obtained by

either sampling the last register, or by performing amplitude
estimation to estimate each of the values θt+1

j for j ∈ [k].
Sampling requires O(ε−2) samples by the Chernoff bounds,
but does not incur any dependence on k. In this case, as the

number of cluster k is relatively small compared to 1/ε, we
chose to do amplitude estimation to estimate all θt+1

j for
j ∈ [k] to error ε/

√
k in time,

Tθ := O

(
k ·
√
kTR1,ε1

ε

)
. (12)

Let’s analyze the error in the estimation of θt+1
j . For the

error due to responsibility estimation by Lemma 3.3 we
have |θj

t+1−θt+1
j | = 1

n

∑
i |rij

t−rtij | ≤ ε1 for all j ∈ [k],

implying that
∥∥∥θt+1 − θt+1

∥∥∥ ≤ √kε1. The total error in `2
norm due to Amplitude estimation is at most ε as it estimates
each coordinate of θj

t+1
to error ε/

√
k.

Using the triangle inequality, we have the total error is at
most ε+

√
kε1. As we require that the final error be upper

bounded as
∥∥∥θt+1 − θt+1

∥∥∥ < δθ, we choose parameters
√
kε1 < δθ/2 ⇒ ε1 <

δθ
2
√
k

and ε < δθ/2. With these pa-
rameters, the overall running time of the quantum procedure
is Tθ = O(k1.5 TR1,ε1

ε ) = O
(
k3.5 η

1.5·κ2(Σ)µ(Σ)
δ2θ

)
.

Lemma 1.14 (Computing µt+1
j ). We assume we have

quantum access to a GMM with parameters γt. For a
precision parameter δµ > 0, there is a quantum algo-
rithm that calculates {µjt+1}kj=1 such that for all j ∈ [k]∥∥µjt+1 − µt+1

j

∥∥ ≤ δµ in time

Tµ = Õ

(
kdηκ(V )(µ(V ) + k3.5η1.5κ2(Σ)µ(Σ))

δ3
µ

)

Proof. The new centroid µt+1
j is estimated by first creat-

ing an approximation of the state |Rtj〉 up to error ε1 in
the `2-norm using part 2 of Lemma 3.3. We then use the
quantum linear algebra algorithms in Theorem 1.8 to mul-
tiply Rj by V T , and compute a state |µjt+1〉 along with
an estimate for the norm

∥∥V TRtj∥∥ =
∥∥µjt+1

∥∥ with er-
ror εnorm. The last step of the algorithm consists in esti-
mating the unit vector |µjt+1〉 with precision εtom using
tomography. Considering that the tomography depends
on d, which we expect to be bigger than the precision re-
quired by the norm estimation, we can assume that the run-
time of the norm estimation is absorbed. Thus, we obtain:
Õ
(
k d
ε2tom
· κ(V ) (µ(V ) + TR2,ε1)

)
.

Let’s now analyze the total error in the estimation of the new
centroids, which we want to be δµ. For this purpose, we
use Claim 1.5, and choose parameters such that 2

√
η(εtom+

εnorm) = δµ. Since the error ε3 for quantum linear algebra
appears as a logarithmic factor in the running time, we can
choose ε3 � εtom without affecting the runtime.
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Let µ be the classical unit vector obtained after quantum
tomography, and |̂µ〉 be the state produced by the quantum
linear algebra procedure starting with an approximation of
|Rtj〉. Using the triangle inequality we have ‖|µ〉 − µ‖ <∥∥∥µ− |̂µ〉∥∥∥ +

∥∥∥|̂µ〉 − |µ〉∥∥∥ < εtom + ε1 < δµ/2
√
η. The

errors for the norm estimation procedure can be bounded
similarly as | ‖µ‖ − ‖µ‖| < | ‖µ‖ − ‖̂µ‖|+ |‖µ‖ − ‖̂µ‖| <
εnorm + ε1 ≤ δµ/2

√
η. We therefore choose parameters

εtom = ε1 = εnorm ≤ δµ/4
√
η. Since the amplitude

estimation step we use for estimating the norms does not
depends on d, which is expected to dominate the other pa-
rameters, we omit the amplitude estimation step. Substitut-
ing for TR2,δµ , we have the more concise expression for the
running time of:

Õ

(
kdηκ(V )(µ(V ) + k3.5η1.5κ2(Σ)µ(Σ))

δ3
µ

)
(13)

Lemma 1.15 (Computing Σt+1
j ). We assume we have

quantum access to a GMM with parameters γt. We also
have computed estimates µjt+1 of all centroids such that∥∥µjt+1 − µt+1

j

∥∥ ≤ δµ for precision parameter δµ > 0.
Then, there exists a quantum algorithm that outputs esti-
mates for the new covariance matrices {Σt+1

j }kj=1 such

that
∥∥∥Σt+1

j − Σ
t+1

j

∥∥∥
F
≤ δµ

√
η with high probability, in

time,

TΣ := Õ
(kd2ηκ2(V )(µ(V ′) + η2k3.5κ2(Σ)µ(Σ))

δ3
µ

)
Proof. It is simple to check, that the update rule of the co-
variance matrix during the maximization step can be reduced
to (Murphy, 2012, Exercise 11.2):

Σt+1
j ←

∑n
i=1 rij(vi − µ

t+1
j )(vi − µt+1

j )T∑n
i=1 rij

=

=

∑n
i=1 rijviv

T
i

nθj
− µt+1

j (µt+1
j )T = Σ′j − µt+1

j (µt+1
j )T

(14)

First, note that we can use the estimates of the centroids
to compute µt+1

j (µt+1
j )T with error δµ ‖µ‖ ≤ δµ

√
η in

the update rule for the Σj . This follows from the fact that
µ = µ + e where e is a vector of norm δµ. Therefore∥∥µµT − µ µT∥∥ < 2

√
ηδµ + δ2

µ ≤ 3
√
ηδµ. It follows that

we can allow an error of
√
ηδµ also for the left term in

the definition of Σt+1
j . Let’s discuss the procedure for esti-

mating Σ′j in Eq. (14). Note that vec[Σ′j ] = (V ′)TRj , so
we use quantum matrix multiplication to estimate |vec[Σ′j ]〉

and
∥∥vec[Σ′j ]

∥∥. As the runtime for the norm estimation
κ(V ′)(µ(V ′)+TR2,ε1

)) log(1/εmult)

εnorms
does not depend on d, we

consider it smaller than the runtime for performing tomog-
raphy. Thus, the runtime for this operation is:

O(
d2 log d

ε2tom
κ(V ′)(µ(V ′) + TR2,ε1)) log(1/εmult)).

Let’s analyze the error of this procedure. We want a matrix
Σ′j that is

√
ηδµ-close to the correct one:

∥∥∥Σ′j − Σ′j

∥∥∥
F

=∥∥∥vec[Σ′j ]− vec[Σ′j ]
∥∥∥

2
<
√
ηδµ. Again, the error due to

matrix multiplication can be taken as small as necessary,
since is inside a logarithm. From Claim 1.5, we just need
to fix the error of tomography and norm estimation such
that η(εunit + εnorms) <

√
ηδµ where we have used η as

an upper bound on ‖Σj‖F . For the unit vectors, we re-

quire
∥∥∥|Σ′j〉 − |Σ′j〉∥∥∥ ≤ ∥∥∥|Σ′j〉 − |̂Σ′j〉∥∥∥+

∥∥∥|̂Σ′j〉 − |Σ′j〉∥∥∥ <
εtom + ε1 ≤ δµ/2

√
η, where |Σ′j〉 is the error due to to-

mography and |̂Σ′j〉 is the error due to Lemma 3.3. For this
inequality to be true, we choose εtom = ε1 < δµ/4

√
η.

The same argument applies to estimating the norm
∥∥Σ′j

∥∥
with relative error : |

∥∥Σ′j
∥∥ − ∥∥Σ′j

∥∥| ≤ |∥∥Σ′j
∥∥ − ∥̂∥Σ′j

∥∥| +
|
∥̂∥Σ′j

∥∥ − ∥∥Σ′j
∥∥ | < ε + ε1 ≤ δµ/2

√
η (where here ε is

the error of the amplitude estimation step used in Theorem
1.8 and ε1 is the error in calling Lemma 3.3. Again, we
choose ε = ε1 ≤ δµ/4

√
η. Note that κ(V ′) ≤ κ2(V ). This

can be derived from the fact that κ(A ⊗ B) = κ(A)κ(B),
κ(AB) ≤ κ(A)κ(B), and

V ′ :=

 [e1 ⊗ e1]T

...
[en ⊗ en]T

 (V ⊗ V ).

Since the tomography is more costly than the ampli-
tude estimation step, we can disregard the runtime for
the norm estimation step. As this operation is re-
peated k times for the k different covariance matrices,
the total runtime of the whole algorithm is given by
Õ
(
kd2ηκ2(V )(µ(V ′)+η2k3.5κ2(Σ)µ(Σ))

δ3µ

)
.

Let us also note that for each of new computed covariance
matrices, we use Lemma ?? to compute an estimate for their
log-determinant and this time can be absorbed in the time
TΣ.

Lemma 1.16 (Quantum estimation of likelihood). We as-
sume we have quantum access to a GMM with parameters
γt. For ετ > 0, there exists a quantum algorithm that
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estimates E[p(vi; γ
t)] with absolute error ετ in time

T` = Õ

(
k1.5η1.5κ

2(Σ)µ(Σ)

ε2τ

)

Proof. We obtain the likelihood from the ability to com-
pute the value of a Gaussian distribution and quantum arith-
metic. Using the mapping of Lemma 3.2 with precision ε1,
we can compute φ(vi|µj ,Σj) for all the Gaussians, that is
|i〉
⊗k−1

j=0 |j〉 |p(vi|j; γj)〉. Then, by knowing θ, and by us-
ing quantum arithmetic we can compute in a register the mix-
ture of Gaussian’s: p(vi; γ) =

∑
j∈[k] θjp(vi|j; γ). We now

drop the notation for the model γ and write p(vi) instead of
p(vi; γ). Doing the previous calculations quantumly leads to
the creation of the state |i〉 |p(vi)〉. We perform the mapping
|i〉 |p(vi)〉 7→ |i〉

(√
p(vi)| |0〉+

√
1− p(vi) |1〉

)
and es-

timate p(|0〉) ' E[p(vi)] with amplitude estimation on
the ancilla qubit. To get a ετ -estimate of p(0) we need
to decide the precision parameter we use for estimating
p(vi|j; γ) and the precision required by amplitude estima-
tion. Let p(0) be the ε1-error introduced by using Lemma
3.2 and p̂(0) the error introduced by amplitude estima-
tion. Using triangle inequality we set

∥∥∥p(0)− p̂(0)
∥∥∥ <∥∥∥p̂(0)− p(0)

∥∥∥+
∥∥∥p(0)− p(0)

∥∥∥ < ετ .

To have |p(0) − p̂(0)| < ετ , we should set ε1 such that
|p(0) − p(0)| < ετ/4, and we set the error in amplitude
estimation and in the estimation of the probabilities to be
ετ/2. The runtime of this procedure is therefore:

Õ

(
k · TG,ετ ·

1

ετ
√
p(0)

)
= Õ

(
k1.5η1.5 · κ(Σ)µ(Σ)

ε2τ

)

1.5. Experiments

We used a subset of the voices that can be found on Vox-
Forge (Voxforge.org). The training set consist in at 5 speech
utterances from 38 speakers. An utterance is a wav audio
clips of a few seconds of voice speech. In order to perform
speech recognition on raw wav audio files, we need to pro-
ceed with classical feature extraction procedures. In the
speech recognition community is common to extract from
audio the Mel Frequency Cepstrum Coefficients (MFCCs)
features (Reynolds et al., 2000), and we followed the same
approach. We selected d = 40 features for each speaker.
This classical procedure, takes as input an audio file, and
return a matrix where each row is a vector in R40, repre-
senting a small window of audio file of a few milliseconds.
Due to the dissimilarities in the speakers’ audio data, the
different dataset V1 . . . V38 are made of a variable number

of points which ranges from n = 2000 to 4000. Then, each
speaker is modeled with a mixture of 16 Gaussians with
diagonal covariance matrix. The test set consists of other 5
(or more) unseen utterances of the same 38 speakers. The
task is to correctly label the unseen utterances with the name
of the correct speaker. This is done by testing each of the
GMM fitted during the training against the new test sample.
The selected model is the one with the highest likelihood. In
the experiments, we compared the performances of classical
and quantum algorithm, and measured the relevant param-
eters that govern the runtime of it. We used scikit-learn
(Pedregosa et al., 2011) to run all the experiments.

We also simulated the impact of noise during the training of
the the GMM fitted with ML estimate, so to assure the con-
vergence of the quantum algorithm. For almost all GMM
fitted using 16 diagonal covariance matrices, there is at least
a Σj with bad condition number (i.e up to 2500 circa). As
in (Kerenidis et al., 2019a; Kerenidis & Luongo, 2020) we
took a threshold on the matrix by discarding singular values
smaller than a certain value. Practically, we discarded any
singular value smaller than 0.07. In the experiment, thresh-
olding the covariance matrices not only did not make the
accuracy worse, but had also a positive impact on it, perhaps
because it has a regularizing effect on the model. Each of the
model γt estimated with ML estimate has been perturbed
at each iteration. For each model, the perturbation consists
of three things. First we add to each of the components
of θ some noise from the truncated Gaussian distribution
centered in θi in the interval (θi − δθ/

√
k, θi + δθ/

√
k)

with unit variance. This can guarantee that overall, the er-
ror in the vector of the mixing weights is smaller than δθ.
Then we perturb each of the components of the centroids
µj with Gaussian noise centered in (µj)i on the interval
((µj)i − δµ√

d
), (µj)i +

δµ√
d
). Similarly, we perturbed also

the diagonal matrices Σj with a vector of norm smaller than
δµ
√
η, where η = 10. As we are using a diagonal GMM,

this reduces to perturbing each singular value with Gaussian
noise from a truncated Gaussian centered Σ on the inter-
val ((Σj)ii − δµ

√
η/
√
d, (Σj)ii + δµ

√
η/
√
d). Then, we

made sure that each of the singular values stays positive,
as covariance matrices are positive definite. Last, the ma-
trices are thresholded, i.e. the eigenvalues smaller than a
certain threshold στ are set to στ . This is done in order
to make sure that the effective condition number κ(Σ) is
no bigger than a threshold κτ . With a ετ = 7 × 10−3 and
70 iterations per initialization, all runs of the 7 different
initialization of classical and quantum EM converged. Once
the training has terminated, we measured all the values
of κ(Σ), κ(V ), µ(V ), µ(Σ), log det(Σ) for both ML and
for MAP estimate. The results are in the Table on the
main manuscript. Notably, taking a threshold on the Σj
help to mitigate the errors of noise as it regularized the
model. In fact, using classical EM with ML estimation, we
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reached an accuracy of 97.1%. With parameters of δµ = 0.5,
δθ = 0.038, and a threshold on the condition number of the
covariance matrices of Σj of 0.07, we reached an accuracy
of 98.7%. 1

We further analyzed experimentally the evolution of the
condition number κ(Vi) while adding vectors from all the
utterances of the speakers to the training set Vi. As we
can see from Figure 1, all the condition numbers are pretty
stable and do not increase by adding new vectors to the
various training sets V1, . . . Vn.

Figure 1. Evolution of κ(Vi) where Vi is the data matrix obtained
by all the utterances available from the i-th speaker to the training
set. For all the different speaker, the condition number of the
matrix Vi is stable, and does not increase while adding vectors to
the training set.

We leave for future work the task of testing the algorithm
with further experiments (i.e. bigger and different types
of datasets), and further optimizations, like procedures for
hyperparameter tuning.

1.6. Quantum MAP estimate of GMM

Maximum Likelihood is not the only way to estimate the
parameters of a model, and in certain cases might not even
be the best one. For instance, in high-dimensional spaces,
it is pretty common for ML estimates to overfit. Moreover,
it is often the case that we have prior information on the
distribution of the parameters, and we would like our models
to take this information into account. These issues are often

1The experiments has been improved upon a previous version
of this work, by adding more data, adding the noise during the
training procedure, and finding better hyperparameters.

addressed using a Bayesian approach, i.e. by using a so-
called Maximum A Posteriori estimate (MAP) of a model
(Murphy, 2012, Section 14.4.2.8). MAP estimates work
by assuming the existence of a prior distribution over the
parameters γ. The posterior distribution we use as objective
function to maximize comes from the Bayes’ rule applied on
the likelihood, which gives the posterior as a product of the
likelihood and the prior, normalized by the evidence. More
simply, we use the Bayes’ rule on the likelihood function,
as p(γ;V ) = p(V ;γ)p(γ)

p(V ) . This allows us to treat the model
γ as a random variable, and derive from the ML estimate a
MAP estimate:

γ∗MAP = arg max
γ

n∑
i=1

log p(γ|vi) (15)

Among the advantages of a MAP estimate over ML is that it
avoids overfitting by having a kind of regularization effect
on the model (Murphy, 2012, Section 6.5). Another feature
consists in injecting into a maximum likelihood model some
external information, perhaps from domain experts. This
advantage comes at the cost of requiring “good” prior infor-
mation on the problem, which might be non-trivial. In terms
of labelling, a MAP estimates correspond to a hard cluster-
ing, where the label of the point vi is decided according to
the following rule:

yi = arg max
j

rij = arg max
j

log p(vi|yi = j; γ)+

log p(yi = j; γ) (16)

Deriving the previous expression is straightforward using
the Bayes’ rule, and by noting that the softmax is rank-
preserving, and we can discard the denominator of rij -
since it does not depend on γ - and it is shared among all
the other responsibilities of the points vi. Thus, from Equa-
tion 15 we can conveniently derive Equation 16 as a proxy
for the label. Fitting a model with MAP estimate is com-
monly done via the EM algorithm as well. The Expectation
step of EM remains unchanged, but the update rules of the
Maximization step are slightly different. In this work we
only discuss the GMM case, for the other cases the inter-
ested reader is encouraged to see the relevant literature. For
GMM, the prior on the mixing weight is often modeled
using the Dirichlet distribution, that is θj ∼ Dir(α). For
the rest of parameters, we assume that the conjugate prior
is of the form p(µj ,Σj) = NIW (µj ,Σj |m0, ι0, ν0,S0),
where NIW(µj ,Σj) is the Normal-inverse-Wishart distri-
bution. The probability density function of the NIW is the
product between a multivariate normal φ(µ|m0,

1
ιΣ) and

a inverse Wishart distribution W−1(Σ|S0, ν0). NIW has
as support vectors µ with mean µ0 and covariance matri-
ces 1

ιΣ where Σ is a random variable with inverse Wishart
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distribution over positive definite matrices. NIW is often
the distribution of choice in these cases, as is the conjugate
prior of a multivariate normal distribution with unknown
mean and covariance matrix. A shorthand notation, let’s
define rj = nθj =

∑n
i=1 rij . As in (Murphy, 2012), we

also denote with xjt+1 and Sj
t+1

the Maximum Likelihood
estimate of the parameters (µt+1

j )ML and (Σt+1
j )ML. For

MAP, the update rules are the following:

θt+1
j ← rj + αj − 1

n+
∑
j αj − k

(17)

µt+1
j ← rjxj

t+1 + ι0m0

rj + ι0
(18)

Σt+1
j ←

S0 + Sj
t+1

+
ι0rj
ι0+rj

(xj
t+1 −m0)(xj

t+1 −m0)T

ν0 + rk + d+ 2
(19)

Where the matrix S0 is defined as:

S0 :=
1

k1/d
Diag(s2

1, · · · , s2
d), (20)

where each value sj is computed as sj := 1
n

∑n
i=1(xij −∑n

i=1 xij))
2 which is the pooled variance for each of the

dimension j. For more information on the advantages, dis-
advantages, and common choice of parameters of a MAP
estimate, we refer the interested reader to (Murphy, 2012).
Using the QEM algorithm to fit a MAP estimate is straight-
forward, since once the ML estimate of the parameter is
recovered from the quantum procedures, the update rules
can be computed classically.

Corollary 1.17 (QEM for MAP estimates of GMM). We
assume we have quantum access to a GMM with parameters
γt. For parameters δθ, δµ, ετ > 0, the running time of one
iteration of the Quantum Maximum A Posteriori (QMAP)
algorithm algorithm is

O(Tθ + Tµ + TΣ + T`),

for

Tθ = Õ

(
k3.5η1.5κ

2(Σ)µ(Σ)

δ2
θ

)
Tµ = Õ

(
kdηκ(V )(µ(V ) + k3.5η1.5κ2(Σ)µ(Σ))

δ3
µ

)
TΣ = Õ

(kd2ηκ2(V )(µ(V ′) + η2k3.5κ2(Σ)µ(Σ))

δ3
µ

)
T` = Õ

(
k1.5η1.5κ

2(Σ)µ(Σ)

ε2τ

)

For the range of parameters of interest, the running time is
dominated by TΣ.

References
Arthur, D. and Vassilvitskii, S. k-means++: The advantages

of careful seeding. In Proceedings of the eighteenth an-
nual ACM-SIAM symposium on Discrete algorithms, pp.
1027–1035. Society for Industrial and Applied Mathemat-
ics, 2007.

Biernacki, C., Celeux, G., and Govaert, G. Choosing start-
ing values for the EM algorithm for getting the highest
likelihood in multivariate gaussian mixture models. Com-
putational Statistics & Data Analysis, 41(3-4):561–575,
2003.
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