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Abstract
The decision-theoretic foundations of classical
machine learning models have largely focused
on estimating model parameters that minimize
the expectation of a given loss function. How-
ever, as machine learning models are deployed in
varied contexts, such as in high-stakes decision-
making and societal settings, it is clear that these
models are not just evaluated by their average per-
formances. In this work, we propose and study
a novel notion of L-Risk based on the classical
idea of rank-weighted learning. These L-Risks,
induced by rank-dependent weighting functions
with bounded variation, is a unification of pop-
ular risk measures such as conditional value-at-
risk and those defined by cumulative prospect
theory. We give uniform convergence bounds of
this broad class of risk measures and study their
consequences on a logistic regression example.

1. Introduction
The statistical decision-theoretic foundations of modern ma-
chine learning have largely focused on solving tasks by
minimizing the expectation of some loss function. This
ensures that the resulting models have high average case
performance. However, as machine learning models are
deployed along side humans in decision-making, it is clear
that they are not just evaluated by their average case per-
formance but also properties like fairness. There has been
increasing interest in capturing these additional properties
via appropriate modifications of the classical objective of ex-
pected loss (Duchi et al., 2019; Garcıa & Fernández, 2015;
Sra et al., 2012).

In parallel, there is a long line of work exploring alter-
natives to expected loss based risk measures in decision-
making (Howard & Matheson, 1972), and in reinforcement
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learning, where percentile based risk measures have been
used to quantify the tail-risk of models. A recent line of
work borrows classical ideas from behavioral economics
for use in machine learning to make models more human-
aligned. In particular, Prashanth et al. (2016) have brought
ideas from cumulative prospect theory (Tversky & Kahne-
man, 1992) into reinforcement learning and bandits and Leqi
et al. (2019) have used cumulative prospect theory to intro-
duce the notion of human-aligned risk measures.

A common theme in these prior works is the notion of rank-
weighted risks. The aforementioned risk measures weight
each loss by its relative rank, and are based upon the clas-
sical rank-dependent expected utility theory (Diecidue &
Wakker, 2001). These rank-dependent utilities have also
been used in several different contexts in machine learn-
ing. For example, such rank-weighted risks have been used
to speed up training of deep networks (Jiang et al., 2019).
They have also played a key role in designing estimators
which are robust to outliers in data. In particular, trimming
procedures that simply throw away data with high losses
have been used to design estimators that are robust to out-
liers (Daniell, 1920; Bhatia et al., 2015; Lai et al., 2016;
Prasad et al., 2018; Lugosi & Mendelson, 2019; Prasad
et al., 2019; Shah et al., 2020).

While these rank-based objectives have found widespread
use in machine learning, establishing their statistical prop-
erties has remained elusive. On the other hand, we have
a clear understanding of the generalization properties for
average-case risk measures. Loosely speaking, given a col-
lection of models and finite training data, and suppose we
choose a model by minimizing average training error, then,
we can roughly guarantee on how well this chosen model
performs in an average sense. Such guarantees are typically
obtained by studying uniform convergence of average-case
risk measures.

However, as noted before, uniform convergence of rank-
weighted risk measures have not been explored in detail.
This difficulty comes from the weights being dependent
on the whole data, thereby, inducing complex dependen-
cies. Hence, existing work on generalization has been on
the weaker notion of pointwise concentration bounds (Bhat,
2019; Duchi & Namkoong, 2018) or have focused on spe-
cific forms of rank-weighted risk measures such as condi-
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tional value-at-risk (CVaR) (Duchi & Namkoong, 2018).

Contributions. In this work, we propose the study of
rank-weighted risks and prove uniform convergence results.
In particular, we propose a new notion of L-Risk in Section 2
that unifies existing rank-dependent risk measures including
CVaR and those defined by cumulative prospect theory. In
Section 3, we present uniform convergence results, and we
observe that the learning rate depends on the weighting func-
tion. In particular, when the weighting function is Lipschitz,
we recover the standard 𝑂(𝑛−1/2) convergence rate. Finally,
we instantiate our result on logistic regression in Section 4
and empirically study the convergence performance of the
L-Risks in Section 6.

2. Background and Problem Setup
In this section, we provide the necessary background on
rank-weighted risk minimization, and introduce the notion
of bounded variation functions that we consider in this work.
Additionally, we provide standard learning-theoretic defini-
tions and notation before moving on to our main results.

2.1. L-Risk Estimation

We assume that there is a joint probability distribution
𝑃 (𝑋,𝑌 ) over the space 𝒵 = 𝒳 ×𝒴 and our goal is to learn
a function 𝑓 : 𝒳 ↦→ 𝒴 . In the standard decision-theoretic
framework, 𝑓* is chosen among a class of functions ℱ using
a non-negative loss function ℓ : ℱ × 𝒵 ↦→ R+.

Classical Risk Estimation. In the traditional setting of
risk minimization, the population risk of a function 𝑓 is
given by the expectation of the loss function ℓ(𝑓, 𝑍) when
𝑍 is drawn according to the distribution 𝑃 :

ℛ(𝑓) = E𝑍∼𝑃 [ℓ(𝑓, 𝑍)].

Given 𝑛 i.i.d. samples {𝑍𝑖}𝑛𝑖=1, empirical risk minimization
substitutes the empirical risk for the population risk in the
risk minimization objective:

ℛ𝑛(𝑓) =
1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝑓, 𝑍𝑖).

L-Risk. As noted in the Section 1, there are many sce-
narios in machine learning, where we want to evaluate a
function by other metrics apart from average loss. To this
end, we first define the notion of an L-Statistic which dates
back to the classical work of (Daniell, 1920).
Definition 1. Let 𝑋(1) ≤ 𝑋(2) . . . ≤ 𝑋(𝑛) be the order
statistics of the sample 𝑋1, 𝑋2, . . . 𝑋𝑛. Then, the L-statistic
is a linear combination of order statistics,

𝑇𝑤({𝑋𝑖}𝑛𝑖=1) =
1

𝑛

𝑛∑︁
𝑖=1

𝑤

(︂
𝑖

𝑛

)︂
𝑋(𝑖),

where 𝑤 : [0, 1] ↦→ [0,∞) is a scoring function.

With the above notion of an empirical L-statistic at hand,
we define the notion of empirical L-risk for any function 𝑓
by simply replacing the empirical average of the losses with
their corresponding L-statistic.
Definition 2. The empirical L-risk of 𝑓 is

ℒℛ𝑤,𝑛(𝑓) =
1

𝑛

𝑛∑︁
𝑖=1

𝑤

(︂
𝑖

𝑛

)︂
ℓ(𝑖)(𝑓),

where ℓ(1)(𝑓) ≤ . . . ≤ ℓ(𝑛)(𝑓) are the order statistics of
the sample losses ℓ(𝑓, 𝑍1), . . . ℓ(𝑓, 𝑍𝑛).

Note that the empirical L-risk can be alternatively written
in terms of the empirical cumulative distribution function
𝐹𝑓,𝑛 of the sample losses {ℓ(𝑓, 𝑍𝑖)}𝑛𝑖=1:

ℒℛ𝑤,𝑛 =
1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝑓, 𝑍𝑖)𝑤(𝐹𝑓,𝑛(ℓ(𝑓, 𝑍𝑖))). (1)

Accordingly, the population L-risk for any function 𝑓 can
be defined as:

ℒℛ𝑤(𝑓) = E𝑍∼𝑃 [ℓ(𝑓, 𝑍)𝑤(𝐹𝑓 (ℓ(𝑓, 𝑍))] , (2)

where 𝐹𝑓 (·) is the cumulative distribution function of
ℓ(𝑓, 𝑍) for 𝑍 drawn from 𝑃 .

2.2. Illustrative Examples of L-Risk

The framework of risk minimization is a central paradigm
of statistical estimation and is widely applicable. In this
section, we provide illustrative examples that L-risk gener-
alizes classical risk and encompasses several other notions
of risk measures. To begin with, observe that simply set-
ting the weighting function as 𝑤(𝑡) = 1 for all 𝑡 ∈ [0, 1],
L-Risk minimization corresponds to the classical empirical
risk estimation.

Conditional Value-at-Risk (CVaR). As noted in Sec-
tion 1, in settings where low-probability events have catas-
trophic losses, using classical risk is inappropriate. Condi-
tional value-at-risk was introduced to handle such tail events
and measures the expected loss when conditioned on the
event that the loss exceeds a certain threshold. Moreover,
CVaR has several desirable properties as a risk measure and
in particular, is convex and coherent (Krokhmal et al., 2013).
Hence, CVaR is studied across a number of fields such as
mathematical finance (Rockafellar et al., 2000), decision
making, and more recently machine learning (Duchi et al.,
2019). Formally, the CVaR of a function 𝑓 at a confidence
level 1 − 𝛼 is defined as,

ℛCVaR,𝛼(𝑓) = E𝑍∼𝑃 [ℓ(𝑓, 𝑍)|ℓ(𝑓, 𝑍) ≥ VaR𝛼(ℓ(𝑓, 𝑍))],
(3)
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where VaR𝛼(ℓ(𝑓, 𝑍)) = inf
𝑥:𝐹𝑓 (𝑥)≥1−𝛼

𝑥 is the value-at-risk.

Observe that CVaR is a special case L-Risk in (2) and can
be obtained by choosing 𝑤(𝑡) = 1

𝛼1{𝑡 ≥ 1 − 𝛼}, where
1{·} is the indicator function.

Human-Aligned Risk (HRM). Cumulative prospect the-
ory (CPT), which is motivated by empirical studies of hu-
man decision-making from behavioral economics (Tversky
& Kahneman, 1992), has recently been studied in machine
learning (Prashanth et al., 2016; Gopalan et al., 2017; Leqi
et al., 2019). In particular, Leqi et al. (2019) proposed the
following human-aligned risk objective,

ℛHRM,𝑎,𝑏(𝑓) = E𝑍∼𝑃 [ℓ(𝑓, 𝑍)𝑤a,b(𝐹𝑓 (ℓ(𝑓, 𝑍))],

where 𝑤a,b(𝑡) = 3−3𝑏
𝑎2−𝑎+1

(︀
3𝑡2 − 2(𝑎 + 1)𝑡 + 𝑎

)︀
+ 1.

Trimmed Risk. Trimmed mean is a measure of the central
tendency of a distribution and is calculated by discarding
samples that are above and below a certain threshold and
using the remaining samples to calculate the remaining sam-
ple mean. It is known to be more robust to outliers and
heavy-tails and is widely used across a variety of disciplines
such as finance and aggregating scores in sports. Finally,
the trimmed risk of a function 𝑓 at trimming level 𝛼 can be
defined as,

ℛTRIM,𝛼(𝑓) = E𝑍∼𝑃 [ℓ(𝑓, 𝑍)|𝐹𝑓 (ℓ(𝑓, 𝑍)) ∈ [𝛼, 1 − 𝛼]].

The trimmed risk is also a special of L-Risk in (2) and is
obtained by setting 𝑤(𝑡) = 1

1−2𝛼1{𝛼 ≤ 𝑡 ≤ 1 − 𝛼}.

2.3. Bounded Variation Weighting Functions

Recall from the previous section that the L-risk for any
function 𝑓 depends crucially on the weighting function 𝑤(·).
Moreover, for popular risk measures such as CVaR and
Trimmed Risk, this weighting function is not differentiable
and Lipschitz. In this section, we formally introduce a class
of weighting functions called bounded variation functions,
which can be viewed as a strict generalization of Lipschitz
functions (Carothers, 2000; Musielak & Orlicz, 1959). More
formally, we define 𝑝-variation as:

Definition 3. Let 𝑓 : [0, 1] → R be a function. Let 𝑃 =
{𝑥1, . . . , 𝑥𝑁} ⊂ [0, 1] be a partition of [0, 1]. Without loss
of generality, we assume 𝑥1 ≤ . . . ≤ 𝑥𝑁 . Let 𝒫 be the
set of all partitions of [0, 1], where the size of the partitions
may vary between elements of 𝒫 . The 𝑝-variation of 𝑓 with
respect to a partition 𝑃 is

𝑉𝑝(𝑓, 𝑃 ) =

(︃
𝑁−1∑︁
𝑖=1

|𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)|𝑝
)︃ 1

𝑝

.

The 𝑝-variation of 𝑓 is 𝑉𝑝(𝑓) = sup𝑃∈𝒫 𝑉𝑝(𝑓, 𝑃 ).

Figure 1. An illustration of the partition argument. Here, we have
Δ𝑖 = 𝜀𝑖 and ‖Δ‖∞ = 𝜀. The blue points, {(𝑖+1)/𝑛, (𝑖+1)/𝑛+
𝜀𝑖+1}, and the red points, {𝑖/𝑛, 𝑖/𝑛+ 𝜀𝑖, (𝑖+ 2)/𝑛} are in two
separate partitions. We construct the partitions this way to ensure
that 𝜀𝑖+2 and (𝑖+2)/𝑛 are not in between 𝑖/𝑛 and 𝑖/𝑛+ 𝜀𝑖 while
the order of 𝑖/𝑛, 𝜀𝑖, (𝑖 + 1)/𝑛, and 𝜀𝑖+1 do not matter because
𝑖/𝑛 and (𝑖+ 1)/𝑛 are in separate partitions.

When 𝑝 = 1, the variation 𝑉𝑝(𝑓) = 𝑉1(𝑓) is also called
the total variation. Moreover, when the weighting function
is 𝜆-Lipschitz, then for all 𝑝 ≥ 1, the 𝑝-variation is upper
bounded by 𝜆.

Table 1 summarizes the bounded variation constants for
the aforementioned scoring function. The proofs for these
claims can be found in the Appendix. Moving forward, we
work with the assumption the weighting function 𝑤(·) has
bounded variation.

Assumption 1. The weighting function 𝑤 has bounded vari-
ation 𝑉𝑝(𝑤) for 𝑝 = 1, 2.

Stability to ℓ∞ Perturbations. Under Assumption 1, we
next present a deterministic bound which controls the stabil-
ity of bounded-variation functions to ℓ∞ perturbations.

Lemma 1. Let 𝑃 * = { 𝑖
𝑛}

𝑛
𝑖=1 be the 𝑛-sized equally spaced

partition of the interval [0, 1]. Then, for any perturbed
partition ̃︀𝑃 = { 𝑖

𝑛 + ∆𝑖}𝑛𝑖=1 such that sup𝑖 |∆𝑖| = ‖∆‖∞,
we have

1

𝑛

𝑛∑︁
𝑖=1

⃒⃒⃒⃒
𝑤

(︂
𝑖

𝑛

)︂
−𝑤

(︂
𝑖

𝑛
+ ∆𝑖

)︂⃒⃒⃒⃒
≤ ⌈2𝑛‖∆‖∞⌉𝑉1(𝑤).

Proof Sketch. The key idea is that we need to construct
sufficiently spaced-out partitions 𝒫 so that for all 𝑖 ∈ [𝑛],
there exists a partition 𝑃 ∈ 𝒫 such that both 𝑖/𝑛 and 𝑖/𝑛 +
∆𝑖 are in 𝑃 and no points in between 𝑖/𝑛 and 𝑖/𝑛 + ∆𝑖

are in 𝑃 . Since for all 𝑖 ∈ [𝑛], we know that 𝑖/𝑛 + ∆𝑖 ∈
(𝑖/𝑛− ‖∆‖∞, 𝑖/𝑛 + ‖∆‖∞), it suffices to have partitions
that are 2‖∆‖∞ spaced-out. This implies that the total
number of partitions we need is at least 2‖Δ‖∞

1/𝑛 . Since 𝑤 has
1-bounded variation 𝑉1(𝑤), we have reached the desired
result. Figure 1 shows the necessity of having spaced-out
partitions.

The above result is a key tool for studying uniform con-
vergence of L-Risks with weighting function 𝑤 that have
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Table 1. Bounded variation for different weight functions.

L-Risk 𝑤(𝑡) 𝑉1(𝑤) 𝑉2(𝑤)

ℛ 1 0 0
ℛCVaR,𝛼

1
𝛼1{1 − 𝛼 ≤ 𝑡} 1

𝛼
1
𝛼

ℛHRM,𝑎,𝑏
3−3𝑏

𝑎2−𝑎+1

(︀
3𝑡2 − 2(𝑎 + 1)𝑡 + 𝑎

)︀
+ 1 6(1−𝑏)(2−𝑎)

𝑎2−𝑎+1
6(1−𝑏)(2−𝑎)

𝑎2−𝑎+1

ℛTRIM,𝛼
1

1−2𝛼1{𝛼 ≤ 𝑡 ≤ 1 − 𝛼} 2
1−2𝛼

√
2

1−2𝛼

bounded variations. It is novel to the best of our knowledge
and may be of independent interest.

2.4. Rademacher Complexity, Covering Numbers, and
VC Dimension

Finally, we discuss notions of function class complexity that
we shall use in our results. We make use of Rademacher
complexity, covering numbers, and VC dimension. The rea-
son for all of these is that Rademacher complexity is often
an intermediate step but is difficult to analyze. Covering
number bounds can be used to help untangle the product
structure of the L-Risks, but ultimately to deal with an em-
pirical cumulative distribution function, it is simpler to use
VC dimension.

We start with Rademacher complexity. Let 𝜎1, . . . , 𝜎𝑛 be
i.i.d Rademacher random variables, i.e., random variables
that take the values +1 and −1 each with probability 1/2.
The empirical Rademacher complexity of a function class
ℱ given a sample 𝑆 = 𝑍1, . . . , 𝑍𝑛 is

R̂𝑛(ℱ) = E𝜎 sup
𝑓∈ℱ

1

𝑛

𝑛∑︁
𝑖=1

𝜎𝑖𝑓(𝑍𝑖). (4)

The Rademacher complexity of ℱ is then the expectation of
the empirical Rademacher complexity with respect to the
sample 𝑆, i.e.

R𝑛(ℱ) = E𝑆R̂𝑛(ℱ).

Given a class of functions ℱ : 𝒳 → R, a finite collection
of functions 𝑓1, . . . , 𝑓𝑁 mapping from 𝒳 to R is called
an 𝜀-cover for ℱ with respect to a semi-norm ‖ · ‖ if for
every 𝑓 in ℱ , we have min𝑗=1,...,𝑁 ‖𝑓 − 𝑓𝑗‖ ≤ 𝜀. The 𝜀-
covering number of ℱ with respect to ‖ · ‖ is the size of the
smallest 𝜀-cover of ℱ and is denoted by 𝒩 (𝜀,ℱ , ‖·‖). Note
that often bounds are stated in terms of log𝒩 (𝜀,ℱ , ‖ · ‖),
which is also called the metric entropy of ℱ . One particular
norm of interest is the empirical 2-norm. Given 𝑛 samples
𝑋1, . . . , 𝑋𝑛, define the empirical 2-norm of 𝑓 to be

‖𝑓‖𝑛 =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

𝑓(𝑋𝑖)2.

Finally, we discuss VC dimension. Let 𝐺 be a class of
functions from 𝒳 to some finite set, e.g., {0, 1}. We define
the growth function Π𝐺 : N → N by

Π𝐺(𝑛) = max
𝑥1,...,𝑥𝑛∈𝒳

|{(𝑔(𝑥1), . . . , 𝑔(𝑥𝑛)) : 𝑔 ∈ 𝐺}| .

In words, this is the maximum number of ways that func-
tions in 𝐺 may classify 𝑛 points. Now, suppose that func-
tions in 𝐺 map to a set of two classes, such as {0, 1}. Then,
a set 𝑆 = (𝑥1, . . . , 𝑥𝑛) of 𝑛 points in is said to be shattered
by 𝐺 if there are functions in 𝐺 realizing all possible label
assignments, i.e.,

Π𝐺(𝑛) = 2𝑛 = |{(𝑔(𝑥1), . . . , 𝑔(𝑥𝑛)) : 𝑔 ∈ 𝐺}| .

Finally, the VC-dimension of 𝐺, which we denote by
VC(𝐺), is given by

VC(𝐺) = max {𝑛 : Π𝐺(𝑛) = 2𝑛} . (5)

In words, if the VC-dimension of 𝐺 is 𝑉 , then there is some
set of 𝑉 points shattered by 𝐺. The set that we shall be
most interested in using with VC-dimension is

ℒ := {𝑔𝑓,𝑡 : 𝒵 → {0, 1}|𝑔𝑓,𝑡(𝑧) = 1 {ℓ(𝑓, 𝑧) ≤ 𝑡}
for 𝑓 ∈ ℱ , 𝑡 ∈ [0, 𝐵]}.

Thus, the VC-dimension depends on both the function class
ℱ and the loss function. We note that this is not too large
for logistic regression in Lemma 5, and for linear regression
in R𝑑 with squared error loss, the VC dimension is upper
bounded by a constant times 𝑑 (Akama et al., 2010). This
VC-dimension plays a key role in the following assumption.

Assumption 2. Assume that

sup
𝑓∈ℱ

sup
𝑥∈[0,𝐵ℓ]

|𝐹𝑓,𝑛(𝑥) − 𝐹𝑓 (𝑥)| ≤ 𝜀.

We make a few remarks related to this assumption. First,
it can be thought of as a Glivenko-Cantelli theorem-like
assumption, except here we require uniformity over ℱ . Sec-
ond, our main results relying on variation use this assump-
tion in two places. Third, the assumption can be shown
to hold with high probability for 𝜀 = 𝑂(𝑛−1/2) when ℒ
has bounded VC-dimension via a standard symmetrization
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and VC-dimension upper bound argument. We state this
sufficient condition as an alternative assumption.

Assumption 2′ (sufficient condition). The function class ℒ
has bounded VC-dimension.

Consequently, it is natural to wonder whether this can be
relaxed into a statement about the VC-dimension of ℱ . Un-
fortunately, this result depends on the loss function; so such
a general result is unknown to the best of our knowledge.
However, we prove it to be the case for logistic regression
in Lemma 5, and the proof extends to other widely-used
continuous classification losses. For linear regression with
squared error loss, this is bounded by a constant times 𝑑
(Akama et al., 2010). We speculate that VC(ℒ) is on the
order of VC(ℱ) for reasonable continuous losses.

3. Uniform Convergence Results
In this section, we present our main generalization result in
terms of a Rademacher complexity depending on 𝑤. Then,
we specialize the upper bound using an entropy integral
argument in two cases: (a) 𝑤 with bounded variation and
(b) 𝑤 that is Lipschitz. The former result allows for far
more general 𝑤, but our proofs lead to slower rates. At best,
the rate of 𝑂(𝑛−1/4) can be achieved by instantiating our
bounds, although a more refined argument could possibly
improve this. The latter result for Lipschitz 𝑤 allows for the
usual 𝑂(𝑛−1/2) learning rate.

We use 𝐹ℱ to denote the set {𝐹𝑓}𝑓∈ℱ and define ℓ(ℱ) ·
𝑤(𝐹ℱ ) to be the set {ℓ𝑓𝑤(𝐹𝑓 ) | 𝑓 ∈ ℱ}. We have the
following bound.

Theorem 1. Let ℱ be a set of predictors and the loss func-
tion ℓ take values in [0, 𝐵ℓ]. By Assumption 1, with proba-
bility at least 1 − 𝛿, we have

sup
𝑓∈ℱ

|ℒℛ𝑤,𝑛(𝑓) − ℒℛ𝑤(𝑓)|

≤ 2̂︀R𝑛(ℓ(ℱ) · 𝑤(𝐹ℱ )) + 4𝐶𝐵ℓ𝑉1(𝑤)̂︀R𝑛(ℒ)

+ 6𝐵ℓ𝑉1(𝑤)

√︃
log 4

𝛿

2𝑛
+ 3

√︃
log 4

𝛿

2𝑛
.

In contrast to standard generalization bounds, our result has
the terms ̂︀R𝑛(ℒ) and ̂︀R𝑛(ℓ(ℱ) · 𝑤(𝐹ℱ )). Since the former
is a Rademacher complexity of indicator variables, we sim-
ply use a VC-dimension upper bound. The VC-dimension
then needs to be analyzed for particular losses and ℱ . Ex-
amples of losses and ℱ that permit finite VC-dimension
include linear regression with squared error loss and arbi-
trary ℱ with logistic loss. To analyze the latter empirical
Rademacher complexity, we use the standard Dudley en-
tropy integral result in order to obtain covering numbers.
From here, we can more easily decompose the covering

number into a product of covering numbers.

Lemma 2. Suppose that the loss function ℓ is 𝜆ℓ-Lipschitz
in 𝑓(𝑋) and bounded by 𝐵ℓ. Additionally, assume that 𝑤
is bounded by 𝐵𝑤. Then, we have

𝒩 (𝑡, ℓ(ℱ) · 𝑤(𝐹ℱ ), ‖ · ‖𝑛)

≤ 𝒩
(︂

𝑡

2𝐵𝑤𝜆ℓ
,ℱ , ‖ · ‖𝑛

)︂
· 𝒩

(︂
𝑡

2𝐵ℓ
, 𝑤(𝐹ℱ ), ‖ · ‖𝑛

)︂
.

Now, we use separate tools to analyze the covering number
of 𝑤(𝐹ℱ ) for 𝑤 of bounded variation and Lipschitz 𝑤.

3.1. Weight Functions of Bounded Variation

In this section, we consider 𝑤 of bounded 2-variation 𝑉2(𝑤);
we have the following lemma.

Lemma 3. Let 𝒞(𝜀′, 𝐹ℱ ) be a 𝜀′ cover of 𝐹ℱ in ‖ · ‖∞.
Suppose that Assumption 2 holds with 𝜀 from the state-
ment of the assumption. Then the set 𝑤(𝒞(𝜀′, 𝐹ℱ )) is a
𝑉2(𝑤)

√︀
3(𝜀 + 𝜀′)-cover for 𝑤(𝐹ℱ ) in ‖ · ‖𝑛.

Lemma 3 is one of our key technical and conceptual con-
tributions. The key contribution is that we can bound a
covering number even though 𝑤 may be discontinuous, and
this relies on constructing a number of partitions that may
be upper bounded by total variation as mentioned previously.
The shortcoming of this result is also clear. Since 𝜀 from
Assumption 2 is of order 𝑛−1/2, the cover is only at the
resolution 𝜀1/2 = 𝑛−1/4.

Corollary 1. Let ℱ be a set of predictors, the loss function
ℓ take values in [0, 𝐵ℓ] and is 𝜆ℓ-Lipschitz in 𝑓(𝑋). If 𝑤
is bounded by 𝐵𝑤 and the VC-dimension 𝑉 of ℒ satisfies
1 ≤ 𝑉 ≤ 𝑛, by Assumption 1, there exists a universal
constant 𝐶 such that with probability at least 1−𝛿, we have

sup
𝑓∈ℱ

|ℒℛ𝑤,𝑛(𝑓) − ℒℛ𝑤(𝑓)|

≤ inf
𝜂≥0

{︂
8𝜂 +

24√
𝑛

∫︁ 2𝐵ℓ𝐵𝑤

𝜂

(︃
log𝒩

(︂
𝑡

2𝐵𝑤𝜆ℓ
,ℱ , ‖ · ‖𝑛

)︂

+ log𝒩
(︂

𝑡2

12𝐵2
ℓ𝑉

2
2 (𝑤)

− 𝜀, 𝐹ℱ , ‖ · ‖∞
)︂)︃1/2

𝑑𝑡

}︂

+ 4𝐶𝐵ℓ𝑉1(𝑤)

√︂
𝑉

𝑛
+ 6𝐵ℓ𝑉1(𝑤)

√︃
log 4

𝛿

2𝑛
+ 3

√︃
log 4

𝛿

2𝑛
,

where 𝜀 = 2𝐶
√︁

𝑉
𝑛 + 3

√︁
log 4

𝛿

2𝑛 .

3.2. Lipschitz Weight Functions

In this section, we consider the far simpler case when 𝑤 is
𝜆𝑤-Lipschitz. Again, we start with a bound for covering
numbers.
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Lemma 4. When 𝑤 is 𝜆𝑤-Lipschitz, we have the covering
number bound

𝒩 (𝑡, 𝑤(𝐹ℱ ), ‖ · ‖𝑛) ≤ 𝒩 (𝑡, 𝐹ℱ , ‖ · ‖∞) .

This leads naturally to a uniform convergence bound.

Corollary 2. Let ℱ be a set of predictors, the loss function
ℓ take values in [0, 𝐵ℓ] and is 𝜆ℓ-Lipschitz in 𝑓(𝑋). If 𝑤 is
bounded by 𝐵𝑤 and is 𝜆ℓ-Lipschitz and the VC-dimension 𝑉
of ℒ satisfies 1 ≤ 𝑉 ≤ 𝑛, there exists a universal constant
𝐶 such that with probability at least 1 − 𝛿, we have

sup
𝑓∈ℱ

|ℒℛ𝑤,𝑛(𝑓) − ℒℛ𝑤(𝑓)|

≤ inf
𝜂≥0

{︂
8𝜂 +

24√
𝑛

∫︁ 2𝐵ℓ𝐵𝑤

𝜂

(︃
log𝒩

(︂
𝑡

2𝐵𝑤𝜆ℓ
,ℱ , ‖ · ‖𝑛

)︂

+ log𝒩
(︂

𝑡

2𝐵𝜆𝜆𝑤
, 𝐹ℱ , ‖ · ‖∞

)︂)︃1/2

𝑑𝑡

}︂

+ 4𝐶𝐵ℓ𝑉1(𝑤)

√︂
𝑉

𝑛
+ 6𝐵ℓ𝑉1(𝑤)

√︃
log 4

𝛿

2𝑛
+ 3

√︃
log 4

𝛿

2𝑛
.

Note the key difference between Corollary 1 and Corollary 2.
The presence of 𝑡2 − 𝜀 in the former ensures that 𝜂 needs
to be non-zero, and further, 𝜂 ≥

√
𝜀. This leads to the slow

rate of convergence. In the latter corollary, this is not a
problem; thus, we obtain the standard rate of convergence.

4. Logistic Regression Example
We consider a basic example for logistic regression. To
instantiate the bounds, we need two things: (1) a bound on
the VC dimension of ℒ and (2) a covering number bound on
𝐹ℱ , the distributions of losses over the predictor class ℱ .

Thus, we specify a distribution for (𝑋,𝑌 ). Let 𝑆𝑑−1 =
{𝑥 ∈ R𝑑 : ‖𝑥‖ = 1} denote the (𝑑−1)-dimensional sphere
in R𝑑, and let 𝐵(𝑑) = {𝑥 ∈ R𝑑 : ‖𝑥‖ ≤ 1} denote the unit
ball of radius 1 in R𝑑. Let 𝜃* ∼ Uniform(𝑆𝑑−1) be the true
regression vector. Suppose that 𝑋 ∼ Uniform(𝐵(𝑑)) and
that 𝑌 takes the value +1 with probability 𝑝 = (1+𝜃ᵀ*𝑋)/2
and −1 otherwise.

Next, we restrict the class of regressors, ℱ . We set

ℱ = {𝑓 : 𝑓(𝑥) = 𝜃ᵀ𝑥 for 𝜃 ∈ R𝑑 s.t. 𝑟1 ≤ ‖𝜃‖ ≤ 𝑟2},
(6)

where 𝑟1, 𝑟2 > 0 are fixed constants. We may refer
directly to the parametrizations 𝜃 for simplicity. Note
that bounding the 𝜃 away from the zero vector is nec-
essary because as 𝜃 approaches the zero vector, the dis-
tribution of losses approaches a step function, making a

cover impossible. Finally, recall that the logistic loss is
ℓ(𝑓, 𝑍) = log

(︀
1 + 𝑒−𝑌 𝑓(𝑥)

)︀
. Now, we start with our first

lemma on VC-dimension.
Lemma 5. Let ℱ be the class of linear functions 𝑓(𝑥) =
𝜃ᵀ𝑥 + 𝑏 for 𝑥 in R𝑑. Then, the VC-dimension of ℒ for the
logistic loss satisfies

VC(ℒ) ≤ 𝑑 + 2.

This type of bound is not particularly surprising, and other
bounds on the VC-dimension of ℒ in terms of the VC-
dimension of ℱ are known for simple losses. Next, we
consider the bound on the covering numbers of the losses.
Lemma 6. Let (𝑋,𝑌 ) have the distribution defined above,
and let ℱ be as in equation (6). Then, we have the 𝜀-entropy
bound

log𝒩 (𝜀, 𝐹ℱ , ‖ · ‖∞) ≤ 𝐶(ℱ)
√
𝑑

𝜀
.

To the best of our knowledge, such bounds on the set of
cumulative distribution functions are novel. Finally, we may
apply these lemmas to obtain the following corollaries for
weight functions of bounded variation and Lipschitz weight
functions. We start with the former.
Corollary 3. Let (𝑋,𝑌 ) have the distribution defined
above. Let ℱ be as defined in equation (6). Suppose that
the logistic loss is bounded by 𝐵ℓ on 𝐵(𝑑)×{+1,−1} and
is 𝜆ℓ-Lipschitz with respect to 𝑓(𝑥) for all 𝑓 in ℱ . Suppose
that 𝑤 has bounded first and second variations 𝑉1(𝑤) and
𝑉2(𝑤). Then with probability at least 1 − 𝛿, we have

sup
𝑓∈ℱ

|ℒℛ𝑤,𝑛(𝑓) − ℒℛ𝑤(𝑓)|

≤ 𝐶(ℱ , 𝑑, 𝛿, 𝐵ℓ, 𝐵𝑤, 𝑉1(𝑤), 𝑉2(𝑤))𝑛− 1
4 .

Next, we consider Lipschitz weight functions.
Corollary 4. Let (𝑋,𝑌 ) have the distribution defined
above. Let ℱ be as defined in equation (6). Suppose that
the logistic loss is bounded by 𝐵ℓ on 𝐵(𝑑)×{+1,−1} and
is 𝜆ℓ-Lipschitz with respect to 𝑓(𝑥) for all 𝑓 in ℱ . Finally,
suppose that 𝑤 is 𝜆𝑤-Lipschitz, and let 𝐶 be some universal
constant. Then with probability at least 1 − 𝛿, we have

sup
𝑓∈ℱ

|ℒℛ𝑤,𝑛(𝑓) −ℒℛ𝑤(𝑓)|

≤ 𝐶(ℱ , 𝑑, 𝛿, 𝐵ℓ, 𝐵𝑤, 𝜆ℓ)𝑛
− 1

2 .

Here, we obtain the desired rates of convergence showing
that the generalization bound may be instantiated and lead
to quantifiable learning rates.
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5. Proofs
In this section, we prove our main theorem (Theorem 1).
Lemmas are proved in the Appendix. The first key is to
choose the correct decomposition to analyze the main esti-
mator. This is a necessary step because we cannot directly
apply standard generalization results to obtain the bound for
rank-weighted estimators since the terms {𝐹𝑓,𝑛(ℓ𝑓,𝑖)}𝑛𝑖=1

have used the samples {ℓ(𝑓, 𝑍𝑖)}𝑛𝑖=1 twice, and so there is
dependence across samples. Our goal is to use symmetriza-
tion with the main error.
Lemma 7. We have the inequality

P
(︂

sup
𝑓∈ℱ

|ℒℛ𝑤,𝑛(𝑓) − ℒℛ𝑤(𝑓)| > 𝑡 + 𝑡′
)︂

≤ P
(︂

sup
𝑓∈ℱ

⃒⃒⃒⃒
ℒℛ𝑤,𝑛(𝑓) − 1

𝑛

𝑛∑︁
𝑖=1

ℓ𝑓,𝑖𝑤(𝐹𝑓 (ℓ𝑓,𝑖))

⃒⃒⃒⃒
> 𝑡

)︂

+ P
(︂

sup
𝑓∈ℱ

⃒⃒⃒⃒
1

𝑛

𝑛∑︁
𝑖=1

ℓ𝑓,𝑖𝑤(𝐹𝑓 (ℓ𝑓,𝑖)) − ℒℛ𝑤(𝑓)

⃒⃒⃒⃒
> 𝑡′

)︃
.

The proof of the lemma is immediate, but it sets the stage to
analyze the risk. Next, we present a lemma to deal with the
first term on the right hand side of Lemma 7.
Lemma 8. For some universal constant 𝐶, we have

P

(︃
sup
𝑓∈ℱ

⃒⃒⃒⃒
⃒ℒℛ𝑤,𝑛(𝑓) − 1

𝑛

𝑛∑︁
𝑖=1

ℓ𝑓,𝑖𝑤(𝐹𝑓 (ℓ𝑓,𝑖))

⃒⃒⃒⃒
⃒

> 4𝐵ℓ𝑉1(𝑤)̂︀R𝑛(ℒ) + 6𝐵ℓ𝑉1(𝑤)

√︃
log 2

𝛿

2𝑛

)︃
≤ 𝛿.

The proof of this lemma is given in the Appendix due to
space concerns. However, note that this is the second lemma
that makes use of partitions towards using first bounded
variations in its proof. To deal with the second term of
Lemma 7, we use a standard Rademacher complexity bound
that we provide in the Appendix, which yields

P

(︃
sup
𝑓∈ℱ

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

ℓ𝑓,𝑖𝑤(𝐹𝑓 (ℓ𝑓,𝑖)) − ℒℛ𝑤(𝑓)

⃒⃒⃒⃒
⃒

> 2̂︀R𝑛(ℓ(ℱ) · 𝑤(𝐹ℱ )) + 3

√︃
log 2

𝛿

2𝑛

)︃
≤ 𝛿.

6. Experiments
Following our theoretical analysis, we test our results on
logistic regression and linear regression. We describe our
setups in Section 6.1, the metrics as well as the optimization
methods we have used in Section 6.2, and finally discuss
our results in Sections 6.3.

6.1. Setups

In the logistic regression setup, the features are drawn from
𝑋 ∼ Uniform(𝐵(𝑑)) where 𝐵(𝑑) is the 𝑑-dimension ball.
The labels are sampled from a distribution over {−1, 1}
where 𝑌 takes the value +1 with probability (1+𝑋⊤𝜃*)/2.
where 𝜃* = (1, 0, 0, · · · , 0) ∈ R𝑑. We use the logistic loss
ℓ(𝜃; (𝑋,𝑌 )) = log

(︀
1 + exp(−𝑌 𝑋⊤𝜃)

)︀
.

In the linear regression experiment, we draw our covariates
from a Gaussian 𝑋 ∼ 𝒩 (0, I𝑑) in R𝑑. The noise distribu-
tion is fixed as 𝜀 ∼ 𝒩 (0, 0.01). We draw our response vari-
able 𝑌 as, 𝑌 = 𝑋⊤𝜃* + 𝜀 where 𝜃* = (1, 1, · · · , 1) ∈ R𝑑.
We fix the squared error ℓ(𝜃; (𝑋,𝑌 )) = 1

2 (𝑌 −𝑋⊤𝜃)2 as
our loss function.

6.2. Metrics and Methods

For each setting, we look at two metrics: (a) approximate
uniform error; and (b) training and testing performance of
the empirical minimizer of different L-Risks. We approxi-
mate the uniform error when 𝑑 = 1 in the following manner:
for logistic regression, we pick the interval (−1.5, 1.5) to
be our parameter space Θ and construct a grid of size 200
where each grid point represents a model 𝜃. The true L-Risk
for each 𝜃 is then approximated by the empirical L-Risk
using 20, 000 samples. The empirical L-Risk is calculated
using sample size 𝑛 ranging from 20 to 22, 100. Finally,
the approximated uniform error at each sample size 𝑛 is
obtained by taking the maximum over the difference of the
empirical and true L-Risk for all 𝜃. In the linear regression
setup, the parameter space is chosen to be (−15, 15) with
size of 500.

Te explore the training and testing performance of the em-
pirical minimizer of different L-Risks, we perform the fol-
lowing iterative optimization procedure to obtain a heuristic
minimizer:

𝜃𝑡+1 = 𝜃𝑡 − 𝛾𝑡
𝑛

𝑛∑︁
𝑖=1

𝑤𝑡
𝑖∇𝜃ℓ(𝜃

𝑡;𝑍𝑖), (7)

for all 𝑡 ∈ {0, · · · , 𝑇 − 1}, where 𝑤𝑡
𝑖 = 𝑤(𝐹𝑛(ℓ(𝜃𝑡;𝑍𝑖)))

is the rank-dependent weighting and 𝛾𝑡 is the learning rate.
Although in general, the empirical L-Risks are non-convex
with respect to the model parameter 𝜃, there are special
cases like CVaR, which has a convex dual form that is easy
to optimize (Rockafellar et al., 2000):

ℛCVaR,𝛼(𝑓) = inf
𝜂∈R

{︂
𝜂 +

1

𝛼
E[max(ℓ𝑓 − 𝜂, 0)]

}︂
. (8)

In such cases, we compare the heuristic method with the
procedure that first optimizes the L-Risk with respect to 𝜂
and then with respect to 𝜃 at each iteration.
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(a) log(uniform error) v.s. log𝑛 (b) 𝑑 = 5; 𝑛 from 20 to 22, 100 (c) 𝑛 = 2000; 𝑑 from 7 to 55

Figure 2. Experimental results for logistic regression are averaged over 20 seeds. Figure 2a is the log-log plot of the approximated uniform
error with respect to different sample sizes. Figure 2b and Figure 2c are log-log plots of the performance of the empirical minimizer of
different L-Risks with respect to sample size and sample dimensions. For HRM, we have chosen 𝑎 = 0.6 and 𝑏 = 0.4. For CVaR and
trimmed mean, 𝛼 is set to be 0.1. The results for logistic regression suggests similar convergence behavior across different L-Risks.

(a) log(uniform error) v.s. log𝑛 (b) 𝑑 = 5; 𝑛 from 20 to 22, 100 (c) 𝑛 = 2000; 𝑑 from 7 to 55

Figure 3. Experimental results for linear regression are averaged over 20 seeds. Figure 3a is the log-log plot of the approximated uniform
error with respect to different sample sizes. Figure 3b and Figure 3c are log-log plots of the performance of the empirical minimizer of
different L-Risks with respect to sample size and sample dimensions. For HRM, we have chosen 𝑎 = 0.3 and 𝑏 = 0.4. For CVaR and
trimmed mean, 𝛼 is set to be 0.1. The results for linear regression suggests similar convergence behavior across different L-Risks.

6.3. Results

Our results for logistic regression are given in Figure 2,
and our results for linear regression are given in Figure 3.
Figure 2a and Figure 3a are the log-log plots of the approxi-
mated uniform error with respect to the sample size in the
two experimental settings. We fit a line for the data of each
L-Risk to examine the rate of convergence of these approx-
imated uniform errors. In both the logistic regression and
linear regression experiments, we see that rank-weighting
does not have much effect on the convergence rate. In the lo-
gistic regression case, the 𝑛−1/2 convergence rate of HRM
matches the expectation since its weight function is Lips-
chitz. The convergence rate for CVaR and trimmed mean
suggests that there might be tighter uniform convergence
results for weight function with bounded variation.

Figure 2b, 2c, 3b and 3c show the behavior of the L-Risk
of the empirical minimizers. Empirically, we observe that

the convergence performance across different L-Risks are
similar. Similar to the log-log plots, this may suggest that
there are faster rates of convergence than the ones we have
obtained in Section 3, especially for the weighting functions
that are not Lipschitz but have bounded variation.

Finally, we make a remark about the optimization of CVaR
by its rank-weighted formulation versus its convex dual. As
shown in Appendix G, we observe that when optimizing
CVaR, our heuristic method given in equation (7) improves
more quickly than the convex dual form of CVaR equa-
tion (8). However, we do note that the dual form achieves a
marginally better solution in terms of training error. Practi-
cally, the comparable performance of the rank-weighted op-
timization perspective and the provably convex perspective
in the special case where we can compare the two is encour-
aging for other weight functions. The code of the experi-
ments can be found at https://bit.ly/2YzwRkJ.

https://bit.ly/2YzwRkJ
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7. Discussion
In this work, we study uniform convergence of rank-
weighted risks, which we define as L-Risk. Different from
classical population risks, L-Risk utilizes the ranking of the
losses. There are a number of future directions in studying
L-Risk. One direction, suggested by our experimental re-
sults in Section 6, is to obtain faster rates of convergence
for L-Risk with weighting functions of bounded variations.
In addition to that, it is also of interest to obtain a lower
bound of the convergence rate for L-Risk with non-Lipschitz
weighting functions. Finally, since L-Risks are in general
non-convex with respect to the model parameters, in order
to use it to learn machine learning models, we need to in-
vestigate on algorithms for optimizing them. In particular,
it would be useful to better understand simple optimization
methods for arbitrary rank-weighting functions, such as the
iterative approach we have used in the experiments.
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A. Organization
In this section, we briefly outline the contents and organization of the appendices. In Appendix B, we prove the main lemmas,
theorem, and corollaries. The key contribution of this section are the proofs using partitions and variations. In Appendix C,
we consider the main proofs for the logistic regression example. In Appendix D, we state and prove auxiliary lemmas. In
Appendix E, we state a number of standard results from learning theory. In Appendix F, we prove the basic variation bounds
presented in Table 1. In Appendix G, we provide an additional plot on training in our numerical experiments.

B. Main Proofs
In this section, we prove our lemmas. Additionally, we prove the primary corollaries based on weight functions of bounded
variation and Lipschitz weight functions.

Proof of Lemma 1. Our goal is to introduce an integer 𝑁 ≥ 2𝑛‖∆‖∞ partitions on [0, 1]. The reason why we want this is
that for any 𝑖 ∈ [𝑛], we have 𝑖/𝑛 + ∆𝑖 ∈ [𝑖/𝑛− ‖∆‖∞, 𝑖/𝑛 + ‖∆‖∞]. Thus, for each partition we pick, we should ensure
that the points are spread out enough so that for some 𝑖, no points will be in between 𝑖/𝑛 and 𝑖/𝑛 + ∆𝑖. In order to do so,
we need at least 2‖Δ‖∞

1/𝑛 partitions since we need separate partitions to cover the points within an interval of size 2‖∆‖∞.

For 𝑖 = 1, . . . , 𝑁 , consider the set

𝐹𝑖 =
⋃︁
𝑗∈𝐽𝑖

{︂
𝑖 + 𝑗𝑁

𝑛
,
𝑖 + 𝑗𝑁

𝑛
+ ∆𝑖+𝑗𝑁

}︂
,

where 𝐽𝑖 = {𝑗 ≥ 0 : 𝑖 + 𝑗𝑁 ≤ 𝑛} is an integer set. Through our way of constructing the partition, we have that

𝑖 + (𝑗 + 1)𝑁

𝑛
− 𝑖 + 𝑗𝑁

𝑛
=

𝑁

𝑛
= 2‖∆‖∞.

The upshot to this is that if we write 𝐹𝑖 = {𝑥𝑖,𝑗}2|𝐽𝑖|
𝑗=1 such that 𝑥𝑖,1 ≤ . . . ≤ 𝑥𝑖,2|𝐽𝑖|, then we have

𝑛∑︁
𝑖=1

⃒⃒⃒⃒
𝑤

(︂
𝑖

𝑛

)︂
− 𝑤

(︂
𝑖

𝑛
+ ∆𝑖

)︂⃒⃒⃒⃒
≤

𝑁∑︁
𝑖=1

2|𝐽𝑖|−1∑︁
𝑗=1

|𝑤(𝑥𝑖,𝑗+1) − 𝑤(𝑥𝑖,𝑗)| ≤ ⌈2𝑛‖∆‖∞⌉𝑉1(𝑤). (9)

The reason for the first inequality in equation (9) is that each summand on the left hand side appears on the right hand side,
and all additional summands are non-negative.

Proof of Lemma 8. We have

𝑃 := P

(︃
sup
𝑓∈ℱ

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

ℓ𝑓,𝑖𝑤(𝐹𝑓,𝑛(ℓ𝑓,𝑖)) −
1

𝑛

𝑛∑︁
𝑖=1

ℓ𝑓,𝑖𝑤(𝐹𝑓 (ℓ𝑓,𝑖))

⃒⃒⃒⃒
⃒ > 𝑡

)︃

≤ P

(︃
sup
𝑓∈ℱ

1

𝑛

𝑛∑︁
𝑖=1

|ℓ𝑓,𝑖||𝑤(𝐹𝑓,𝑛(ℓ𝑓,𝑖)) − 𝑤(𝐹𝑓 (ℓ𝑓,𝑖))| > 𝑡

)︃

≤ P

(︃
sup
𝑓∈ℱ

1

𝑛

𝑛∑︁
𝑖=1

|𝑤(𝐹𝑓,𝑛(ℓ𝑓,𝑖)) − 𝑤(𝐹𝑓 (ℓ𝑓,𝑖))| >
𝑡

𝐵ℓ

)︃

We start by analyzing the term 𝐴1 := sup𝑓∈ℱ
∑︀𝑛

𝑖=1 |𝑤(𝐹𝑓,𝑛(ℓ𝑓,𝑖)) − 𝑤(𝐹𝑓 (ℓ𝑓,𝑖))|. Using Assumption 2, let

𝜀 = sup
𝑓∈ℱ

sup
𝑥∈[0,𝐵ℓ]

|𝐹𝑓,𝑛(𝑥) − 𝐹𝑓 (𝑥)|.

Reorder the summands in 𝐴1 so that 𝑤(𝐹𝑓,𝑛(ℓ𝑓,[𝑖])) = 𝑤(𝑖/𝑛). Then, we have

𝐴1 ≤ sup
𝜀𝑖:|𝜀𝑖|≤𝜀

𝑛∑︁
𝑖=1

⃒⃒⃒⃒
𝑤

(︂
𝑖

𝑛

)︂
− 𝑤

(︂
𝑖

𝑛
+ 𝜀𝑖

)︂⃒⃒⃒⃒
.
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Now, our goal is to introduce an integer 𝑁 ≥ 2𝑛𝜀 partitions on [0, 1]. The reason why we want this is that for any 𝑖 ∈ [𝑛],
𝑖/𝑛 + 𝜀𝑖 ∈ [𝑖/𝑛− 𝜀, 𝑖/𝑛 + 𝜀]. Thus, for each partition we pick, we should ensure that the points are spread out enough so
that for some 𝑖, no points will be in between 𝑖/𝑛 and 𝑖/𝑛 + 𝜀𝑖. In order to do so, we need at least 2𝜀

1/𝑛 partitions since we
need separate partitions to cover the points for each interval of size 2𝜀.

For 𝑖 = 1, . . . , 𝑁 , consider the set

𝐹𝑖 =
⋃︁
𝑗∈𝐽𝑖

{︂
𝑖 + 𝑗𝑁

𝑛
,
𝑖 + 𝑗𝑁

𝑛
+ 𝜀𝑖+𝑗𝑁

}︂
,

where 𝐽𝑖 = {𝑗 ≥ 0 : 𝑖 + 𝑗𝑁 ≤ 𝑛} is an integer set. Through our way of constructing the partition, we have that

𝑖 + (𝑗 + 1)𝑁

𝑛
− 𝑖 + 𝑗𝑁

𝑛
=

𝑁

𝑛
= 2𝜀.

The upshot to this is that if we write 𝐹𝑖 = {𝑥𝑖,𝑗}2|𝐽𝑖|
𝑗=1 such that 𝑥𝑖,1 ≤ . . . ≤ 𝑥𝑖,2|𝐽𝑖|, then we have

𝑛∑︁
𝑖=1

⃒⃒⃒⃒
𝑤

(︂
𝑖

𝑛

)︂
− 𝑤

(︂
𝑖

𝑛
+ 𝜀𝑖

)︂⃒⃒⃒⃒
≤

𝑁∑︁
𝑖=1

2|𝐽𝑖|−1∑︁
𝑗=1

|𝑤(𝑥𝑖,𝑗+1) − 𝑤(𝑥𝑖,𝑗)| . (10)

The reason for equation (10) is that each summand on the left hand side appears on the right hand side, and all additional
summands are non-negative. In particular, we know that for all 𝑘 ∈ {𝑖 + ⌊𝑖 + 2𝑗𝑛𝜀⌋}𝑗∈𝐽𝑖

, 𝑘/𝑛 and 𝑘/𝑛 + 𝜀𝑘 are in 𝐹𝑖, and
there are no points in 𝐹𝑖 that are in between 𝑘/𝑛 and 𝑘/𝑛 + 𝜀𝑘.

Figure 4. An illustration of constructing the partitions. There are two partitions, blue and red, in this example. Our goal is to construct
partitions so that for all 𝑖 ∈ [𝑛], 𝑖/𝑛 and 𝑖/𝑛+ 𝜀𝑖 is in the one of the partitions 𝐹 and there is no points in between in 𝐹 . Since we have
chosen 2𝜀 as the gap between 𝐹𝑖𝑗 and 𝐹𝑖,𝑗+1 and |𝜀𝑖| ≤ 𝜀, we have ensured that {𝑖/𝑛, 𝑖/𝑛+ 𝜀𝑖} are in the red partition with no points
in the red partition in between 𝑖/𝑛 and 𝑖/𝑛+ 𝜀𝑖. Since (𝑖+ 2)/𝑛 and 𝑖/𝑛 are 2𝜀 apart, they can be put in the same red partition since
𝑖/𝑛+ 𝜀𝑖 ≤ (𝑖+ 2)/𝑛− 𝜀 ≤ (𝑖+ 2)/𝑛+ 𝜀𝑖+2.

Now, we can use total variation to see that the right hand side is bounded by 𝑁𝑉 (𝑤), and so we have 𝐴1 ≤ 𝑁𝑉 (𝑤).
Plugging this back into the definition of 𝐴1, we have

𝑃 ≤ P

(︃
sup
𝑓∈ℱ

sup
𝑥∈[0,𝐵ℓ]

|𝐹𝑓,𝑛(𝑥) − 𝐹𝑓 (𝑥)| > 𝑡

2𝐵ℓ𝑉 (𝑤)

)︃
.

So, our final task is to upper bound this quantity. For this, we apply Lemma 9. Thus, we obtain

P

(︃
sup
𝑓∈ℱ

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

ℓ𝑓,𝑖𝑤(𝐹𝑓,𝑛(ℓ𝑓,𝑖)) −
1

𝑛

𝑛∑︁
𝑖=1

ℓ𝑓,𝑖𝑤(𝐹𝑓 (ℓ𝑓,𝑖))

⃒⃒⃒⃒
⃒ > 4𝐵ℓ𝑉 (𝑤)̂︀R𝑛(ℒ) + 6𝐵ℓ𝑉 (𝑤)

√︃
log 2

𝛿

2𝑛

)︃
≤ 𝛿.

This completes the proof.

Proof of Lemma 2. Recall the definition of the set ℓ(ℱ) · 𝑤(𝐹ℱ ) = {ℓ𝑓𝑤(𝐹𝑓 ) | 𝑓 ∈ ℱ}. Let 𝑔 be an element of the cover
of ℱ , ℎ be an element of the cover of 𝑤(𝐹ℱ ). For any 𝑓 ∈ ℱ , we have
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‖ℓ𝑓𝑤(𝐹𝑓 ) − ℓ𝑔ℎ‖𝑛 ≤ ‖ℓ𝑓𝑤(𝐹𝑓 ) − ℓ𝑓ℎ‖𝑛 + ‖ℓ𝑓ℎ− ℓ𝑔ℎ‖𝑛

≤

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

𝐵2
ℓ (𝑤(𝐹𝑓,𝑖) − ℎ(𝑥𝑖)))2 +

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

𝐵2
𝑤(ℓ𝑓,𝑖 − ℓ𝑔,𝑖)2

≤

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

𝐵2
ℓ (𝑤(𝐹𝑓,𝑖) − ℎ(𝑥𝑖))2 +

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

𝐵2
𝑤𝜆

2
ℓ(𝑓(𝑥𝑖) − 𝑔(𝑥𝑖))2

= 𝐵ℓ‖𝑤(𝐹𝑓 ) − ℎ‖𝑛 + 𝐵𝑤𝜆ℓ‖𝑓 − 𝑔‖𝑛.

The proof completes by choosing a 𝑡/(2𝐵𝑤𝜆ℓ)−cover of ℱ and a 𝑡/(2𝐵ℓ)−cover of 𝑤(𝐹ℱ ).

Proof of Lemma 3. Since 𝒞(𝜀′, 𝐹ℱ ) is a cover of 𝐹ℱ , for every 𝑓 in ℱ , there is an 𝐻 in 𝒞(𝜀′, 𝐹ℱ ) such that

‖𝑤(𝐹𝑓 ) − 𝑤(𝐻)‖𝑛 =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑤(𝐹𝑓 (ℓ𝑓,𝑖)) − 𝑤(𝐻(ℓ𝑓,𝑖)))2

≤ sup
𝜀′𝑖:|𝜀′𝑖|≤𝜀′

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑤(𝐹𝑓 (ℓ𝑓,𝑖)) − 𝑤(𝐹𝑓 (ℓ𝑓,𝑖) + 𝜀′𝑖))
2.

Reintroducing 𝐹𝑓,𝑛 and 𝜀 using Assumption 2, we obtain

‖𝑤(𝐹𝑓 ) − 𝑤(𝐻)‖𝑛 ≤ sup
𝜀𝑖:|𝜀𝑖|≤𝜀

sup
𝜀′𝑖:|𝜀′𝑖|≤𝜀′

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑤(𝐹𝑓,𝑛(ℓ𝑓,𝑖) + 𝜀𝑖) − 𝑤(𝐹𝑓,𝑛(ℓ𝑓,𝑖) + 𝜀𝑖 + 𝜀′𝑖))
2.

The advantage to the empirical cdf 𝐹𝑓,𝑛 is that we can reorder the losses so that 𝐹𝑓,𝑛(ℓ𝑓,[𝑖]) = 𝑖/𝑛. Thus, we have

‖𝑤(𝐹𝑓 ) − 𝑤(𝐻)‖𝑛 ≤ sup
𝜀𝑖:|𝜀𝑖|≤𝜀

sup
𝜀′𝑖:|𝜀′𝑖|≤𝜀′

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(︂
𝑤

(︂
𝑖

𝑛
+ 𝜀𝑖

)︂
− 𝑤

(︂
𝑖

𝑛
+ 𝜀𝑖 + 𝜀′𝑖

)︂)︂2

.

Now, we can proceed with the total variation bounding technique from the proof of Lemma 8. Let 𝑁 ≥ 2(𝜀 + 𝜀′)𝑛. Then,
define

𝐹𝑖 =
⋃︁
𝑗∈𝐽𝑖

{︂
𝑖 + 𝑗𝑁

𝑛
+ 𝜀𝑖+𝑗𝑁 ,

𝑖 + 𝑗𝑁

𝑛
+ 𝜀𝑖+𝑗𝑁 + 𝜀′𝑖+𝑗𝑁

}︂

where 𝐽𝑖 = {𝑗 ≥ 0 : 𝑖 + 𝑗𝑁 ≤ 𝑛}. Let 𝐹𝑖 = {𝑥𝑖,𝑗}2|𝐽𝑖|
𝑗=1 where 𝑥𝑖,1 ≤ . . . ≤ 𝑥𝑖,2|𝐽𝑖|. Then, we see that

𝑛∑︁
𝑖=1

(︂
𝑤

(︂
𝑖

𝑛
+ 𝜀𝑖

)︂
− 𝑤

(︂
𝑖

𝑛
+ 𝜀𝑖 + 𝜀′𝑖

)︂)︂2

≤
𝑁∑︁
𝑖=1

2|𝐽𝑖|−1∑︁
𝑗=1

|𝑤(𝑥𝑖,𝑗+1) − 𝑤(𝑥𝑖,𝑗)|2

since every summand on the left hand side appears on the right hand side. This final sum is bounded by 𝑁𝑉 2
2 (𝑤), and so

putting everything together, we have

‖𝑤(𝐹𝑓 ) − 𝑤(𝐻)‖𝑛 ≤ 𝑉2(𝑤′)

√︂
𝑁

𝑛
≤ 𝑉2(𝑤)

√︀
3(𝜀 + 𝜀′).
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Proof of Corollary 1. To prove the corollary, we only need to use Theorem 1 and upper bound the Rademacher complexities
by the VC-dimension and appropriate entropy integral. For the empirical Rademacher complexity of , we apply the second
inequality of Lemma 9. Next, we notice that ℓ(ℱ) · 𝑤(𝐹ℱ ) is a set of functions all bounded by 𝐵ℓ𝐵𝑤. Thus, by Lemma 16
and Lemma 2, we obtain

̂︀R𝑛(ℓ(ℱ) · 𝑤(𝐹ℱ )) ≤ inf
𝜀≥0

{︂
4𝜀 +

12√
𝑛

∫︁ 2𝐵ℓ𝐵𝑤

𝜀

(︂
log𝒩

(︂
𝑡

2𝐵𝑤𝜆ℓ
,ℱ , ‖ · ‖𝑛

)︂
+ 𝒩

(︂
𝑡

2𝐵ℓ
, 𝑤(𝐹ℱ ), ‖ · ‖𝑛

)︂)︂ 1
2

𝑑𝑡

}︂
.

By Lemma 3, we obtain that

𝒩
(︂

𝑡

2𝐵ℓ
, 𝑤(𝐹ℱ ), ‖ · ‖𝑛

)︂
≤ 𝒩

(︂
𝑡2

12𝐵2
ℓ𝑉

2
2 (𝑤)

− 𝜀, 𝐹ℱ , ‖ · ‖𝑛
)︂
,

where 𝜀 = sup𝑓∈ℱ sup𝑥∈[0,𝐵ℓ]
|𝐹𝑓,𝑛(𝑥) − 𝐹𝑓 (𝑥)|. By Lemma 9, with probability at least 1 − 𝛿 for a universal constant 𝐶,

we have

𝜀 ≤ 2𝐶

√︂
𝑉

𝑛
+ 3

√︃
log 2

𝛿

2𝑛
.

This completes the proof.

Proof of Corollary 2. To prove this corollary, we again only need to use Theorem 1, the second inequality of Lemma 9, and
an upper bound the other Rademacher complexity. Again using Lemma 16 and Lemma 2, we obtain

̂︀R𝑛(ℓ(ℱ) · 𝑤(𝐹ℱ )) ≤ inf
𝜀≥0

{︂
4𝜀 +

12√
𝑛

∫︁ 2𝐵ℓ𝐵𝑤

𝜀

(︂
log𝒩

(︂
𝑡

2𝐵𝑤𝜆ℓ
,ℱ , ‖ · ‖𝑛

)︂
+ 𝒩

(︂
𝑡

2𝐵ℓ
, 𝑤(𝐹ℱ ), ‖ · ‖𝑛

)︂)︂ 1
2

𝑑𝑡

}︂
.

By Lemma 4, we have

𝒩
(︂

𝑡

2𝐵ℓ
, 𝑤(𝐹ℱ ), ‖ · ‖𝑛

)︂
≤ 𝒩

(︂
𝑡

2𝐵ℓ𝜆𝑤
, 𝐹ℱ , ‖ · ‖∞

)︂
,

and this completes the proof.

C. Logistic Regression Proofs
In this section, we prove our statements for our logistic regression examples. The two key lemmas introduced in the main
paper are a bound on the VC-dimension of ℒ and a bound on the metric entropy of 𝐹ℱ . The latter requires basic bounds
on the volume of hyperspherical caps and ratios of the Gamma function, which are contained in the subsequent section.
Additionally, in this section, we prove our corollaries for different weight functions.

Proof of Lemma 5. First, we start by examining elements of ℒ. Let 𝑔𝑓,𝑡 be in ℒ. Then, 𝑔𝑓,𝑡 has the form

𝑔𝑓,𝑡(𝑧) = 1 {ℓ(𝑓, 𝑧) ≤ 𝑡} = 1 {log(1 + exp(−𝑦𝑓(𝑥))) ≤ 𝑡} .

By basic algebraic manipulations, this is equivalent to

𝑔𝑓,𝑡(𝑧) = 1 {−𝑦𝑓(𝑥) ≤ log(exp(𝑡) − 1)} .

Since the choice of 𝑡 is arbitrary and 𝑚(𝑡) = log(exp(𝑡) − 1) is a bijection of the real line, we may reparametrize and write

𝑔𝑓,𝑡(𝑧) = 1 {−𝑦𝑓(𝑥) ≤ 𝑡} .

Next, we use the fact that 𝑓 is a linear classifier; so we can write

𝑔𝑓,𝑡(𝑧) = 1 {−𝑦(𝜃ᵀ𝑥 + 𝑏) ≤ 𝑡} .
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Now, our goal is to use an invariance observation to remove the (−𝑌 ) from the beginning of the equation. For this, we again
alter 𝑔𝑓,𝑡, and this time we consider

ℎ𝑓,𝑡(𝑧) = sgn ((−𝑦)((𝜃, 𝑡)ᵀ(𝑥, 𝑦) + 𝑏)) = −𝑦sgn ((𝜃, 𝑡)ᵀ(𝑥, 𝑦) + 𝑏) .

Thus, instead of considering mappings to {0, 1}, we consider mappings to {+1,−1}. Let 𝒵𝐷 = {𝑧1, . . . , 𝑧𝐷} be arbitrary,
and let ℋ be the set of all functions ℎ : 𝒵𝐷 → {+1,−1}. To show that ℒ has VC dimension bounded by some 𝐷, we need
to prove that there does not exist any set 𝒵𝐷 such that, for all ℎ in ℋ, we have ℎ𝑓,𝑡(𝑧) = ℎ(𝑧) on 𝒵𝐷 for some 𝑓 and 𝑡.

Now, we have the key observation: it suffices to instead show that there does not exist a set 𝒵𝐷 such that, for all ℎ in ℋ, we
have ℎ𝑓,𝑡(𝑧) = −𝑦ℎ(𝑧) on 𝒵𝐷 for some 𝑓 and 𝑡. The reason for this is simple. If we define

−𝑦ℋ = {(𝑥, 𝑦) ↦→ −𝑦ℎ(𝑥) : ℎ ∈ ℋ} ,

then −𝑦ℋ and ℋ are equivalent.

Using this observation, we only need to examine the conditions under which

ℎ𝑓,𝑡(𝑧) = −𝑦sgn((𝜃, 𝑡)ᵀ(𝑥, 𝑦) + 𝑏) = −𝑦ℎ(𝑧).

Multiplying both sides by −𝑦, we need to find the size of the largest set such that we can find 𝑓 and 𝑡 satisfying

sgn((𝜃, 𝑡)ᵀ(𝑥, 𝑦) + 𝑏) = ℎ(𝑧) (11)

for all 𝑧 in 𝒵𝐷 for arbitrary ℎ. But, equation (11) is a restricted form of linear classification in R𝑑+1. The VC dimension of
linear classifiers over R𝑑+1 is 𝑑 + 2; thus, the VC dimension of ℒ is upper bounded by 𝑑 + 2.

Proof of Lemma 6. Our strategy is to define the cumulative distribution function for a particular classifier, 𝐹𝜃; to show that
this cdf is Lipschitz; and then to use the standard argument for covering a Lipschitz function class. We start with the first
task. Let Vol(𝐵(𝑑)) denote the volume of the unit ball in R𝑑. The cdf of the loss given the classifier 𝜃 is

𝐹𝜃(𝑡) =

∫︁
𝐵(𝑑)

1

Vol(𝐵(𝑑))

(︂
1 + 𝜃ᵀ*𝑥

2

)︂
1 {ℓ(𝜃, (𝑥,+1)) ≤ 𝑡} 𝑑𝑥

+

∫︁
𝐵(𝑑)

1

Vol(𝐵(𝑑))

(︂
1 − 𝜃ᵀ*𝑥

2

)︂
1 {ℓ(𝜃, (𝑥,−1)) ≤ 𝑡} 𝑑𝑥.

(12)

Now, we move to the second step of the proof: proving that 𝐹𝜃 is Lipschitz. Suppose that 𝑡 ≤ 𝑡′. Using equation (12), we
have

𝐹𝜃(𝑡′) − 𝐹𝜃(𝑡) =

∫︁
𝐵(𝑑)

1

Vol(𝐵(𝑑))

(︂
1 + 𝜃ᵀ*𝑥

2

)︂
1 {𝑡 < ℓ(𝜃, (𝑥,+1)) ≤ 𝑡′} 𝑑𝑥

+

∫︁
𝐵(𝑑)

1

Vol(𝐵(𝑑))

(︂
1 − 𝜃ᵀ*𝑥

2

)︂
1 {𝑡 < ℓ(𝜃, (𝑥,−1)) ≤ 𝑡′} 𝑑𝑥

≤ 1

Vol(𝐵(𝑑))

∫︁
𝐵(𝑑)

1 {𝑡 < ℓ(𝜃, (𝑥,+1)) ≤ 𝑡′} 𝑑𝑥

+
1

Vol(𝐵(𝑑))

∫︁
𝐵(𝑑)

1 {𝑡 < ℓ(𝜃, (𝑥,−1)) ≤ 𝑡′} 𝑑𝑥.

At this point, we need to use the form of the loss to make further progress on the integral. The first indicator is

1 {𝑡 < ℓ(𝜃, (𝑥,+1)) ≤ 𝑡′} = 1 {𝑡 < log(1 + exp(−𝜃ᵀ𝑥)) ≤ 𝑡′} = 1 {𝑔(𝑡) ≤ −𝜃ᵀ𝑥 ≤ 𝑔(𝑡′)}

where 𝑔(𝑠) = log(exp(𝑠) − 1). Presently, we need to use the distribution of 𝑋 to deduce the distribution of −𝜃ᵀ𝑥. Since
𝑋 is uniformly distributed on the sphere, by spherical symmetry, we have the distributional equivalence −𝜃ᵀ𝑋 = ‖𝜃‖𝑋1,
where 𝑋1 is the first component of 𝑋 . The same analysis shows that 𝜃ᵀ𝑋 = ‖𝜃‖𝑋1; so the following analysis applies to
the second integral as well. The quantity we need to bound is

𝐶 =

∫︁
𝐵(𝑑)

1

{︂
𝑔(𝑡)

‖𝜃‖
< 𝑥1 ≤ 𝑔(𝑡′)

‖𝜃‖

}︂
𝑑𝑥.



Rank-weighted Learning

The integral is a difference in the volume of spherical caps when 𝑔(𝑡) and 𝑔(𝑡′) have the same sign; otherwise the integral
spans the equator of the hypersphere. Thus, let 𝑉 (ℎ, 𝑟) be the volume of the spherical cap of height ℎ and radius 𝑟.

We consider three cases involiving the values of 𝑔(𝑡) and 𝑔(𝑡′), but we first make a simplifying observation. Since 𝑋
takes values on the unit sphere and 𝜃 is bounded, it suffices to consider 𝑡 and 𝑡′ in the interval [𝐿*, 𝐿

*] where 𝐿* =
log(1 + exp(−‖𝜃‖)) and 𝐿* = log(1 + exp(‖𝜃‖)). Otherwise, we have 𝐹𝜃(𝑡) = 0 for 𝑡 ≤ 𝐿* and 𝐹𝜃(𝑡) = 1 for 𝑡 ≥ 𝐿*.
Thus, in proving that 𝐹𝜃 is Lipschitz, it suffices to consider the interval [𝐿*, 𝐿

*]. Note that 𝑔(𝐿*) = −‖𝜃‖ and 𝑔(𝐿*) = ‖𝜃‖
as well. Now, we proceed to our cases.

Case 1: 𝑔(𝐿*) ≤ 𝑔(𝑡) ≤ 𝑔(𝑡′) ≤ 0. In this case, we have

𝐶 = 𝑉

(︂
1 +

𝑔(𝑡′)

‖𝜃‖
, 1

)︂
− 𝑉

(︂
1 +

𝑔(𝑡)

‖𝜃‖
, 1

)︂
.

Using Lemma 10, we have

𝐹𝜃(𝑡′) − 𝐹𝜃(𝑡) ≤ 2
Vol(𝐵(𝑑− 1))

Vol(𝐵(𝑑))

(︃∫︁ 1

−𝑔(𝑡′)/‖𝜃‖
(1 − 𝜑2)

𝑑−1
2 𝑑𝜑−

∫︁ 1

−𝑔(𝑡)/‖𝜃‖
(1 − 𝜑2)

𝑑−1
2 𝑑𝜑

)︃

= 2
Vol(𝐵(𝑑− 1))

Vol(𝐵(𝑑))

∫︁ −𝑔(𝑡)/‖𝜃‖

−𝑔(𝑡′)/‖𝜃‖
(1 − 𝜑2)

𝑑−1
2 𝑑𝜑

≤ 2
Vol(𝐵(𝑑− 1))

Vol(𝐵(𝑑))‖𝜃‖
|𝑔(𝑡′) − 𝑔(𝑡)| .

At this point, we consider our other cases, for which we derive similar equations.

Case 2: 0 ≤ 𝑔(𝑡) ≤ 𝑔(𝑡′) ≤ 𝑔(𝐿*). In this case, we have

𝐶 = 𝑉

(︂
1 − 𝑔(𝑡)

‖𝜃‖
, 1

)︂
− 𝑉

(︂
1 − 𝑔(𝑡)

‖𝜃‖
, 1

)︂
.

Using Lemma 10, we have

𝐹𝜃(𝑡′) − 𝐹𝜃(𝑡) ≤ 2
Vol(𝐵(𝑑− 1))

Vol(𝐵(𝑑))

(︃∫︁ 1

𝑔(𝑡)/‖𝜃‖
(1 − 𝜑2)

𝑑−1
2 𝑑𝜑−

∫︁ 1

𝑔(𝑡′)/‖𝜃‖
(1 − 𝜑2)

𝑑−1
2 𝑑𝜑

)︃

= 2
Vol(𝐵(𝑑− 1))

Vol(𝐵(𝑑))

∫︁ 𝑔(𝑡′)/‖𝜃‖

𝑔(𝑡)/‖𝜃‖
(1 − 𝜑2)

𝑑−1
2 𝑑𝜑

≤ 2
Vol(𝐵(𝑑− 1))

Vol(𝐵(𝑑))‖𝜃‖
|𝑔(𝑡′) − 𝑔(𝑡)|.

This gives the same inequality as for case 1; now we proceed to the final case.

Case 3: 𝑔(𝐿*) ≤ 𝑔(𝑡) ≤ 0 ≤ 𝑔(𝑡′) ≤ 𝑔(𝐿*). Here, we have

𝐶 = 𝑉 (1, 1) − 𝑉

(︂
1 − 𝑔(𝑡′)

‖𝜃‖
, 1

)︂
+ 𝑉 (1, 1) − 𝑉

(︂
1 +

𝑔(𝑡)

‖𝜃‖
, 1

)︂
.
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Again using Lemma 10, we have

𝐹𝜃(𝑡′) − 𝐹𝜃(𝑡) ≤ 2
Vol(𝐵(𝑑− 1))

Vol(𝐵(𝑑))

(︃∫︁ 1

0

(1 − 𝜑2)
𝑑−1
2 𝑑𝜑−

∫︁ 1

𝑔(𝑡′)/‖𝜃‖
(1 − 𝜑2)

𝑑−1
2 𝑑𝜑

+

∫︁ 1

0

(1 − 𝜑2)
𝑑−1
2 𝑑𝜑−

∫︁ 1

−𝑔(𝑡)/‖𝜃‖
(1 − 𝜑2)

𝑑−1
2 𝑑𝜑

)︃

= 2
Vol(𝐵(𝑑− 1))

Vol(𝐵(𝑑))

(︃∫︁ 𝑔(𝑡′)/‖𝜃‖

0

(1 − 𝜑2)
𝑑−1
2 𝑑𝜑 +

∫︁ −𝑔(𝑡)/‖𝜃‖

0

(1 − 𝜑2)
𝑑−1
2 𝑑𝜑

)︃

= 2
Vol(𝐵(𝑑− 1))

Vol(𝐵(𝑑))

∫︁ 𝑔(𝑡′)/‖𝜃‖

𝑔(𝑡)/‖𝜃‖
(1 − 𝜑2)

𝑑−1
2 𝑑𝜑

≤ 2
Vol(𝐵(𝑑− 1))

Vol(𝐵(𝑑))‖𝜃‖
|𝑔(𝑡′) − 𝑔(𝑡)|.

Thus, we have established the previous equation in all cases.

Finally, for all of the cases above, we simply use the fact that 𝑔 is Lipschitz on the interval [𝐿*, 𝐿
*]; moreover, there is some

worst case Lipschitz constant for 𝑔 and all parametrizations 𝜃 since ℱ is compact. Using this constant 𝐶 ′, we have

𝐹𝜃(𝑡′) − 𝐹𝜃(𝑡) ≤ 2

‖𝜃‖
· Vol(𝐵(𝑑− 1))

Vol(𝐵(𝑑))
𝐶 ′|𝑡′ − 𝑡| ≤ 2𝐶 ′

𝑟1
· Vol(𝐵(𝑑− 1))

Vol(𝐵(𝑑))
|𝑡′ − 𝑡|.

This proves that 𝐹𝜃 is Lipschitz, and we may pick the same Lipschitz constant for all 𝜃. Next, we take a minor detour to
investigate the dependence of the Lipschitz constant on 𝑑, which involves analyzing the ratio of ball volumes.

The volume of the unit ball in R𝑑 is 𝜋𝑑/2/Γ(𝑑/2 + 1). As a result, we have

Vol(𝐵(𝑑− 1))

Vol(𝐵(𝑑))
=

1√
𝜋
·

Γ
(︀
𝑑
2 + 1

)︀
Γ
(︀
𝑑
2 + 1

2

)︀ ≤
√︂

𝑑

𝜋
,

where the inequality is due to Lemma 11. Thus, we have

𝐹𝜃(𝑡′) − 𝐹𝜃(𝑡) ≤ 2𝐶 ′

𝑟1
√
𝜋

√
𝑑|𝑡′ − 𝑡| = 𝐶(ℱ)

√
𝑑|𝑡′ − 𝑡|.

Finally, we proceed to the third step of the proof: covering ℱ in the infinity norm. We have shown that each 𝐹𝜃 in ℱ is a
𝐶(ℱ)

√
𝑑-Lipschitz function on [𝐿*, 𝐿

*]. From the fact that each 𝐹𝜃 is a cumulative distribution function, we know that they
are monotonically increasing, take values between 0 and 1, and start at 0 in that inf𝑡 𝐹𝜃(𝑡) = 0. This set is 𝜀-coverable in
the infinity norm by 2(𝐿

*−𝐿*)𝐶(ℱ)
√
𝑑/𝜀 functions that are piecewise linear on the grid with spaces in 𝑡 of size 𝜀/(𝐶(ℱ)

√
𝑑)

and slopes of either 0 or 𝐶(ℱ)
√
𝑑 on each segment. As a result, the 𝜀-entropy of ℱ is

log𝒩 (𝜀, 𝐹ℱ , ‖ · ‖∞) ≤ log 2
(𝐿*−𝐿*)𝐶(ℱ)

√
𝑑

𝜀 ≤ (𝐿* − 𝐿*)𝐶(ℱ)
√
𝑑

𝜀
.

Note that 𝐿* − 𝐿* ≤ 4𝑟2, so the dependence of the cover size on ℱ is at least 𝑟2/𝑟1. This completes the proof.

Proof of Corollary 3. From Corollary 1, it suffices to bound the VC dimension of ℒ for the logistic loss and the first term of
the bound. For the former, we simply apply Lemma 5.

Now, we consider the first term of the bound. We ultimately choose 𝜂 = 𝐵ℓ𝑉2(𝑤)(12𝜀)1/2, but for simplicity, we maintain
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the 𝜂 through our initial calculations. We focus on the entropy integral, which we denote by 𝐽 . We have

𝐽 =

∫︁ 2𝐵ℓ𝐵𝑤

𝜂

(︂
log𝒩

(︂
𝑡

2𝐵𝑤𝜆ℓ
,ℱ , ‖ · ‖𝑛

)︂
+ log𝒩

(︂
𝑡2

12𝐵2
ℓ𝑉

2
2 (𝑤)

− 𝜀, 𝐹ℱ , ‖ · ‖∞
)︂)︂ 1

2

𝑑𝑡

≤
∫︁ 2𝐵ℓ𝐵𝑤

𝜂

(︃
𝑑 log

(︂
1 +

4𝑟2𝐵𝑤𝜆ℓ

𝑡

)︂
+

12𝐵2
ℓ𝑉

2
2 (𝑤)𝐶(ℱ)

√
𝑑

𝑡2 − 12𝐵2
ℓ𝑉

2
2 (𝑤)𝜀

)︃ 1
2

𝑑𝑡

≤
∫︁ 2𝐵ℓ𝐵𝑤

𝜂

(︂
4𝑑𝑟2𝐵𝑤𝜆ℓ

𝑡

)︂ 1
2

𝑑𝑡 +

∫︁ 2𝐵ℓ𝐵𝑤

𝜂

(︃
12𝐵2

ℓ𝑉
2
2 (𝑤)𝐶(ℱ)

√
𝑑

𝑡2 − 12𝐵2
ℓ𝑉

2
2 (𝑤)𝜀

)︃ 1
2

𝑑𝑡,

where the first inequality follows from Lemma 6 and Lemma 12 and the second inequality follows from the elementary
inequality

√
𝑥 + 𝑦 ≤

√
𝑥 +

√
𝑦 for non-negative 𝑥 and 𝑦. Integrating, we obtain

𝐽 ≤ 2
√︀

8𝑑𝑟2𝐵𝑤𝜆ℓ𝐵ℓ𝐵𝑤 + log

(︂
2𝐵ℓ𝐵𝑤 +

√︁
(2𝐵ℓ𝐵𝑤)2 − 12𝐵2

ℓ𝑉
2
2 (𝑤)𝜀

)︂
− log

(︂
𝜂 +

√︁
𝜂2 − 12𝐵2

ℓ𝑉
2
2 (𝑤)𝜀

)︂
≤ 2
√︀

8𝑑𝑟2𝐵𝑤𝜆ℓ𝐵ℓ𝐵𝑤 + log (4𝐵ℓ𝐵𝑤) − log(𝜂)

≤ 𝐶 + 𝐶 ′ log 𝑛,

where the final inequality follows since 𝜂 = Θ(𝑛−1/2).

Thus, putting everything together with the bound of Corollary 1, we have

sup
𝑓∈ℱ

⃒⃒⃒⃒
⃒ 1𝑛

𝑛∑︁
𝑖=1

ℓ𝑓,𝑖𝑤(𝐹𝑓,𝑛(ℓ𝑓,𝑖)) − E[ℓ𝑓𝑤(𝐹𝑓 (ℓ𝑓 ))]

⃒⃒⃒⃒
⃒ ≤ 𝐶(ℱ , 𝑑, 𝛿, 𝐵ℓ, 𝐵𝑤, 𝑉1(𝑤), 𝑉2(𝑤))𝑛− 1

4 ,

since 𝜂 = Θ(𝑛−1/4). This completes the proof.

Proof of Corollary 4. From Corollary 2, it suffices to analyze the VC dimension of ℒ for the logistic loss and the first term
of the bound. For the former, we simply apply Lemma 5.

Now, we consider the first term in the bound. To simplify matters, we pick 𝜂 = 0. Denote the entropy integral by 𝐽 . Using
Lemma 12 and Lemma 6, we have

𝐽 =

∫︁ 2𝐵ℓ𝐵𝑤

0

(︃
𝑑 log

(︂
1 +

2𝑟2
𝑡

)︂
+

2𝐵ℓ𝜆𝑤𝐶(ℱ)
√
𝑑

𝑡

)︃ 1
2

𝑑𝑡

≤
√︁

2𝑑𝑟2 + 2𝐵𝜆𝜆𝑤𝐶(ℱ)
√
𝑑

∫︁ 2𝐵ℓ𝐵𝑤

0

1√
𝑡
𝑑𝑡

=

√︁
𝐵ℓ𝐵𝑤(2𝑑𝑟2 + 2𝐵𝜆𝜆𝑤𝐶(ℱ)

√
𝑑).

Plugging this result in completes the proof.

D. Additional Lemmas
In this section, we prove a few auxiliary lemmas.

Lemma 9. Let 𝑉 be the VC-dimension of ℒ. With probability at least 1 − 𝛿, for a universal constant 𝐶, we have

sup
𝑓∈ℱ

sup
𝑥∈[0,𝐵ℓ]

|𝐹𝑓,𝑛(𝑥) − 𝐹𝑓 (𝑥)| ≤ 2̂︀R𝑛(ℒ) + 3

√︃
log 2

𝛿

2𝑛
≤ 2𝐶

√︂
𝑉

𝑛
+ 3

√︃
log 2

𝛿

2𝑛
.
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Proof. Our goal is to use symmetrization and a VC-dimension bound. First, let ℓ′𝑓,𝑖 = ℓ(𝑓, 𝑍 ′
𝑖) be a random variable

independent of and identically distributed to ℓ𝑓,𝑖. Define 𝑆′ to be the set of ℓ′𝑓,1, . . . , ℓ
′
𝑓,𝑛. Then, we can write

sup
𝑓∈ℱ

sup
𝑥∈[0,𝐵ℓ]

|𝐹𝑓,𝑛(𝑥) − 𝐹𝑓 (𝑥)| = sup
𝑓∈ℱ

sup
𝑥∈[0,𝐵ℓ]

1

𝑛

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

1 {ℓ𝑓,𝑖 ≤ 𝑥} − E𝑆′

𝑛∑︁
𝑖=1

1
{︀
ℓ′𝑓,𝑖 ≤ 𝑥

}︀⃒⃒⃒⃒⃒ .
Then by Lemma 13, Lemma 16 and Lemma 17, with probability at least 1 − 𝛿, for a universal constant 𝐶, we have

sup
𝑓∈ℱ

sup
𝑥∈[0,𝐵ℓ]

|𝐹𝑓,𝑛(𝑥) − 𝐹𝑓 (𝑥)| ≤ 2̂︀R𝑛(ℒ) + 3

√︃
log 2

𝛿

2𝑛
≤ 2𝐶

√︂
𝑉

𝑛
+ 3

√︃
log 2

𝛿

2𝑛
.

This completes the proof.

Lemma 10. Let 𝑆 be a sphere of radius 𝑟 in R𝑑. Let 𝑉 (ℎ, 𝑟) be the volume of the spherical cap of height ℎ. Then, the
volume of the cap is

𝑉 (ℎ, 𝑟) = 𝑟𝑑vol(𝐵(𝑑− 1))

∫︁ 1

𝑟−ℎ
𝑟

(1 − 𝜑2)
𝑑−1
2 𝑑𝜑.

Proof. The proof is a straightforward integration, followed by a change of variables and use of trigonometric identities. We
start by observing that we can calculate the volume of the cap by integrating the volume of a (𝑑− 1)-sphere with radius
𝑟 sin 𝜃 over 𝜃 from 0 until 𝑟 cos 𝜃 = 𝑟 − ℎ. This integral is

𝑉 (ℎ, 𝑟) = vol(𝐵(𝑑− 1))

∫︁ arccos( 𝑟−ℎ
𝑟 )

0

𝑟𝑑−1 sin𝑑−1(𝜃)𝑟 sin(𝜃)𝑑𝜃

= 𝑟𝑑vol(𝐵(𝑑− 1))

∫︁ arccos( 𝑟−ℎ
𝑟 )

0

sin𝑑 𝜃𝑑𝜃.

Next, we use a change of variables, setting 𝜃 = arccos𝜑. This gives

𝑉 (ℎ, 𝑟) = 𝑟𝑑vol(𝐵(𝑑− 1))

∫︁ 𝑟−ℎ
𝑟

1

sin𝑑(arccos𝜑)

(︃
− 1√︀

1 − 𝜑2

)︃
𝑑𝜑

= 𝑟𝑑vol(𝐵(𝑑− 1))

∫︁ 1

𝑟−ℎ
𝑟

(1 − 𝜑2)
𝑑−1
2 𝑑𝜑,

where in the second line we use the trigonometric identity sin(arccos𝜑) = (1 − 𝜑2)1/2. This completes the proof.

We also need a result on ratios of the Gamma function (Gautschi, 1959; Qi, 2010).

Lemma 11 (Gautschi’s inequality). For 𝑥 > 0 and 𝑠 in (0, 1), we have the inequalities

𝑥1−𝑠 ≤ Γ(𝑥 + 1)

Γ(𝑥 + 𝑠)
≤ (𝑥 + 𝑠)1−𝑠.

Lemma 12. Suppose that ℱ is a class of linear functions 𝑓(𝑥) = 𝜃ᵀ𝑥 where ‖𝜃‖ ≤ 𝑟. Assume that 𝑋1, . . . , 𝑋𝑛 take values
in the unit ball 𝐵(𝑑). Then, we have the metric entropy bound

log𝒩 (𝑡,ℱ , ‖ · ‖𝑛) ≤ 𝑑 log

(︂
1 +

2𝑟

𝑡

)︂
.
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Proof. Let 𝑓(𝑥) = 𝜃ᵀ𝑥 and 𝑔(𝑥) = 𝜂ᵀ𝑥 be two functions in ℱ . Observe that

‖𝑓 − 𝑔‖𝑛 =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

[(𝜃 − 𝜂)ᵀ𝑋𝑖]2 ≤ ‖𝜃 − 𝜂‖

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

‖𝑋𝑖‖2 ≤ ‖𝜃 − 𝜂‖.

Thus, it suffices to produce a cover of ℱ in the Euclidean norm ‖ · ‖. By Lemma 18, the metric entropy of a unit ball is
bounded above by 𝑑 log(1 + 2/𝛿). Since ℱ is contained in a ball of radius 𝑟, we have

log𝒩 (𝑡,ℱ , ‖ · ‖) ≤ log𝒩
(︂
𝑡

𝑟
, 𝐵(𝑑), ‖ · ‖

)︂
≤ 𝑑 log

(︂
1 +

2𝑟

𝑡

)︂
,

which gives the desired bound.

E. Standard Lemmas
In this section, we provide a number of standard lemmas used in our results.

Lemma 13 (Theorem 3.1 of Mohri et al. 2012). Let 𝐺 be a family of functions mapping from 𝒵 to [0, 1]. Then for 𝛿 > 0,
with probability at least 1 − 𝛿, we have that for all 𝑔 ∈ 𝐺,

E𝑔(𝑍) ≤ 1

𝑛

𝑛∑︁
𝑖=1

𝑔(𝑍𝑖) + 2R𝑛(𝐺) +

√︃
log 1

𝛿

2𝑛

and E𝑔(𝑍) ≤ 1

𝑛

𝑛∑︁
𝑖=1

𝑔(𝑍𝑖) + 2̂︀R𝑛(𝐺) + 3

√︃
log 2

𝛿

2𝑛
.

We now present a few lemmas towards using VC dimension bounds.

Lemma 14 (Corollary 3.1 of Mohri et al. 2012). Let ℱ be a class of functions taking values in {+1,−1}. Then, we have
the following bound

R𝑛(ℱ) ≤
√︂

2 log Πℱ (𝑛)

𝑛
.

Note that the previous lemma also applies to functions taking values in {+1, 0,−1}, since the only way this is used is to
bound the norm of (𝑓(𝑧1), . . . , 𝑓(𝑧𝑛)), which is still bounded by

√
𝑛 when allowing for zeros.

Lemma 15 (Corollary 3.3 of Mohri et al. 2012). Let ℱ be a function class with VC dimension 𝑉 . Then for all 𝑛 ≥ 𝑑, we
have

Πℱ (𝑛) ≤
(︁𝑒𝑛
𝑉

)︁𝑉
.

Lemma 16 (Theorem 5.22 and Example 5.24 of Wainwright 2019). For a class of 𝑏−uniformly bounded functions ℱ , we
have

̂︀R𝑛(ℱ) ≤ inf
𝜂≥0

{︁
8𝜂 +

32√
𝑛

∫︁ 2𝑏

𝜂

√︀
log𝒩 (𝑡,ℱ , ‖ · ‖𝑛)𝑑𝑡

}︁
.

The following allows us to bound covering numbers in terms of VC dimension. Theorem 2.6.4 and Theorem 2.6.7 of (Van
Der Vaart & Wellner, 1996) provide similar results.
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Lemma 17 (Equation 5.49 of Wainwright 2019). For a class of 𝑏−uniformly bounded functions ℱ with VC dimension 𝑉
there is a universal constants 𝐶 such that

𝒩 (𝑡,ℱ , ‖ · ‖𝑛) ≤ 𝐶𝑉 (16𝑒)𝑉
(︂
𝑏

𝑡

)︂2𝑉

.

Lemma 18 (Example 5.9 of Wainwright 2019). Let 𝐵 = {𝑥 ∈ R𝑑 | ‖𝑥‖ ≤ 1} be a unit ball with respect to norm ‖ · ‖.
Then, the metric entropy of 𝐵 in terms of its own norm ‖ · ‖ is bounded above and below as

𝑑 log
(︁1

𝑡

)︁
≤ log𝒩 (𝑡, 𝐵, ‖ · ‖) ≤ 𝑑 log

(︁
1 +

2

𝑡

)︁
.

Lemma 19. Let 𝑋 be a 𝑑−dimensional sub-Gaussian random vector with parameter 𝜎2. With probability 1 − 𝛿, we have

‖𝑋‖2 ≤ 4𝜎
√
𝑑 + 2𝜎

√︂
log

1

𝛿
.

Proof. Let S𝑑−1 denote the set of vectors 𝑣 ∈ R𝑑 such that ‖𝑣‖2 ≤ 1. Let 𝒞(1/2,S𝑑−1, ‖ · ‖2) denote a 1/2−cover of S𝑑−1

in Euclidean norm. We have that

‖𝑋‖2 ≤ max
𝑣∈R𝑑,‖𝑣‖2≤1

𝑣⊤𝑋 ≤ max
𝑢∈𝒞(1/2,S𝑑−1,‖·‖2)

𝑢⊤𝑋 +
1

2
‖𝑋‖2.

By definition, we know that 𝑢⊤𝑋 is a sub-Gaussian random variable with parameter 𝜎2. By Lemma 18, we have |𝑇 | ≤ 5𝑑.
Then, we have that

P(‖𝑋‖2 ≥ 𝑡) ≤ P(2 max
𝑢∈𝑇

𝑢⊤𝑋 ≥ 𝑡) ≤ |𝑇 |P(𝑢⊤𝑋 ≥ 𝑡/2) ≤ 5𝑑𝑒−
𝑡2

8𝜎2 .

F. Proofs of Table 1
In this section, we provide a few of the bounds in Table 1. For the usual risk and HRM, we use a general bound for Lipschitz
weight functions. For CVaR, we provide a simple proof. The proof for the trimmed mean is similar.

Proof of Bounded Variation of Lipschitz 𝑤. Fix a partition 𝑃 = {𝑥1, . . . , 𝑥𝑁} such that 𝑥1 ≤ . . . ≤ 𝑥𝑁 . Then, we have

𝑉𝑝(𝑓, 𝑃 ) =

(︃
𝑁−1∑︁
𝑖=1

|𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)|𝑝
)︃ 1

𝑝

≤

(︃
𝑁−1∑︁
𝑖=1

𝐿𝑝|𝑥𝑖+1 − 𝑥𝑖|𝑝
)︃ 1

𝑝

≤ 𝐿(𝑥𝑁 − 𝑥1) ≤ 𝐿.

Since this upper bound holds for any partition, we have 𝑉 (𝑓) ≤ 𝐿, as desired.

Proof of Bounded Variation of CVaR. Let 𝑃 = {𝑥1, . . . , 𝑥𝑁} be a partition such that 𝑥1 ≤ . . . ≤ 𝑥𝑁 . Note that the scoring
function of CVaR is 𝑤CVaR(𝑡) = 1

𝛼1{𝑡 ≥ 1 − 𝛼} for 𝑡 ∈ [0, 1]. There are two cases.

Case 1: we have 𝑃 ⊂ [0, 1 − 𝛼) or 𝑃 ⊂ [1 − 𝛼, 1]. In this case, 𝑤CVaR(𝑥𝑖) = 𝑤CVaR(𝑥𝑗) for all 𝑖, 𝑗 = 1, . . . , 𝑁 . Thus, we
see 𝑉𝑝(𝑤CVaR, 𝑃 ) = 0.

Case 2: there is an 𝑖 for which 𝑥𝑖 < 1 − 𝛼 and 𝑥𝑖+1 ≥ 1 − 𝛼. Here, we have

𝑉𝑝(𝑤CVaR, 𝑃 ) =

(︃
𝑁−1∑︁
𝑖=1

|𝑤CVaR(𝑥𝑖+1) − 𝑤CVaR(𝑥𝑖)|𝑝
)︃ 1

𝑝

= |𝑤CVaR(𝑥𝑖+1) − 𝑤CVaR(𝑥𝑖)| = 𝛼−1.

Thus, we see 𝑉𝑝(𝑤CVaR, 𝑃 ) ≤ 𝛼−1 for all partitions 𝑃 , which proves 𝑉𝑝(𝑤CVaR) = 𝛼−1.
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Proof of Bounded Variation of Trimmed Risk. Let 𝑃 = {𝑥1, . . . , 𝑥𝑁} be a partition such that 𝑥1 ≤ . . . ≤ 𝑥𝑁 . Note that
the scoring function of trimmed risk is 𝑤TRIM(𝑡) = 𝑤(𝑡) = 1

1−2𝛼1{𝛼 ≤ 𝑡 ≤ 1 − 𝛼} for 𝑡 ∈ [0, 1]. There are three cases.

Case 1: we have 𝑃 ⊂ [𝛼, 1 − 𝛼) or 𝑃 ⊂ [0, 𝛼) ∪ [1 − 𝛼, 1]. In this case, 𝑤TRIM(𝑥𝑖) = 𝑤TRIM(𝑥𝑗) for all 𝑖, 𝑗 = 1, . . . , 𝑁 .
Thus, we see 𝑉𝑝(𝑤TRIM, 𝑃 ) = 0.

Case 2: we have a) 𝑥1 ≥ 𝛼 and an 𝑖 for which 𝑥𝑖 ≤ 1 − 𝛼 and 𝑥𝑖+1 > 1 − 𝛼; or b) 𝑥1 ≤ 1 − 𝛼 and an 𝑖 for which 𝑥𝑖 < 𝛼
and 𝑥𝑖+1 ≥ 𝛼. Here, we obtain

𝑉𝑝(𝑤TRIM, 𝑃 ) =

(︃
𝑁−1∑︁
𝑖=1

|𝑤TRIM(𝑥𝑖+1) − 𝑤TRIM(𝑥𝑖)|𝑝
)︃ 1

𝑝

= |𝑤TRIM(𝑥𝑖+1) − 𝑤TRIM(𝑥𝑖)| = (1 − 2𝛼)−1.

Case 3: we have 𝑖, 𝑗 such that 𝑥𝑖 < 𝛼, 𝑥𝑖+1 ≥ 𝛼, 𝑥𝑗 ≤ 1 − 𝛼 and 𝑥𝑗 > 1 − 𝛼. In this setting, we have

𝑉𝑝(𝑤TRIM, 𝑃 ) =

(︃
𝑁−1∑︁
𝑖=1

|𝑤TRIM(𝑥𝑖+1) − 𝑤TRIM(𝑥𝑖)|𝑝
)︃ 1

𝑝

= (2|𝑤TRIM(𝑥𝑖+1) − 𝑤TRIM(𝑥𝑖)|𝑝)
1
𝑝 = 2

1
𝑝 (1 − 2𝛼)−1.

Thus, we see 𝑉𝑝(𝑤TRIM, 𝑃 ) ≤ 2
1
𝑝 (1 − 2𝛼)−1 for all partitions 𝑃 , which proves 𝑉𝑝(𝑤TRIM) = 2

1
𝑝 (1 − 2𝛼)−1.

G. Additional Plots
In this section, we provide an additional plot of training curves to show that our optimization heuristic improves much faster
than optimizing the precise dual form of CVaR. However, as noted previously, the precise dual form leads to a marginally
superior solution.

Figure 5. Convergence performance when optimizing CVaR in the linear regression setting using our heuristic method and an exact
method that utilizes the convex dual form of CVaR in Equation (8). Both methods are used with the same fixed step size. Although our
heuristic method improves faster, the exact method reaches a lower minimum.


