
Domain Adaptive Imitation Learning

Domain Adaptive Imitation Learning - Supplementary Materials

A. High-level Comparison to Baselines

Table 2. Comparison of baselines by attributes demonstrated in the paper. The "No Act" column denotes whether or not the demonstrations
need to contain actions.

UNPAIRED DATA ZEROSHOT IMIT. EMBOD. MISMATCH VIEWPOINT MISMATCH SINGLE-DOMAIN DEMO. NO ACT.

TPIL (STADIE ET AL., 2017) 3 7 7 3 3 7
IF (GUPTA ET AL., 2017) 7 7 3 7 7 7
IFO (LIU ET AL., 2018) 7 7 7 3 7 3

TCN (SERMANET ET AL., 2018) 7 7 7 3 3 3
GAMA (OURS) 3 3 3 3 7 7

We note that methods such as IF has potential to be applied to the viewpoint mismatch problem and IfO, TCN have the
potential to be applied to the embodiment mismatch problem, albeit they were not shown in the paper. TCN has shown
mappings between humans and robots can be learned. However they haven’t shown that robots can use these mappings to
learn from human demonstrations. Below we summarize the key differences between GAMA and the main baselines.

1. We propose an unsupervised MDP alignment algorithm (GAMA) capable of learning state correspondences from
unpaired, unaligned demonstrations while (Gupta et al., 2017; Liu et al., 2018; Sermanet et al., 2018) obtain these
correspondences from paired, time-aligned trajectories. Our demonstrations have varying length (up to 2x difference) and
diverse starting positions. Since good observation correspondences are prerequisites to the success of (Gupta et al., 2017;
Liu et al., 2018; Sermanet et al., 2018), our work provide the missing ingredient. Future work could try learning alignments
with GAMA, then apply methods from (Gupta et al., 2017; Liu et al., 2018; Sermanet et al., 2018) to perform CDIL when
action information is unavailable from demonstrations.

2. We remove the need for an expensive RL procedure on a new target task, by leveraging action information for zero-shot
imitation. By learning a composite self policy with both state and action maps, we obtain a near-optimal self policy on new
tasks without any environment interactions while prior approaches (Gupta et al., 2017; Liu et al., 2018; Sermanet et al.,
2018) require an additional RL step that involves self domain environment interactions.

3. We use a single algorithm to address both the viewpoint and embodiment mismatch which have previously been dealt
with different solutions.

B. GAMA model architecture
The state, action map f✓f , g✓g , inverse state map f�1

✓f�1
, transition function P x

✓P
, and discriminators {D✓

i
D
}N
i=1 are neural

networks with hidden layers of size (200, 200). The fitted policies {⇡y,Ti}Ni=1 for GAMA-PA and ⇡x,T for GAMA-DA all
have hidden layers of size (300, 200). All models are trained with Adam optimizers (Kingma & Ba, 2014) using decay
rates �1 = 0.9,�2 = 0.999. For the spatial autoencoders used in GAMA-PA-img and GAMA-DA-img, we use the same
architecture as in (Finn et al., 2015) We use a learning rate of 1e-4 for the alignment maps and 1e-5 for all other components.
These parameters are fixed across all experiments.

C. Baseline Implementation Details
In this section we describe our implementation details of the baselines.

Obtaining State Correspondences We use 5000 sampled trajectories in both expert and self domains to learn the state
map for IF and CCA. For UMA, we use 20 sampled trajectories to learn that in pendulum and cartpole environment and 50
trajectories in reacher, reacher-tp environment (much beyond these numbers UMA is computationally intractable). For IF
and IfO, we use Dynamic Time Warping (DTW) (Muller, 2007) to obtain state correspondences. For IF, DTW uses the
(learned) feature space as a metric space to estimate the domain correspondences. For IfO, DTW is applied on the state
space. We follow the implementation procedure in (Gupta et al., 2017).

To visualize and quantitatively evaluate the statemaps learned in prior work, we compose the encoder and decoder for IF and
use the Moore-Penrose pseudo inverse of the embedding matrix for UMA and CCA.

Domain Adaptive Imitation Learning

Transfer Learning In the transfer learning phase for CCA, UMA, IF, and IfO they define a proxy reward function on the
target task by using the state correspondence map.

rproxy(s
(t)
x
) =

1

|T|
P
⌧2T kf(s(t)y,⌧)� g(s(t)x)k22

, where s(t)x is a self domain state at time t, T is the collection of expert demonstrations, and s(t)y,⌧ is the expert domain state
at time t in trajectory ⌧ . IfO additionally defines a penalty reward for deviating from states encountered during training.
We refer readers to their paper (Liu et al., 2018) for further details. The transferability results of Figure ?? (Right) show
the learning curve for training on the ground truth reward for the target task where the policy is pretrained with a training
procedure on the proxy reward. All RL steps are performed using the Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2015) algorithm.

Architecture For UMA and CCA, the embedding dimension is the minimum state dimension between the expert and self
domains. For UMA, we use one state sample every 5 timesteps to reduce the computational time, and we match the pairwise
distance matrix of 3-nearest neighbors.

For IF, we use 2 hidden layer with 64 hidden units each and leaky ReLU non-linearities to parameterize embedding function
and decoders, the dimension of common feature space is set to be 64. The optimizer are same with respect to our models and
the learning rate is 1e-3. For IfO, we use the same architecture as the statemap in GAMA for their observation conditioned
statemap. For TPIL, we use 3 hidden layer with 128 hidden units each and ReLU non-linearities to parameterize the feature
extractor, classifier and domain classifier. We use Adam Optimizer with default decay rates and learning rate 1e-3 to train
the discriminator and use same optimizer and learning rate with respect to our model to train the policy.

D. Environments and DAIL tasks
We use the ’Pendulum-v0’, ’Cartpole-v0’ environments for the pendulum and cartpole tasks which have state space (w, ẇ)
and (w, ẇ, x, ẋ), respectively, where w is the angle of the pendulum/pole and x is the position of the cart. The action spaces
are (Fw) and (Fx) where Fw is the torque applied to the pendulum’s pivot and Fx is the x-direction force applied to the cart.
For snake3, snake4 we use an extension (Wang et al., 2018) of the ’Swimmer-v0’ environment from Gym (Brockman et al.,
2016). A K link snake has a state representation (w1, ..., wK , ẇ1, ..., ẇK) where wk is the angle of the kth snake joint. The
action vector has the form (Fw1 , ...FwK) where Fwk is the torque applied to joint k. All reacher environments were extended
from the ’Reacher-v0’ gym environment. A k link reacher has a state vector of the form (c1, ..., cK , ẇ1, ..., ẇK , xg, yg)
where ck is the coordinates of the kth reacher joint and (xg, yg) is the position of the goal. Note the key difference with
the original Reacher-v0 environment is that we use coordinates of joints instead of joint angles and the difference vector
between the end effector and the goal coordinate was removed from the state to make the task more challenging. The action
vector has the form (Fw1 , ...FwK) where Fwk is the torque applied to joint k. Below we specifically describe each DAIL
task. The statemap acts only on the non-goal dimensions.

Dynamics-Reach2Reach (D-R2R): Self domain is reach2 and expert domain is reach2 with isotropic gaussian noise
injected into the dynamics. State, action spaces are the same the one for a k-link reacher with k = 2. The N alignment tasks
are reaching for N goals near the wall of the arena and the target tasks are reaching for 12 new goals near the corner of the
arena. The new goals are placed as far as possible from the alignment task goals within the bounds of the arena to make the
task more challenging.

Dynamics-Reach2Push (D-R2P): Same as D-R2R except the target task is pushing a block to a goal location. State, action
spaces are the same the one for a k-link reacher with k = 2. Here the goal location represents the location to push the block
to. Block is always initialized in the same location.

Embodiment-Reach2Reach (E-R2R): Self domain is reach2 and expert is reach3. Rest is the same as D-R2R.

Embodiment-Reach2Push (E-R2P): Self domain is reach2 and expert is reach3. Rest is the same as D-R2P.

Viewpoint-Reach2Reach (V-R2R): Self domain is reach2 and expert domain is reach2-tp1 that has the same "third person"
view state space as that in (Stadie et al., 2017) with a 30� planar offset. The state space is a projection of the joint coordinates
onto the offset viewing plane, e.g a joint coordinate (1, 1) in the self domain is corresponds to (1, 0.7) in the expert domain.
The alignment/target tasks are the same as D-R2R.

Domain Adaptive Imitation Learning

Viewpoint-Reach2Write (V-R2W): Self domain is reach2 and expert domain is reach2-tp2 that has a different "third
person" view state space with a 180� axial offset. Thus a joint coordinate (1, 1) in the self domain corresponds to (�1,�1)
in the expert domain. We use the robot’s joint level state-action space. The N alignment tasks are reaching for N goals
and the target task is tracing letters as fast as possible. The goal location in the writing task represents the next vertex of
the letter to trace. Once the first vertex is reached, the goal coordinates are updated to be the next vertex coordinates. The
reward function is defind as follows:

Rwrite(s) =

(
100 if state s corresponds to reaching a vertex
�1 else

Thus the agent must perform a sequential reaching task and accomplish it as fast as possible. The key difference with
a normal reaching task is that the reacher must not slow down at each vertex and plan it’s path accordingly in order to
minimize drastic direction changes. Further more the reward is significantly more sparse than the original reacher reward
which gets reward inversely proportional to the distance between the end effector and the goal.

E. MDP Alignment Visualization

Figure 7. MDP Alignment Visualization (Extended). The state maps learned by GAMA and baselines are shown for pen$pen (Top
Left), pen$cart (Top Right), snake4$snake3 (Bottom Left), reach2$reach3 (Bottom Right). See Appendix E to see more baselines.
GAMA is able to recover MDP permutations for alignable pairs penpen, pencart and find meaningful correspondences between
"weakly alignable" pairs snake4$snake3, reach2$reach3. For pen$cart, UMA learns a statemap that outputs out-of-bounds coordinates
mainly because the pendulum demonstrations are concentrated around the pole upright state. The optimal UMA embedding matrix in this
case is a zero matrix. Then the UMA state map matrix norm is proportional to the inverse embedding matrix norm which is very large.
See https://youtu.be/l0tc1JCN_1M for videos

%20https://youtu.be/l0tc1JCN_1M

Domain Adaptive Imitation Learning

F. Proofs
We start by introducing definitions and assumptions that will be used in proving both Theorem 1, 2

Definition 5. An optimal policy ⇡x is covering if OMx(sx, ax) = 1) ax 2 supp(⇡x(·|sx)).

Definition 6. MDP Mx is unichain, if all policies induce irreducible Markov Chains and all stochastic optimal policies

induce ergodic, i.e irreducible and aperiodic, Markov Chains.

Assumption 1. All considered MDPs are unichain with discrete state, action spaces and deterministic dynamics i.e.

P : S ⇥A ! S. Furthermore, there exists dummy state, actions sd, ad where OM(s, ad) = 0 8s 2 S and OM(sd, a) =
0 8a 2 A

As stated in Assumption 1, we consider discrete unichain MDPs with deterministic dynamics. This assumption is weak
since physics is largely deterministic and many control behaviors, such as walking, are described by unichains.

F.1. Proof of Theorem 1

Theorem 1. Let Mx,My be MDPs satisfying Assumption 1 (see Appendix F), Mx ��, My , and ⇡y be optimal in My .

Then, 8g : Ay ! Ax s.t � g(ay) = ay 8ay 2 {ay|9sy 2 Sy s.t OMy (sy, ay) = 1}, it holds that ⇡̂x = g � ⇡y � � is

optimal in Mx.

Proof. Without loss of generality, consider an arbitrarily chosen sample ax = g(ay), ay ⇠ ⇡y(·|�(sx)) for any sx 2 Sx.
We first see that:

OMy

�
�(sx), (ax)

�
= OMy

�
�(sx), (g(ay))

�
= OMy

�
�(sx), ay

�
= 1 (9)

where the first step substitutes ax = g(ay), the second step applies � g(ay) = ay since O(�(sx), ay) = 1 due to the
optimality of ⇡y , and the last step follows from Corollary 1. Since (�,) is a reduction, we have that OMy (�(sx), (ax)) =
1) OMx(sx, ax) = 1 by Equation (1). Therefore, OMx(sx, ax) = 1 8sx 2 Sx, 8ax 2 supp(⇡̂x(·|sx)). Then by Lemma
1, ⇡̂x is optimal.

F.2. Proof of Theorem 2

We first introduce some lemmas necessary to proving our main theorem.

Lemma 1. Let MDP Mx satisfy Assumption 1 and ⇡x(ax|sx) be a (stochastic) mixture policy that chooses ax randomly

from {ax|O(sx, ax) = 1}. Then, ⇡x is optimal. (Ortner, 2005)

Corollary 1. Let MDP Mx satisfy Assumption 1 and ⇡x be optimal. Then OMx(sx, ax) = 1 8sx 2 Sx, ax 2
supp(⇡x(·|sx))

Lemma 2. Let MDP Mx satisfy Assumption 1 and ⇡x be a stochastic optimal policy. Then the triplet stationary distribution

⇢x
⇡x
(sx, ax, s0x) = limt!1 Pr(s(t)x = sx, a

(t)
x = ax, s

(t+1)
x = s0

x
;⇡x, Px, ⌘x) exists and is unique.

Proof.

⇢x
⇡x
(sx, ax, s

0
x
) = lim

t!1
Pr(s(t)

x
= sx, a

(t)
x

= ax, s
(t+1)
x

= s0
x
;⇡x, Px, ⌘x)

= lim
t!1

Pr(s(t)
x

= sx;⇡x, Px, ⌘x)⇡x(ax|sx) (s0
x
= Px(sx, ax))

= ⇡x(ax|sx) (s0
x
= Px(sx, ax)) lim

t!1
Pr(s(t)

x
= sx;⇡x, Px, ⌘y)

where is the indicator function. The limit in the last line is the stationary distribution over states, which exists and is
unique since a stochastic optimal policy induces an ergodic Markov Chain over states.

Lemma 3. If a real sequence {ai}1i=1 converges to some a 2 R, then

lim
T!1

1

T

P
T

i=1 ai = limi!1 ai = a

Domain Adaptive Imitation Learning

Proof. Denote AT =
P

T

i=1 ai, and BT = T . We have

lim
T!1

AT+1 �AT

BT+1 �BT

= lim
T!1

aT+1 = a (10)

According to the Stolz–Cesàro theorem,

lim
T!1

AT+1 �AT

BT+1 �BT

= lim
T!1

AT

BT

if the limit on the left hand side exists. Therefore

lim
T!1

AT

BT

= lim
T!1

1

T

P
T

i=1 ai = a (11)

which completes the proof.

Recall that our target distribution �y

⇡y
and proxy distribution �x!y

⇡̂x
were defined as:

�y

⇡y
(sy, ay, s

0
y
) = lim

T!1

1

T

P
T�1
t=0 Pr(s(t)y = sy, a

(t)
y = ay, s

(t+1)
y = s0

y
;⇡y, Py, ⌘y) (12)

�x!y

⇡̂x
(sy, ay, s

0
y
) = lim

T!1

1

T

P
T�1
t=0 Pr(ŝ(t)y = sy, â

(t)
y = ay, ŝ

(t+1)
y = s0

y
;P) (13)

We are now ready to prove that our proxy and target limiting distributions exist.

Lemma 4. Let MDP My satisfy Assumption 1 and ⇡y be a stocahstic optimal policy. Then, �y

⇡y
(sy, ay, s0y) =

⇢y
⇡y
(sy, ay, s0y).

Proof. Recall that the stationary distribution ⇢y
⇡y
(sy, ay, s0y) is the following limiting distribution:

⇢y
⇡y
(sy, ay, s

0
y
) = lim

t!1
Pr(s(t)

y
= sy, a

(t)
y

= ay, s
(t+1)
y

= s0
y
;⇡y, Py, ⌘y) (14)

⇢y
⇡y
(sy, ay, s0y) exist for My as shown in Lemma 2. Then,

�y

⇡y
(sy, ay, s

0
y
) = lim

T!1

1

T

P
T�1
t=0 Pr(s(t)y = sy, a

(t)
y = ay, s

(t+1)
y = s0

y
;⇡y, Py, ⌘y) (15)

= lim
t!1

Pr(s(t)
y

= sy, a
(t)
y

= ay, s
(t+1)
y

= s0
y
;⇡y, Py, ⌘y) (16)

= ⇢y
⇡y
(sy, ay, s

0
y
) (17)

as desired. The second line follows from Lemma 3 and the last line follows from Lemma 2.

Domain Adaptive Imitation Learning

Lemma 5. Let MDP My satisfy Assumption 1 and ⇡y be a stochastic optimal policy. Then,

supp(�y

⇡y
) ✓ {(sy, ay, s0y)|OMy (sy, ay) = 1, sy, s

0
y
2 Sy, ay 2 Ay}

Proof. Assume for contradiction that there exists (sy, ay, s0y) 2 supp(�y

⇡y
) but (sy, ay, s0y) /2 {(sy, ay, s0y)|OMy (sy, ay) =

1, sy, s0y 2 Sy, ay 2 Ay}. Then OMy (sy, ay) = 0. Since

�y

⇡y
(sy, ay, ay) = lim

t!1
Pr(s(t)

y
= sy, a

(t)
y

= ay, s
(t+1)
y

= s0
y
;⇡y, Py, ⌘y)

= lim
t!1

Pr(s(t)
y

= sy) Pr(a
(t)
y

= ay|s(t)y
= sy) Pr(s

(t+1)
y

= s0
y
|s(t)

y
= sy, a

(t)
y

= ay)

= lim
t!1

Pr(s(t)
y

= sy)⇡y(ay|sy) Pr(s(t+1)
y

= s0
y
|s(t)

y
= sy, a

(t)
y

= ay)

= ⇠⇠⇠⇠⇠:0
⇡y(ay|sy) Pr(s(t+1)

y
= s0

y
|s(t)

y
= sy, a

(t)
y

= ay) lim
t!1

Pr(s(t)
y

= sy)

= 0

First line follows from Lemma 4 and terms are taken out of the limit in the second to last line since the stationary distribution
over states exist as My is unichain and ⇡y is stochastic optimal. ⇡y(ay|sy) = 0 since OMy (sy, ay) = 0) ⇡y(ay|sy) = 0
from Corollary 1. Then, we have �y

⇡y
(sy, ay, ay) = 0 which contradicts (sy, ay, s0y) 2 supp(�y

⇡y
) concluding the proof.

Lemma 6. Let MDP Mx satisfy Assumption 1 and ⇡̂x = g � ⇡y � f be an stochastic optimal policy in Mx where

f : Sx ! Sy is the state map, g : Ay ! Ax is injective action map, and ⇡y is a stochastic optimal policy in My . Further

let F : Sx ⇥ g(Ay) ⇥ Sx ! Sy ⇥ Ay ⇥ Sy be the map F(a, b, c) = (f(a), g�1(b), f(c)). Then, �x!y

⇡̂x
(sy, ay, s0y) =

F(⇢x
⇡̂x
(sx, ax, s0x)).

Proof. We first define the triplet random variables X(t) = (s(t)x , a(t)x , s(t+1)
x) for t = 0, 1, 2, ... where s(t)x , a(t)x , s(t+1)

x

for t = 0, 1, 2, ... were defined in Definition 4. F is a function on supp(⇢x
⇡̂x
) 2 Sx ⇥ g(Ay) ⇥ Sx and F(X(t)) =

(ŝ(t)y , â(t)y , ŝ(t+1)
y). Furthermore, since F is a function defined on a discrete domain and codomain, there always exists a

trivial continuous extension of F . We may thus apply the continuous mapping theorem (Billingsley, 1968):

X(t) d�! X) F(X(t))
d�! F(X)

Since Mx is unichain and ⇡̂x is stochastic optimal, the distribution of X(t) converges (in distribution) to ⇢x
⇡̂x
(sx, ax, s0x)

as t ! 1 by Lemma 2. Applying the continuous mapping theorem, it follows that the distribution of F(X(t)) =

(ŝ(t)y , â(t)y , ŝ(t+1)
y) converges (in distribution) to the pushforward measure F(⇢x

⇡̂x
(sx, ax, s0x)) as t ! 1

Directly applying this result, we obtain:

�x!y

⇡̂x
(sy, ay, s

0
y
) = lim

T!1

1

T

P
T�1
t=0 Pr(ŝ(t)y = sy, â

(t)
y = ay, ŝ

(t+1)
y = s0

y
;P) (18)

= lim
t!1

Pr(ŝ(t)
y

= sy, â
(t)
y

= ay, ŝ
(t+1)
y

= s0
y
;P) (19)

= F(⇢x
⇡̂x
(sx, ax, s

0
x
)) (20)

as desired. Line (18) ! (19) follows from Lemma 3 and (19) ! (20) follows from the continuous mapping theorem.

Lemma 7. Let X,Y be countable sets, � : X ! Y be a function, and be the indicator function. We denote ��1(y) =
{x|�(x) = y}. Then 8x 2 X, y 2 Y

(y = �(x)) =
P

z2��1(y) (x = z)

Proof. Since both the left and right hand-side of the desired equality only take on values in {0, 1}, it suffices to show the
following statements hold for arbitrarily chosen x 2 X, y 2 Y :

P
z2��1(y) (x = z) = 1) (y = �(x)) = 1

(y = �(x)) = 1)
P

z2��1(y) (x = z) = 1

Domain Adaptive Imitation Learning

For the first direction, we see that if
P

z2��1(y) (x = z) = 1, then x 2 ��1(y), and thus �(x) = y.

For the second direction if (y = �(x)) = 1, then x 2 ��1(y). Thus there exists a unique z such that z = x and
z 2 ��1(y). Then,

P
z2��1(y) (x = z) = 1 as desired, which concludes the proof.

Finally, we prove the main theorem. Recall that the optimization objectives are: 1. optimality of ⇡̂x 2. �x!y

⇡̂x
= �y

⇡y
.

Theorem 2. Let Mx,My be MDPs satisfying Assumption 1 (see Supp Materials). If Mx � My , then 9f : Sx ! Sy, g :
Ay ! Ax, and an optimal covering policy ⇡y (see Appendix F) that satisfy objectives 1 and 2. Conversely, if 9f : Sx ! Sy ,

an injective map g : Ay ! Ax and an optimal covering policy ⇡y satisfying objectives 1 and 2, then Mx � My and

9(�,) 2 �(Mx,My) s.t f = � and � g(ay) = ay, 8ay 2 Ay .

Proof. We first show the ()) direction. Using any (�,) 2 �(Mx,My) we construct f and g in the following manner:
f(sx) = �(sx) 8sx 2 Sx. g(ay) maps to an arbitrary chosen element from the set �1(ay) = {ax| (ax) = ay} if
 �1(ay) 6= ; and an arbitrarily chosen action ax 2 Ax otherwise. We see that 8ay 2 Ay for which 9sy 2 Sy such that
OMy (sy, ay) = 1, it holds that �1(ay) 6= ; by Eq 2. Therefore, � g(ay) = ay 8ay 2 Ay for which 9sy such that
OMy (sy, ay) = 1 since maps all elements in �1(ay) to ay. For ⇡y we choose any covering optimal policy for My. It
suffices to show that this choice of f, g,⇡y satisfies objectives 1, 2.

• Objective 1. ⇡̂x is optimal: follows from Lemma 1.

• Objective 2. �x!y

⇡̂x
= �y

⇡y
: Since f = � is a reduction, it follows that 8sy 2 Sy, ay 2 Ay such that OMy (sy, ay) = 1,

any s0
y
2 Sy , and 8t = 0, 1, 2, ...:

Pr(ŝ(t+1)
y

=s0
y
|ŝ(t)

y
=sy, â

(t)
y
=ay)

=
P

s0x2Sx

Pr(ŝ(t+1)
y =s0

y
|ŝ(t+1)

x =s0
x
, ŝ(t)y =sy, â

(t)
y =ay) Pr(ŝ

(t+1)
x =s0

x
|ŝ(t)y =sy, â

(t)
y =ay)

=
P

s0x2Sx

Pr(ŝ(t+1)
y =s0

y
|ŝ(t+1)

x =s0
x
)

P
sx2Sx
ax2Ax

Pr(ŝ(t+1)
x =s0

x
|s(t)x =sx, a

(t)
x =ax, ŝ

(t)
y =sy, â

(t)
y =ay) Pr(s

(t)
x =sx, a

(t)
x =ax|ŝ(t)y =sy, â

(t)
y =ay)

=
P

s0x2Sx

(s0
y
=�(s0

x
))

P
sx2Sx
ax2Ax

Pr(ŝ(t+1)
x =s0

x
|s(t)x =sx, a

(t)
x =ax) Pr(s

(t)
x =sx|a(t)x =ax, ŝ

(t)
y =sy, â

(t)
y =ay) Pr(a

(t)
x =ax|ŝ(t)y =sy, â

(t)
y =ay)

=
P

s0x2Sx

(s0
y
=�(s0

x
))

P
sx2Sx
ax2Ax

(s0
x
=Px(sx, ax)) Pr(s

(t)
x =sx|ŝ(t)y =sy) Pr(a

(t)
x =ax|â(t)y =ay)

=
P

s0x2Sx

(s0
y
=�(s0

x
))

P
sx2Sx
ax2Ax

(s0
x
=Px(sx, ax))

Pr(ŝ(t)y =sy|s(t)x =sx) Pr(s
(t)
x =sx)

P
s00x2Sx

Pr(ŝ(t)y =sy|s(t)x =s00
x
) Pr(s(t)x =s00

x
)

(ax=g(ay))

=
P

s0x2Sx

(s0
y
=�(s0

x
))

P
sx2Sx

(s0
x
=Px(sx, g(ay)))

(sy=�(sx)) Pr(s
(t)
x =sx)

P
s00x2Sx

(sy=�(s00x)) Pr(s
(t)
x =s00

x
)

=
P

s0x2��1(s0y)

P
sx2��1(sy)

(s0
x
=Px(sx, g(ay)))

Pr(s(t)x =sx)
P

s00x2��1(sy)

Pr(s(t)x =s00
x
)

=
P

sx2��1(sy)

Pr(s(t)x =sx)
P

s00x2��1(sy)

Pr(s(t)x =s00
x
)

P
s0x2��1(s0y)

(s0
x
=Px(sx, g(ay)))

Lemma7
=

P
sx2��1(sy)

Pr(s(t)x =sx)
P

s00x2��1(sy)

Pr(s(t)x =s00
x
)

⇣
s0
y
=�

⇣
Px

�
sx, g(ay)

�⌘⌘

Eq3
=

P
sx2��1(sy)

Pr(s(t)x =sx)
P

s00x2��1(sy)

Pr(s(t)x =s00
x
)

(s0
y
=Py(sy, ay))

= (s0
y
=Py(sy, ay)) = Pr(s(t+1)

y
=s0

y
|s(t)

y
=sy, a

(t)
y
=ay) (21)

Domain Adaptive Imitation Learning

Furthermore, from Definition 4, we have:

Pr(â(t)
y

= ay|ŝ(t)y
= sy) = ⇡y(ay|sy) = Pr(a(t)

y
= ay|s(t)y

= sy) (22)

Then, 8sy, s0y 2 Sy and 8t = 0, 1, 2, ...

Pr(ŝ(t+1)
y

= sy|ŝ(t)y
= sy) =

P
ay2Ay

Pr(ŝ(t+1)
y = sy|ŝ(t)y = sy, â

(t)
y = ay) Pr(â

(t)
y = ay|ŝ(t)y = sy)

=
P

ay2supp(⇡y(·|sy))
Pr(s(t+1)

y = sy|s(t)y = sy, a
(t)
y = ay)⇡y(ay|sy)

= Pr(s(t+1)
y

= sy|s(t)y
= sy) (23)

we are justified in the substitution for the dynamics in the second line since OMy (sy, ay) = 18sy 2 Sy, ay 2 supp(⇡y(·|sy))
by Corollary 1. Since My is unichain and ⇡y is a stochastic optimal policy, the stationary distribution limt!1 Pr(s(t)y = sy)

is invariant to the initial state distribution ⌘y and only depends on the state transition dynamics Pr(s(t+1)
y = s0

y
|s(t)y = sy).

Equivalently any stochastic process with the same state transition dynamics will converge to the same stationary distribution
regardless of the initial state distribution. Thus,

lim
t!1

Pr(ŝ(t)
y

= sy) = lim
t!1

Pr(s(t)
y

= sy) 8sy 2 Sy (24)

Finally putting these results together, the following equalities hold for (sy, ay, s0y) 2 {(sy, ay, s0y)|OMy (sy, ay) =
1, sy, s0y 2 Sy, ay 2 Ay}

�x!y

⇡̂x
(sy, ay, s

0
y
) =

Lemma 4
lim
t!1

Pr(ŝ(t)
y

= sy, â
(t)
y

= ay, ŝ
(t+1)
y

= s0
y
;P)

= lim
t!1

Pr(ŝ(t)
y

= sy) Pr(â
(t)
y

= ay|ŝ(t)y
= sy) Pr(ŝ

(t+1)
y

= s0
y
|ŝ(t)

y
= sy, â

(t)
y

= ay)

=
Eq (21),(22)

lim
t!1

Pr(ŝ(t)
y

= sy) Pr(a
(t)
y

= ay|s(t)y
= sy) Pr(s

(t+1)
y

= s0
y
|s(t)

y
= sy, a

(t)
y

= ay)

= ⇡y(ay|sy) (s0
y
= Py(sy, ay)) lim

t!1
Pr(ŝ(t)

y
= sy)

=
Eq (24)

⇡y(ay|sy) (s0
y
= Py(sy, ay)) lim

t!1
Pr(s(t)

y
= sy)

= lim
t!1

Pr(s(t)
y

= sy) Pr(a
(t)
y

= ay|s(t)y
= sy) Pr(s

(t+1)
y

= s0
y
|s(t)

y
= sy, a

(t)
y

= ay)

=
Lemma 4

�y

⇡y
(sy, ay, s

0
y
)

The constant terms are moved in and out of the limit since the stationary distribution over states exist as My is unichain and
⇡y is optimal in My . This allows us to conclude that �x!y

⇡̂x
= �y

⇡y
since �y

⇡y
is supported on {(sy, ay, s0y)|OMy (sy, ay) =

1, sy, s0y 2 Sy, ay 2 Ay} by Lemma 5.

Now we show the (() direction. We first introduce some overloaded notation:

�x

⇡̂x
(sx) = lim

T!1

1

T

P
T�1
t=0 Pr(s(t)x = sx; ⇡̂x, Px, ⌘x)

Lemma4
= limt!1 Pr(s(t)x = sx; ⇡̂x, Px, ⌘x)

�x

⇡̂x
(sx, ax) = lim

T!1

1

T

P
T�1
t=0 Pr(s(t)x = sx, a

(t)
x = ax; ⇡̂x, Px, ⌘x)

=
Lemma 4

lim
t!1

Pr(s(t)
x

= sx, a
(t)
x

= ax; ⇡̂x, Px, ⌘x)

= lim
t!1

Pr(s(t)
x

= sx; ⇡̂x, Px, ⌘x)⇡̂x(ax|sx)

= ⇡̂x(ax|sx) lim
t!1

Pr(s(t)
x

= sx; ⇡̂x, Px, ⌘x)

= ⇡̂x(ax|sx)�x

⇡̂x
(sx) (25)

Domain Adaptive Imitation Learning

Then,

�x

⇡̂x
(sx, ax, s

0
x
) =

Lemma 4
lim
t!1

Pr(s(t)
x

= sx, a
(t)
x

= ax, s
(t+1)
x

= s0
x
; ⇡̂x, Px, ⌘x)

= lim
t!1

Pr(s(t+1)
x

= s0
x
|s(t)

x
= sx, a

(t)
x

= ax) Pr(s
(t)
x

= sx, a
(t)
x

= ax; ⇡̂x, Px, ⌘x)

= (s0
x
= Px(sx, ax)) lim

t!1
Pr(s(t)

x
= sx, a

(t)
x

= ax; ⇡̂x, Px, ⌘x)

= (s0
x
= Px(sx, ax))�

x

⇡̂x
(sx, ax) (26)

= (s0
x
= Px(sx, ax))⇡̂x(ax|sx)�x

⇡̂x
(sx) (27)

Given f, g that satisfy objective 1, 2, and 3 we construct (�,) as follows and show that (�,) 2 �(Mx,My):

�(sx) =

(
f(sx) if sx 2 supp(�x

⇡̂x
(sx))

sd
y

otherwise

 (ax) =

(
g�1(ax) if ax 2 A⇡̂x =

S
sx2Sx

supp(⇡̂x(·|sx))
ad
y

otherwise

where sd
y
, ad

y
are dummy state, actions such that OMy (s

d

y
, ay) = 0 8ay 2 Ay and OMy (sy, a

d

y
) = 0 8sy 2 Sy. Such

dummy state, actions always exist per Assumption 1. Mapping to the dummy state, action will ensure that the constructions
will not map suboptimal state, action pairs from domain x to optimal state action pairs in domain y. The following statement
holds for our construction (�,):

(s⇤
x
, a⇤

x
) 2 supp(�x

⇡̂x
(sx, ax)) () OMy (�(s

⇤
x
), (a⇤

x
)) = 1 8s⇤

x
2 Sx, a

⇤
x
2 Ax (28)

We first prove the forward direction: (s⇤
x
, a⇤

x
) 2 supp(�x

⇡̂x
(sx, ax))) �x

⇡̂x
(s⇤

x
, a⇤

x
)

Eq25
= �x

⇡̂x
(sx)⇡̂x(a⇤x|s⇤x) > 0, so

�x

⇡̂x
(s⇤

x
) > 0, i.e s⇤

x
2 supp(�x

⇡̂x
(sx)), and ⇡̂x(a⇤x|s⇤x) > 0. Furthermore, ⇡̂x(a⇤x|s⇤x) > 0) g�1(a⇤

x
) 2 supp(⇡y(·|f(s⇤x)))

since g is injective. To see this, assume 9(s⇤
x
, a⇤

x
) such that ⇡̂x(a⇤x|s⇤x) > 0 but g�1(a⇤

x
) /2 supp(⇡y(·|f(s⇤x))). Then there

must exists a0
y
2 supp(⇡y(·|f(s⇤x))) such that a0

y
6= g�1(a⇤

x
) but g(a0

y
) = g(g�1(a⇤

x
)) = a⇤

x
contradicting the injectivity of

g on Ay . Putting these results together we obtain (a⇤
x
) = g�1(a⇤

x
) 2 supp(⇡y(·|�(s⇤x))). Since ⇡y is a stochastic optimal

policy and My is unichain, (a⇤
x
) 2 supp(⇡y(·|�(s⇤x)))) OMy (�(s

⇤
x
), (a⇤

x
)) = 1 by Corollary 1.

For the converse direction we prove the contrapostive: (s⇤
x
, a⇤

x
) /2 supp(�x

⇡̂x
(sx, ax))) OMy (�(s

⇤
x
), (a⇤

x
)) =

0 8sx 2 Sx, ax 2 Ax. We exhaustively consider all cases in which (s⇤
x
, a⇤

x
) /2 supp(�x

⇡̂x
(sx, ax)), i.e �x

⇡̂x
(s⇤

x
, a⇤

x
)

Eq25
=

⇡̂x(a⇤x|s⇤x)�x

⇡̂x
(s⇤

x
) = 0. If �x

⇡̂x
(s⇤

x
) = 0, then s⇤

x
/2 supp(�x

⇡̂x
(sx)), so OMy (�(s

⇤
x
), ay) = OMy (s

d

y
, ay) = 0 8ay 2 Ay.

Else if ⇡̂x(a⇤x|s⇤x) = 0,�x

⇡̂x
(s⇤

x
) > 0 and ax /2 A⇡̂x then OMy (sy, (a

⇤
x
)) = OMy (sy, a

d

y
) = 0 8sy 2 Sy. Finally,

consider the case ⇡̂x(a⇤x|s⇤x) = 0,�x

⇡̂x
(s⇤

x
) > 0 and a⇤

x
2 A⇡̂x . Assume for contradiction that OMy (�(s

⇤
x
), (a⇤

x
)) = 1.

Then, (a⇤
x
) 2 supp(⇡y(·|�(s⇤x)) since ⇡y is a covering optimal policy from Definition 5, which implies g�1(a⇤

x
) 2

supp(⇡y(·|f(s⇤x)) since �x

⇡̂x
(s⇤

x
) > 0 and a⇤

x
2 A⇡̂x . It follows that g(g�1(a⇤

x
)) 2 supp(g(⇡y(·|f(s⇤x))))) a⇤

x
2

supp(⇡̂x(·|s⇤x)) since ⇡̂x(·|s⇤x) is the pushforward measure g(⇡y(·|f(s⇤x))). Then, �x

⇡̂x
(s⇤

x
, a⇤

x
)

Eq25
= �x

⇡̂x
(s⇤

x
)⇡̂x(a⇤x|s⇤x) > 0,

since ⇡̂x(a⇤x|s⇤x) > 0 and �x

⇡̂x
(s⇤

x
) > 0, which contradicts (s⇤

x
, a⇤

x
) /2 supp(�x

⇡̂x
(sx, ax)). This concludes the proof of

Equation 28.

We proceed to show that the optimal policy and dynamics preservation properties hold for our construction (�,).

• Optimality (Eq. 1): From the converse direction of the above subclaim and the optimality of ⇡̂x the result immediate
follows:

OMy (�(s
⇤
x
), (a⇤

x
)) = 1

Eq28) (s⇤
x
, a⇤

x
) 2 supp(�x

⇡̂x
(sx, ax))

Eq25) ⇡̂x(a
⇤
x
|s⇤

x
) > 0

Cor1) OMx(s
⇤
x
, a⇤

x
) = 1 8s⇤

x
2 Sx, a

⇤
x
2 Ax

Domain Adaptive Imitation Learning

• Surjection (Eq. 2): Assume for contradiction 9(s⇤
y
, a⇤

y
) such that OMy (s

⇤
y
, a⇤

y
) = 1, but ��1(s⇤

y
) = ; or �1(a⇤

y
) = ;.

Since OMy (s
⇤
y
, a⇤

y
) = 1 we have s⇤

y
6= sd

y
, a⇤

y
6= ad

y
. Thus �(s⇤

y
)�1 = f�1(s⇤

y
) and �1(a⇤

y
) = {(g�1)�1(a⇤

y
)} = {g(a⇤

y
)}.

Since g is a function defined 8ay 2 Ay, it follows that �1(a⇤
y
) 6= ;. Thus it must be that ��1(s⇤

y
) = ;. Let s⇤

0

y
=

Py(s⇤y, a
⇤
y
). Then,

�x!y

⇡̂x
(s⇤

y
, a⇤

y
, s⇤

0

y
) =

Lemma 4
lim
t!1

Pr(ŝ(t)
y

= s⇤
y
, â(t)

y
= a⇤

y
, ŝ(t+1)

y
= s⇤

0

y
)

= lim
t!1

Pr(ŝ(t+1)
y

= s⇤
0

y
|ŝ(t)

y
= s⇤

y
, â(t)

y
= a⇤

y
) Pr(ŝ(t)

y
= s⇤

y
, â(t)

y
= a⇤

y
)

= lim
t!1

Pr(ŝ(t+1)
y

= s⇤
0

y
|ŝ(t)

y
= s⇤

y
, â(t)

y
= a⇤

y
) Pr(â(t)

y
= a⇤

y
|ŝ(t)

y
= s⇤

y
) Pr(ŝ(t)

y
= s⇤

y
)

= lim
t!1

Pr(ŝ(t+1)
y

= s⇤
0

y
|ŝ(t)

y
= s⇤

y
, â(t)

y
= a⇤

y
)⇡y(a

⇤
y
|s⇤

y
)
P

sx2��1(s⇤y)
Pr(ŝ(t)x = sx)

= lim
t!1

Pr(ŝ(t+1)
y

= s⇤
0

y
|ŝ(t)

y
= s⇤

y
, â(t)

y
= a⇤

y
)⇡y(a

⇤
y
|s⇤

y
) · 0

= 0

However,

�y

⇡y
(s⇤

y
, a⇤

y
, s⇤

0

y
) =

Eq 27
(Py(s

⇤
y
, a⇤

y
) = Py(s

⇤
y
, a⇤

y
))⇡y(a

⇤
y
|s⇤

y
)�y

⇡y
(s⇤

y
)

= ⇡y(a
⇤
y
|s⇤

y
)�y

⇡y
(s⇤

y
) > 0

To see why the last inequality holds, first recall that My is unichain and ⇡y is stochastic optimal for My , so the stationary
distribution over states have full support over Sy (* stationary distributions of irreducible markov chains are fully supported
over the entire state space) Therefore �y

⇡y
(sy)

Lemma4
= limt!1 Pr(s(t)y = sy;⇡y, Py) > 0 8sy 2 Sy. Thus, we have

�y

⇡y
(s⇤

y
) > 0. Furthermore, ⇡y(a⇤y|s⇤y) > 0 by Corollary 1. Putting these two results together, we obtain �y

⇡y
(s⇤

y
, a⇤

y
, s⇤

0

y
) > 0.

Then, �x!y

⇡̂x
6= �y

⇡y
which contradicts the satisfiability of objective 3.

• Dynamics (Eq. 3): Assume for contradiction that 9s�
x
, a�

x
and s�

0

x
= Px(s�x , a

�
x

such that OMy (�(s
�
x
), (a�

x
)) = 1

but the dynamics preservation property is violated, i.e Py(�(s�x), (a
�
x
)) 6= �(Px(s�x , a

�
x
)) = �(s�

0

x
). If (s�

x
, a�

x
) /2

supp(�x

⇡̂x
(sx, ax)), then OMy (�(s

�
x
), (a�

x
)) = 0 by Equation 28 which contradicts O(�(s�

x
), (a�

x
)) = 1. Thus, it must

be that (s�
x
, a�

x
) 2 supp(�x

⇡̂x
(sx, ax)) which further implies (s�

x
, a�

x
, s�

0

x
) 2 supp(�x

⇡̂x
(sx, ax, s0x)) by Equation 26 and

�(s�
x
) = f(s�

x
), (a�

x
) = g�1(a�

x
) by Equation 25 since �x

⇡̂x
(s�

x
) > 0, ⇡̂(a�

x
|s�

x
) > 0.

Let F : Sx ⇥ g(Ay)⇥ Sx ! Sy ⇥Ay ⇥ Sy be a function (a, b, c) 7! (f(a), g�1(b), f(c)). Then, by Lemma 6, we have
�x!y

⇡̂x
(sx, ax, s0x) = F(⇢x

⇡̂x
(sx, ax, s0x))

Lemma4
= F(�x

⇡̂x
(sx, ax, s0x)). So,

�x

⇡̂x
(s�

x
, a�

x
, s�

0

x
) > 0) �x!y

⇡̂x
(F(s�

x
, a�

x
, s�

0

x
)) = �x!y

⇡̂x
(f(s�

x
), g�1(a�

x
), f(s�

0

x
)) > 0

Thus, (f(s�
x
), g�1(a�

x
), f(s�

0

x
)) = (�(s�

x
), (a�

x
),�(s�

0

x
)) 2 supp(�x!y

⇡̂x
(sx, ax, s0x)). However,

�y

⇡y
(�(s�

x
), (a�

x
),�(s�

0

x
)) =

Eq 26
�y

⇡y
(�(s�

x
), (a�

x
))

�
�(s�

0

x
) = Py(�(s

�
x
), (a�

x
))
�

= �y

⇡y
(�(s�

x
), (a�

x
)) · 0

= 0

Thus, supp(�x!y

⇡̂x
) 6= supp(�y

⇡y
)) �x!y

⇡̂x
6= �y

⇡y
which contradicts f, g satisfying objective 3. This concludes the proof of

the main theorem.

