
Entropy Minimization In Emergent Languages: Supplementary

Eugene Kharitonov 1 Rahma Chaabouni 1 2 Diane Bouchacourt 1 Marco Baroni 1 3

1. How much does Receiver rely on messages
in Guess Number?

We supplement the experiments of Section 3 of the main text
by studying the degree to which Receiver relies on messages
in Guess Number. In particular, we show that when Receiver
has the full input (is = ir), it ignores the messages.

We measure the degree to which Receiver relies on the
messages from Sender by constructing a setup where we
break communication, but still let Receiver rely on its own
input. More precisely, we first enumerate all test inputs
for Sender is and Receiver ir. We obtain messages that
correspond to Sender’s inputs, and shuffle them. Next, we
feed the shuffled messages alongside Receiver’s own (un-
shuffled) inputs and compute accuracy, as a measure of
Receiver’s dependence on the messages. This procedure
preserves the marginal distribution of Sender’s messages,
but destroys all the information Sender transmits.

Without messages, Receiver, given k input bits, can only
reach an accuracy of 28−k. In Figure 1, we report results ag-
gregated by training method. Receiver is extremely close to
the accuracy’s higher bound in all configurations. Moreover,
when Receiver gets the entire input, the drop in accuracy
after shuffling is tiny, proving that Receiver’s reliance on
the message is minimal in that setting.

2. Influence of architecture choices
2.1. Does vocabulary size affect the results?

We repeat the same experiments as in Section 3 of the main
text while varying vocabulary size. Note that, to make Guess
Number solvable across each configuration, the vocabulary
has to contain at least 256 symbols. Similarly, for Image
Classification, vocabulary size must be of at least 100. We
tried vocabulary sizes of 256, 1024, 4096 for Guess Number,
and 512, 1024, 2048 for Image Classification. The results

1Facebook AI Research, Paris, France 2Cognitive Machine
Learning (ENS - EHESS - PSL - CNRS - INRIA) 3Catalan Insti-
tute for Research and Advanced Studies, Barcelona, Spain. Corre-
spondence to: Eugene Kharitonov <kharitonov@fb.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

0 2 4 6 8
Binary digits hidden

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Gumbel-Softmax
Stoch. computation
REINFORCE
upper bound

Figure 1. Guess Number: Receiver’s dependence on messages,
measured as performance drop under message intervention.

are reported in Figures 2 (Guess Number) and 3 (Image
Classification). We observe that there is little qualitative
variation over vocabulary size, hence the conclusions we
had in Section 3 of the main paper are robust to variations
of this parameter.

2.2. Does Receiver’s capacity affect the results?

One potential confounding variable is the capacity of Re-
ceiver. Indeed, if Receiver is very simple, then, for the task
to be solved, Sender would have to calculate the answer
itself and feed it to Receiver. To investigate this, we repeat
the Image Classification experiment from Section 4.1 of the
main paper while controlling the power of Receiver’s ar-
chitecture: we put two additional fully-connected 400x400
hidden layers between the input embedding and the output
layer, while in Section 4, Receiver had a single hidden layer.

In Figure 4, we compare the results obtained with these
two variations of Receiver. The reported entropy minimiza-
tion effect holds: even in presence of additional layers, the
entropy of messages H(m) is far from the upper-bound
Hmax = 10 bits and closely follows the lower bound,
Hmin = log2Nl. Thus, again, a more nuanced protocol
only appears when it is needed. Finally, we see that results
for both architectures are close, although in three out of
seven task setups (the number of classes Nl is 2, 10, and 20)
a deeper model results in a slightly higher entropy of the
protocol, on average. Overall, we conclude that Receiver’s

Entropy Minimization In Emergent Languages: Supplementary

capacity does not play a major role in the entropy mini-
mization effect and the latter also takes place with a more
powerful Receiver.

2.3. What if communication takes place through
sequences of symbols?

We also experiment with Guess Number in a setup where
the agents communicate via variable-length messages. The
general architecture of the agents is same as in Section 3, but
we append GRU agents (Cho et al., 2014). Sender GRU is
unrolled to generate the message. The message is produced
until the GRU outputs a special eos token or until the max-
imal length is reached. In the latter case, eos is appended
to the message. The produced message is consumed by a
Receiver’s GRU unit and the hidden state corresponding
to eos is used by Receiver as input to further processing.
When Receiver has additional inputs (in the Guess Num-
ber game), these inputs are used as initial hidden state of
the GRU cell. We use the Stochastic Computation Graph
estimator as described in Section 3.2, as it provided fastest
convergence.

We consider the entire variable-length message as the real-
ization of a random variable m when calculating the entropy
of the messages, H(m). The results are reported in Fig-
ure 5, arranged in function of maximal message length and
vocabulary size. As before, we aggregate the successful
runs according to the entropy regularization coefficient λs
applied to Sender’s output layer.

From Figure 5 we observe that the results are in line with
those obtained in the one-symbol scenario. Entropy mini-
mization still holds: a more nuanced (high-entropy) protocol
only develops when more digits are hidden from Receiver,
which hence requires more information to perform the task.
The approximation to the lower bound is however less tight
as the overall number of possible messages grows (higher
maximum length and/or vocabulary size). There is also a
weak tendency for lower λs to encourage a tighter bottle-
neck.

In preliminary experiments, we have similar results when
the variable-length communication is performed via Trans-
former cells (Vaswani et al., 2017) instead of GRUs (not
reported here).

3. Two-digit MNIST dataset
As discussed in Section 3, to ensure high output informa-
tional complexity in the Image Classification task, we use a
two-digit variant of the MNIST dataset (LeCun et al., 1998).
We construct it as follows. When iterating over the original
MNIST dataset, we take a batch b and (a) select the first
|b|/2 and last |b|/2 images, refer to them as b1 and b2, re-
spectively; (b) create a new batch where the ith image from

b1 is placed to the left of the ith image from b2 and then vice
versa. As a result, we obtain a new stream of images, where
each MNIST digit is seen twice, on the left and on the right
side. Note that not all possible pairwise combinations of the
original images are generated (there are 600002 of those in
the training set alone) and the exact combinations change
across epochs. As labels, we use the depicted two-digit num-
ber modulo Nl, where Nl is the required number of classes.
All pixels are scaled into [0, 1]. We use this same process
to generate training and test sets, based on the training and
test images of the original MNIST dataset, respectively.

4. Hyperparameters
In our experiments, we used the following hyperparameter
grids.

Guess Number (Gumbel-Softmax) Vocab. size: [256,
1024, 4096]; temperature, τ : [0.5, 0.75, 1.0, 1.25, 1.5];
learning rate: [0.001, 0.0001]; max. number of epochs: 250;
random seeds: [0, 1, 2, 3]; batch size: 8; early stopping thr.:
0.99; bits shown to Receiver: [0, 1, 2, 3, 4, 5, 6, 7, 8].

Guess Number (REINFORCE) Vocab. size: [256, 1024,
4096]; Sender entropy regularization coef., λs: [0.01, 0.025,
0.05, 0.1, 0.5, 1.0]; Receiver entropy regularization coef.,
λr: [0.01, 0.1, 0.5, 1.0]; learning rate: [0.0001, 0.001, 0.01];
max. number of epochs: 1000; random seeds: [0, 1, 2, 3];
batch size: 2048; early stopping thr.: 0.99; bits shown to
Receiver: [0, 1, 2, 3, 4, 5, 6, 7, 8].

Guess Number (Stochastic Computation Graph ap-
proach): Vocab. size: [256, 1024, 4096]; Sender entropy
regularization coef., λs: [0.01, 0.05, 0.1, 0.25]; learning
rate: [0.0001, 0.001]; max. number of epochs: 1000; ran-
dom seeds: [0, 1, 2, 3]; batch size: 2048; early stopping thr.:
0.99; bits shown to Receiver: [0, 1, 2, 3, 4, 5, 6, 7, 8].

Image Classification experiments Vocab. size: [512, 1024,
2048]; temperature, τ : [0.5, 0.75, 1.0, 1.5, 2.0]; learning
rate: [0.001], max. number of epochs: 100; random seeds:
[0, 1, 2]; batch size: 32; early stopping thr.: 0.98; number
of classes: [2, 4, 10, 20, 25, 50, 100].

Fitting random labels experiments Vocab. size: 1024;
temperature, τ : [1.0, 10.0]; learning rate: 0.0001, max.
number of epochs: 200; random seeds: [0, 1, 2, 3, 4]; batch
size: 32; early stopping thr.: ∞; prob. of label corruption:
[0.0, 0.5, 1.0].

Adversarial attack experiments Vocab. size: 1024; tem-
perature, τ : [0.1, 1.0, 10.0]; learning rate: 0.0001, max.
number of epochs: 200; random seeds: [0, 1, 2, 3, 4]; batch
size: 32; early stopping thr.: 0.98.

Entropy Minimization In Emergent Languages: Supplementary

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

),
bi

ts

 = 1.0
 = 1.25
 = 1.5

Hmin

(a) Vocab. size: 256, Gumbel-Softmax

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

),
bi

ts

 = 1.0
 = 1.25
 = 1.5

Hmin

(b) Vocab. size: 1024, Gumbel-Softmax

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

),
bi

ts

 = 1.0
 = 1.25
 = 1.5

Hmin

(c) Vocab. size: 4096, Gumbel-Softmax

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

),
bi

ts

s = 0.01
s = 0.025
s = 0.05
s = 0.075
s = 0.1

Hmin

(d) Vocab. size: 256, Stoch. Computation
Graph approach

0 2 4 6 8
Binary digits hidden

0

2

4

6

8
H

(m
),

bi
ts

s = 0.01
s = 0.025
s = 0.05
s = 0.075
s = 0.1

Hmin

(e) Vocab. size: 1024, Stoch. Computation
Graph approach

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

),
bi

ts

s = 0.01
s = 0.025
s = 0.05
s = 0.075
s = 0.1

Hmin

(f) Vocab. size: 4096, Stoch. Computation
Graph approach

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

),
bi

ts

s = 0.01
s = 0.025
s = 0.05
s = 0.075
s = 0.1
s = 0.5

Hmin

(g) Vocab. size: 256, REINFORCE

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

),
bi

ts

s = 0.01
s = 0.025
s = 0.05
s = 0.075
s = 0.1
s = 0.5

Hmin

(h) Vocab. size: 1024, REINFORCE

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

),
bi

ts
s = 0.01
s = 0.025
s = 0.05
s = 0.075
s = 0.1
s = 0.5

Hmin

(i) Vocab. size: 4096, REINFORCE

Figure 2. Guess Number: Entropy of the messages m, depending on vocabulary size, training method, and relaxation temperature τ
(when trained with Gumbel-Softmax) or Sender’s entropy regularization coefficient λs. Shaded regions mark standard deviation.

1 2 3 4 5 6
log2Nl

1

2

3

4

5

6

7

H
(m

),
bi

ts

=0.75
=1.0
=1.5
=2.0

Hmin

(a) Vocab. size: 512

1 2 3 4 5 6
log2Nl

1

2

3

4

5

6

7

H
(m

),
bi

ts

=0.75
=1.0
=1.5
=2.0

Hmin

(b) Vocab. size: 1024

1 2 3 4 5 6
log2Nl

1

2

3

4

5

6

7

H
(m

),
bi

ts

=0.75
=1.0
=1.5
=2.0

Hmin

(c) Vocab. size: 2048

Figure 3. Image Classification: entropy of the messages H(m) across vocabulary sizes. Successful runs are pooled together. Shaded
regions mark standard deviation.

Entropy Minimization In Emergent Languages: Supplementary

1 2 3 4 5 6
log2Nl

1

2

3

4

5

6

7

H
(m

),
bi

ts

One hidden layer
Three hidden layers
Hmin

Figure 4. Image Classification: entropy of the messages H(m)
across Receiver model sizes. Successful runs are pooled together.
Shaded regions mark standard deviation.

5. Evolution of message entropy during
training

In this Section, we aim to gain additional insight into de-
velopment of the communication protocol by measuring its
entropy during training. We concentrate on Guess Number
and use the same experimental runs summarized in Figure 1
of the main text.

For each game configuration (that is, number of bits hidden
from Receiver), we randomly select one successful run and
plot the evolution of Sender message entropy and accuracy
over training epochs.1 We also plot entropy and accuracy
curves for a randomly selected failed run, to verify to what
extent entropy development depends on task success.

We report results for runs where training was performed with
Gumbel-Softmax relaxation and with the Stochastic Graph
Computation approach in Figures 6 and 7, respectively. The
reported entropy and accuracy values are calculated in eval-
uation mode, where Sender’s output is selected greedily,
without sampling. A higher entropy of such deterministic
Sender indicates that the latter can encode more information
about inputs in its messages.

From these results, we firstly observe that the initial entropy
of Sender’s messages (before training) can be both higher
than required for communication success (Figures 6a and
7a) and lower (the rest). When it starts higher than needed, it
generally falls closer to the minimum level required for the
solution. When the initial value is low, it increases during
training. The failed runs can have message entropy above
(Figures 6a, 6b & 7a) and below (e.g. Figures 6c, 6d &

1We exclude the configuration in which Receiver sees the entire
input, as it is a degenerate case of non-communication, as discussed
in Section 4 of the main text.

7d) successful runs, suggesting that there is no systematic
relation between degree of entropy and task success.

The fact that the entropy can be reduced with no decrease in
accuracy or even with accuracy growth (e.g. Figure 6a, red
line, epochs 5..30) indicates that the tendency to discover
new messages (increasing entropy) is counter-balanced by
the complexity of mutual coordination with Receiver when
entropy is larger. In our interpretation, it is this interplay
that serves as a source of the natural bottleneck.

Finally, while in some runs the entropy is effectively in-
creased w.r.t. its initialization level, the resulting protocol’s
entropy is at, or slightly above the lower bound of what the
task allows. In this sense, we argue that the reported effect
can be correctly denoted as a “minimization” result.

References
Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations
using rnn encoder-decoder for statistical machine transla-
tion. arXiv preprint arXiv:1406.1078, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

Entropy Minimization In Emergent Languages: Supplementary

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

),
bi

ts

=0.05
=0.1
=0.01

Hmin

(a) Max length: 5, vocabulary size: 16

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

),
bi

ts
=0.05
=0.1
=0.01

Hmin

(b) Max length: 10, vocabulary size: 16

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

),
bi

ts

=0.05
=0.1
=0.01

Hmin

(c) Max length: 5, vocabulary size: 64

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

),
bi

ts

=0.05
=0.1
=0.01

Hmin

(d) Max length: 10, vocabulary size: 64

Figure 5. Guess Number: Entropy of the emergent protocol when communication is performed with variable-length messages. Shaded
regions mark standard deviation.

Entropy Minimization In Emergent Languages: Supplementary

0 50 100 150 200 250
epoch

0.0

0.5

1.0

1.5

2.0

2.5

H
(m

),
bi

ts

0 50 100 150 200 250
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a) Binary digits hidden: 2

0 50 100 150 200 250
epoch

0

1

2

3

4

5

H
(m

),
bi

ts

0 50 100 150 200 250
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(b) Binary digits hidden: 4

0 50 100 150 200 250
epoch

0

2

4

6

H
(m

),
bi

ts

0 50 100 150 200 250
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(c) Binary digits hidden: 6

0 50 100 150 200 250
epoch

2

4

6

8

H
(m

),
bi

ts

0 50 100 150 200 250
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(d) Binary digits hidden: 8

Figure 6. Evolution of H(m) over training epochs. Gumbel Softmax-based optimization, Guess Number. For each game configuration,
specified by the number of bits Receiver lacks, we sample one successful (black line) and one failed (red line) training trajectory. The blue
line marks Hmin, minimal entropy for a successful solution.

Entropy Minimization In Emergent Languages: Supplementary

0 50 100 150 200 250
epoch

0

2

4

6

H
(m

),
bi

ts

0 50 100 150 200 250
epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a) Binary digits hidden: 2

0 50 100 150 200 250
epoch

2

4

6

H
(m

),
bi

ts

0 50 100 150 200 250
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(b) Binary digits hidden: 4

0 50 100 150 200 250
epoch

2

3

4

5

6

H
(m

),
bi

ts

0 50 100 150 200 250
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(c) Binary digits hidden: 6

0 50 100 150 200 250
epoch

4

6

8

H
(m

),
bi

ts

0 50 100 150 200 250
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(d) Binary digits hidden: 8

Figure 7. Evolution of H(m) over training epochs. Stochastic Computation Graph-based optimization, Guess Number. For each game
configuration, specified by the number of bits Receiver lacks, we sample one successful (black line) and one failed (red line) training
trajectory. The blue line marks Hmin, minimal entropy for a successful solution.

