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Abstract 
The recent development of flexible and scalable 
variational inference algorithms has popularized 
the use of deep probabilistic models in a wide 
range of applications. However, learning and rea
soning about high-dimensional models with non-
differentiable densities are still a challenge. For 
such a model, inference algorithms struggle to 
estimate the gradients of variational objectives ac
curately, due to high variance in their estimates. 
To tackle this challenge, we present a novel vari
ational inference algorithm for sequential data, 
which performs well even when the density from 
the model is not differentiable, for instance, due 
to the use of discrete random variables. The key 
feature of our algorithm is that it estimates future 
likelihoods at all time steps. The estimated future 
likelihoods form the core of our new low-variance 
gradient estimator. We formally analyze our gra
dient estimator from the perspective of variational 
objective, and show the effectiveness of our algo
rithm with synthetic and real datasets. 

1. Introduction 
Learning a deep probabilistic model for complex data with 
latent variables is one of the most important tasks in ma
chine learning. Such models are typically built using neural 
networks, and applied to analyze a wide variety of data, 
including high-dimensional ones such as images (Kingma 
& Welling, 2014; Rezende & Mohamed, 2015; Chen et al., 
2016; Gulrajani et al., 2016), speech and music (Chung et al., 
2015; Fraccaro et al., 2016), and videos (Babaeizadeh et al., 
2017; Denton & Fergus, 2018). However, when these mod
els do not have differentiable densities (for instance, due to 
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discrete latent variables), learning and analyzing the models 
for high-dimensional data is still a challenge despite impres
sive progress in the past few years, including, but not limited 
to, tighter variational bounds (Burda et al., 2016; Maddison 
et al., 2017a; Naesseth et al., 2018; Le et al., 2018; Lawson 
et al., 2018; Masrani et al., 2019), low-variance gradient 
estimators (Mnih & Gregor, 2014; Mnih & Rezende, 2016; 
Tucker et al., 2017; Grathwohl et al., 2018), and techniques 
for preventing the diminishing gradient due to the multiple 
samples (Rainforth et al., 2018; Tucker et al., 2019). 

In this paper, we tackle the challenge for models for se
quential data in the context of black-box variational infer
ence (Ranganath et al., 2014). For these models, the noise 
from the data or the algorithm accumulates over time, and 
the variance of the algorithm’s estimates typically grows 
exponentially with the number of time steps. As a result, 
parameter learning and posterior inference via black-box 
variational inference are particularly difficult for these mod
els. While there have been a large amount of prior work 
on these models, such as tighter variational bound derived 
from sequential Monte Carlo (Maddison et al., 2017a; Naes
seth et al., 2018; Le et al., 2018; Lawson et al., 2018), the 
current variational inference algorithms struggle to approxi
mate the gradients of variational bounds accurately, due to 
high variance in their estimates, especially when the models 
use discrete latent variables and thus do not have smooth 
densities; in such a case, the techniques that leverage the 
smoothness of the model, such as reparameterization trick, 
are no longer straightforwardly applicable. 

We propose a novel gradient estimator for a sequential vari
ant of the importance-weighted-autoencoder (IWAE) objec
tive (Burda et al., 2016), which is a provably tighter lower 
bound to the log marginal likelihood than the more tradi
tional evidence-lower-bound (ELBO) objective. In order 
to approximate the gradient accurately, our estimator com
putes the estimates of future likelihoods at each time step, by 
exploiting the recursive nature of sequential models. The es
timated future likelihoods are then used to improve the stan
dard score-function-based gradient estimator of the IWAE 
objective. Specifically, they serve as baselines (i.e. control 
variates), and also enable to replace a high-variance part of 
this standard estimator with a low-variance counterpart. Our 
estimator does not require the differentiability of a model’s 
density, and can be applied to sequential models with both 
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discrete and continuous latent variables. Our use of future 
likelihoods is inspired by the use of the value functions in 
reinforcement learning to estimate future rewards (Sutton 
et al., 1998). 

Based on the preliminaries provided in Section 2, we for
mally introduce our estimator in Section 3. In Section 4, we 
show that the estimator computes an unbiased estimate of 
not the IWAE objective, but its new lower bound, although 
our gradient estimator is derived from the IWAE objective 
and its gradient estimator. Effectively, it trades off the tight
ness of the IWAE objective with the reduction of variance. 
In Section 5, we position our estimator in the context of rel
evant prior work on variational inference. In Section 6, we 
report experimental results of our estimator with synthetic 
and polyphonic music datasets, to show its effectiveness 
compared to the state-of-the-art algorithms. 

2. Preliminaries 
2.1. Model learning via variational inference 

Consider a probabilistic model defined by a parameterized 
density function pθ(x, z) over random variables z ∈ Z and 
x ∈ X . Here z is a latent variable, x an observed variable, 
and θ a model parameter. The goal of maximum likelihood 
estimation (MLE) is to find a value of θ that maximizes the 
log marginal likelihood log pθ(x) for a given x. Achieving 
this goal is difficult because it involves computing the intef 
gral pθ(x) = pθ(x, z) dz which is intractable except for 
very simple models. 

Instead of the intractable integral, the variational approach 
optimizes a lower bound for log pθ(x), typically using an 
approximate posterior qφ(z | x). Two well-known lower 
bounds are ELBO (Jordan et al., 1999) and IWAE with 
N (independent) particles (Burda et al., 2016; Domke & 
Sheldon, 2018):   

pθ(x, z)LELBO(θ, φ; x) = E log , (1) 
qφ(z | x)    

Nt (i))1 pθ(x, zLIWAE(θ, φ; x) = E log , (2)
N qφ(z(i) | x)

i=1 

where the expectations are taken with respect to qφ(z | x) Nand qφ(z(1:N) | x) = i=1 qφ(z
(i) | x), respectively. The 

fact that LELBO and LIWAE are indeed lower bounds 
of log pθ(x) follows from Jensen’s inequality. Note that 
LIWAE has the parameter N for controlling the number of 
particles inside the log. For N = 1, LIWAE coincides with 
LELBO, but as N increases, it becomes tighter, eventually 
converging to log pθ(x). In the paper, we focus on LIWAE. 

In the variational approach, we typically optimize a tar
get variational lower bound by stochastic gradient descent 

(SGD). The key step in this optimization is to estimate the 
gradient of the lower bound using samples. Two widely-
used unbiased estimators are score-function estimator, also 
called REINFORCE (Williams, 1992) and likelihood ratio 
estimator (Glynn, 1990), and reparameterization estima
tor, also known as pathwise estimator (Kingma & Welling, 
2014). The score-function estimator does not require differ
entiable densities and can be used for continuous as well 
as discrete latent variable models, but it is known to have 
high variance. The reparameterization estimator is, on the 
other hand, applicable only to differentiable models, but it 
typically has much lower variance than the score-function es
timator. Our goal is to fix this high-variance problem in the 
score-function estimator, and develop a new gradient esti
mator that keeps the wide applicability of the score-function 
estimator but does not suffer from the high-variance issue. 

We start with the score-function estimator derived from the 
gradient of the IWAE objective:     

Nt (i))1 pθ(x, zvφE log
N qφ(z(i) | x)

i=1   N   t (i))1 pθ(x, z
= E vφ log

N qφ(z(i) | x)
i=1     N

1 pθ(x, zt (i)) (1:N ) | x)+ E log vφ log qφ(z ,
N qφ(z(i)|x)i=1 

where all the expectations are taken with respect to the 
distribution qφ(z(1:N) | x). The score-function estimator 
approximates the two expectation terms from above using 
samples. Specifically, it computes the following sum of two 
sample-based estimates: 

glow + ghigh, (3) 

where   N
1 t pθ(x, z(i)) 

glow = vφ log ,
N qφ(z(i)|x)i=1   N

1 pθ(x, zt (i)) (1:N )|x),ghigh = log vφ log qφ(z
N qφ(z(i)|x)i=1 

and each z(i) is sampled from qφ(z(i)|x). In most cases, the 
estimate ghigh has significantly higher variance than glow, 
and it is the root cause of the high-variance issue for the 
score-function estimator. (More detailed discussion about 
score estimator is provided in Appendix B). Throughout the 
paper, we will delve into finding an alternative to ghigh with 
significantly lower variance. 

2.2. State-space model 

The state-space model is a standard tool for modeling the 
dynamics behind sequential data. In the state-space model, 
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both the latent variable z and the observed x have the se
quence form: z = (z1, . . . , zT ) and x = (x1, . . . , xT ) 
where T is the length of the sequence. The joint density of 
x and z is represented by an initial density pθ(x1, z1) and a 
transition density pθ(xt+1, zt+1 | x1, . . . , xt, z1, . . . , zt) as 
follows: 

T! 
pθ(x, z) = pθ(x1, z1) pθ(xt, zt|x1:t−1, z1:t−1). (4) 

t=2 

Here we use the subscript notation xi:j to denote the sub
sequence (xi, xi+1, . . . , xj ). Note that this setup permits 
time-dependent transition densities on xt and zt. 

When variational inference is applied to a state-space model 
using an approximate posterior qφ(z | x) of the form 

T! 
qφ(z | x) = qφ(z1 | x) qφ(zt | z1:t−1, x), (5) 

t=2 

the IWAE objective in (2) and the ghigh in (3) yield particu
(i) (i)larly convenient formulas. To see this, let w and w bet t:T 

the following importance weights: 

(i) (i)
pθ(xt, z | x1:t−1, z )(i) (i) t 1:t−1w0 = 1, wt = ,

(i) (i)
qφ(z | z1:t−1, x)t 

T! 
(i) (i) (i) (i)

w = w 1 , w = wt:T t 1:T
 
t1=t
 

Then, the IWAE in (2) can be expressed as follows: 

Nt 
LIWAE(θ, φ; x) = E log 

1 
w(i) 

N 
i=1 

where the expectation is taken with respect to the product 
of approximate posteriors: 

N N T! ! ! 
(i) (i) (i)

qφ(z
(i) | x) = qφ(z | x) qφ(z | z1:t−1, x) .1 t 

i=1 i=1 t=2 

Also, the high-variance term ghigh in (3) can be written in 
the factored form below:    T N Ntt t1 (j)ghigh = log w

N 
t=1 i=1 j=1  

(i) (i)×vφ log qφ(z | z1:t−1, x) . (6)t 

We will assume these structured formulas for the rest of the 
paper. 

3. Variational Inference using Future 
Likelihood Estimates 

In this section, we describe our gradient estimator, which 
approximates future likelihoods at all time steps and uses 
this approximation to replace ghigh by a low-variance alter
native. 

3.1. Future likelihood function 

We first define a future likelihood function, which plays an 
important role in our new gradient estimator. 

Definition 1 (Future likelihood function). For given pa
rameters θ and φ, we define the future likelihood function 
Γθ,φ(z1:t, x) at step t to be the following function of latent 
variables z1:t and observation x = x1:T : 

T!
Γθ,φ(z1:t, x) = E [wt+1:T ] = E wt1 , 

t1=t+1 

where the expectations are taken with respect to 

T! 
qφ(zt+1:T | z1:t, x) = qφ(zt1 | z1:t1 −1, x). 

t1=t+1 

Note that Γθ,φ(z1:t, x) is an importance-sampling formula
tion of the future marginal likelihood pθ(xt+1:T | x1:t, z1:t). 
Thus, it coincides with the future marginal likelihood, under 
the mild condition that the support of pθ(zt+1:T | x1:t, z1:t) 
should be covered by that of qφ(zt+1:T | z1:t, x). In the 
remainder of the paper, we will denote Γθ,φ(z1:t, x) and 

(i) (i)
Γθ,φ(z , x) simply by Γt and Γ , respectively, whenever 1:t t 
the relevant latent variables and observation are clear from 
the context. 

An important part of our gradient estimator is to utilize 
an approximator of the future likelihood functions at all 
time steps. Note that the definition of the future likelihood 
function immediately gives rise to a Monte-Carlo approx
imation scheme, which computes the average of the term 
inside the expectation of Γt using independent samples from 
qφ(zt+1:T | z1:t, x). However, this scheme is not practical 
because of high variance. Thus, we instead approximate the 
future likelihood function by making use of the recursive 
nature of the state-space model, that is, the following recur
rent relation satisfied by the future likelihood functions at 
consecutive time steps: 

Γt−1 = Ezt∼qφ(zt | z1:t−1,x) [wtΓt] . (7) 

Concretely, we fix a parameterized function Γ̂ψ,t to approx
imate Γt for every t. Usually, Γ̂ψ,t is defined in terms 
of a neural network parameterized by ψ. Then, we learn 
the value of the parameter ψ by optimizing the following 
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objective which is derived from the recurrent relation (7), 
analogous to temporal difference learning in RL (Sutton 
et al., 1998): 

T     2t 
min E Γ̂ψ,t−1(z1:t−1, x) − E wtΓ̂ψ,t(z1:t, x)
ψ 

t=2

where the outer and inner expectations are taken respec
tively by qφ(z1:T | x) and qφ(zt | z1:t−1, x). The optimiza
tion is done by stochastic gradient descent: From N samples 
(1:N)
z of qφ(z1:T | x), update ψ via:1:T 

N Ttt1 (i)ˆψ ← ψ − η · vψΓψ(z , x)1:tN 
i=1 t=2   

(i) (i)× Γ̂ψ,t−1(z1:t−1, x) − wt · Γ̂ψ,t(z1:t, x) . 

The future likelihood function is a good candidate for a 
baseline, which helps reduce the variance of a gradient 
estimator. To explain this, we recall a defining property of 
the baseline (Weber et al., 2019): 

Lemma 1. For every distribution q(z) and quantity B that 
does not depend on z, we have 

Ez∼q(z)[Bv log q(z)] = 0. 

We call B a baseline for q(z). 

Since neither Γt nor its approximation Γ̂ψ,t depends on 
zt+1:T (i.e. marginalized out by definition), they can serve 
as a baseline for the distribution qφ(zt+1:T | z1:t, x). 

3.2. Gradient estimator 

We are now ready to present our inference algorithm, which 
we name VIFLE (Variational Inference with Future Likeli
hood Estimates). At the core of the algorithm lies a highly-
effective combination of the future likelihood function and 
the baseline, which replaces the high-variance term ghigh 

in (3) by the low-variance gradient estimator gVIFLE. 

Concretely, we derive gVIFLE from ghigh in two steps. First, 
we take the characterization of ghigh for the state-space 

(i) (i)model in (6), and form a baseline for q(z | z1:t−1, x) fort 

each particle z(i) and each time step t, defined as follows:   t 
(i) (i)

log 
1 

w1:t−1Γt−1 + w(j) . (8)
N

j=i#

This term is just the coefficient of the gradient term for 
the particle i and the time step t in (6) except that the w(i) 

(i) (i)part in the coefficient is replaced by w Γ The re1:t−1 t−1. 
placement makes the term independent of z(i), unlike the t 
original coefficient, so that the term becomes a baseline 

(i) (i)for qφ(z | z1:t−1, x). We subtract this baseline from the t 
coefficient of the gradient term in (6) for the particle i and 
the time step t. 

Our baseline is chosen to correlate the coefficient of the 
(i) (i)gradient term vφ log qφ(z | z1:t−1, x) in (6) well. We can t 

see this by subtracting the baseline from the coefficient and 
simplifying the result slightly, as shown below: 

N   t t 
(i) (i) (j)log 

1 
w(j) − log 

1 
w1:t−1Γt−1 + w

N N
j=1 j=# i  N 

N j=1 w
(j)1 

= log    
1 (i) (i)

w Γ =i w
(j)

N 1:t−1 t−1 + #j 
(i) (j)w + j=i w

= log # (9)
(i) (i)

w Γ =i w
(j)

1:t−1 t−1 + #j

The only difference between the numerator and the denomi
(i) (i)nator here is whether we use w(i) and w Γ . Note that 1:t−1 t−1

these two terms are closely related: the latter is the expecta
(i) (i)tion of the former over the distribution qφ(z | z1:t−1, x).t:T 

By sharing large parts of their definitions, these two op
tions are highly correlated, sometimes being close to each 
other, which mean that the outcome of the subtraction 
in (9) has smaller variance than the original coefficient  N
log( (j)/N).j=1 w

Before moving on to the second step of our derivation of 
gVIFLE, we summarize the outcome of the first, which we 

udenote by g :VIFLE  NT N (i) (j) 
u 

tt w + j=i w#
g = logVIFLE  (i) (i)

w Γ =i w
(j) 

t=1 i=1 t−1 + #1:t−1 j

(i) (i)×vφ log qφ(z | z1:t−1, x) . (10)t 

uWe point out that g and ghigh have the same expec-VIFLE 
tation by Lemma 1, and that this relationship continues to 
hold even when we replace the future likelihood function Γ 
by its approximation Γ̂ψ (The superscript u emphasizes that 
it is an unbiased estimator). 

Second, we approximate w(i) in the numerator of (10) by 
(i) (i)

w Γ , which gives the final formula gVIFLE of our esti1:t t 
mator:  T N (i) (i) (j)tt w Γ +t =i w1:t j #
gVIFLE = log  (i) (i)

w Γ =i w
(j) 

t=1 i=1 1:t−1 t−1 + j #

(i) (i)×vφ log qφ(z | z1:t−1, x) . (11)t 

Note that both the numerator and the denominator in (11) Nare the expectations of the same formula (j) but j=1 w
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taken over different distributions. The former is over that 
(i)of the random variables z and the latter over that of t+1:T 

z
(i) . As a result, they tend to be highly correlated, making t:T 
gVIFLE have low variance. Another reason for the reduc
tion of variance is that gVIFLE involves far fewer random 

(i) (i)uvariables than g . Replacing w(i) by w Γ stops the VIFLE	 1:t t 
coefficient for the i-th particle and the step t from depending 
on the sequence of samples z(i) . In so doing, it at least t+1:T 
partially addresses the issue of the accumulation of model 
or algorithm noise over time steps, which often makes learn
ing and inference particularly difficult for the state-space 
models. 

The second step makes our gradient estimator depart from 
the score-function estimator. The new gVIFLE and the old 
ghigh no longer have the same expectation. This means that 
as an estimator for the gradient of the IWAE objective, our 
estimator is biased. However, in Section 4, we will identify 
a new variational lower bound and show that our estimator 
is unbiased with respect to this bound. 

3.3. Gradient estimator in a general form 

The main recipe for deriving gVIFLE in our estimator is 
to replace the w(i) term in the definition of ghigh by its 

(i) (i)expectation over z or z . Our derivation restricts the t+1:T t:T 

objective, because they approximate the w(j) term in the 
(j) (j)numerator by w Γ . In Section 4, we formally show that 1:t t 

for all S , the estimator gS implicitly optimizes an alternative 
variational lower bound. We also establish the relationship 
between the IWAE objective and the lower bound for gS , 
and also between gS and gS1 for different S and S '. We 
leave as future work for the design of an algorithm that 
optimizes S . 

3.4. Relationship with the VIMCO estimator 

We can relate our gradient estimator with gVIFLE with 
VIMCO (Mnih & Rezende, 2016). Essentially, VIMCO 
is a score-function estimator with the following baseline for 

(i) (i)each particle distribution qφ(zt | z1:t−1, x) in ghigh: 

!t 1
 
N −1
(i) + w(j) where w詞(i) = w(j)詞w

j #	 j=i=i	 #

Here, the term w詞(i) is the geometric mean of the w(j) with 
(i)j ∈ {0, 1, . . . , N}\{i}. The idea is to approximate the w

for the particle i by the geometric mean over other particles. 
Thus, VIMCO is the score-function estimator (3) with ghigh 

replaced by: 

log . 

application of this recipe to the current particle i (i.e. particle N 
j=1 w

(j)T Ntt 
(i) (i)	 gVIMCO = logfor which we compute vφ log qφ(zt | z1:t−1, x) in ghigh), 

t=1 i=1but this restriction can be lifted and we can derive a new 
詞w(i) + 

gradient estimator in doing so. For instance, we may apply (i) (i)×vφ log qφ(z |z1:t−1, x) . (14)tthe recipe to every particle, and get the following alternative 
to gVIFLE called FR, which stands for Full Replacement: 

T Ntt 

=i w
(j) 

#j

N (j) (j) Both VIMCO and our estimator share the idea of using Γj=1 w1:t t 
gFR = log 

t=1 i=1 
information from other particles to form a baseline, but N (j) (j) 

j=1 w1:t−1Γt−1 with following substantial differences: VIMCO does not 
(i) (i)×vφ log qφ(z | z1:t−1, x) . (12)t 

More generally, for every particle i, we can pick a set Si of 
particles with i ∈ Si. Let S = {Si | 1 ≤ i ≤ N }. Then, 
we can apply our recipe to all the particles in Si when we 
consider the coefficient of the gradient term for the particle 

(i) (i)
i in ghigh (i.e., vφ log qφ(z | z1:t−1, x) in (6)). This gives t 
the following new variant of ghigh: 

approximate any terms in the numerator, and it remains 
unbiased with respect to the IWAE objective. On the other 
hand, our estimator does approximate a term there, and in 
so doing, it changes the target variational lower bound. In 
addition, our estimator utilizes the future likelihood function 
approximator to further reduce its variance. 

4. Theoretical Analysis 
We analyze theoretical properties of our gradient estimator 

(j)
Γ
(j) 

+ w(j) with gVIFLE, gFR, and more generally gS for a family of T Ntt 
gS = log j∈Si 

w1:t t j #∈Si index sets S . As we have stated earlier, none of these estima
tors computes an unbiased estimate of the IWAE objective, 

(j) (j) 
w(j)

1:t−1Γt−1 + j #∈Sit=1 i=1 j∈Si 
w

although they all originate from an unbiased estimator for (i) (i)×vφ log qφ(zt | z1:t−1, x) . (13)	 the objective. Our first result says that in fact, these esti
mators target at different variational lower bounds, and for 
these new bounds, the estimators are unbiased. As in the case of gVIFLE, the gradient estimator with gFR
 

and gS no longer compute unbiased estimates of the IWAE Theorem 1. Fix θ and x. Then, for every parameter φ = φ0,
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there are variational objectives LVIFLE and LFR such that 

LIWAE(θ, φ0; x) ≥ LVIFLE(θ, φ0; x) ≥ LFR(θ, φ0; x), 

vφLVIFLE(θ, φ; x)|φ=φ0 = E[glow + gVIFLE], 

vφLFR(θ, φ; x)|φ=φ0 = E[glow + gFR]. 

The expectations in the second and third equations are taken 
with respect to the distribution qφ0 (z

(1:N )|x), and the gradi
ents inside glow, gVIFLE and gFR are computed at the point 
φ = φ0. More generally, for all families of index sets, S 
and T , if Si ⊆ Ti for every i, then there are variational 
objectives LS and LT such that 

LIWAE(θ, φ0; x) ≥ LS (θ, φ0; x) ≥ LT (θ, φ0; x). 

The next theorem shows that the target lower bound LVIFLE 

of our estimator enjoys the same convergence property of 
the IWAE objective. 

Theorem 2. The bound LVIFLE converges to log pθ(x) al
most surely, as the number of particles N goes to infinity. 

All of these results support the use of our gradient estimator 
in variational inference. The detailed proofs for the results 
can be found in the supplementary material due to the page 
limit. 

5. Related Works 
In the context of variational inference, there have been a 
number of prior works to estimate quantities involving fu
ture time steps in the state-space models and exploit these 
estimates for approximating gradients of variational objec
tives accurately (Weber et al., 2015; Levine, 2018; Grath
wohl et al., 2018), sometimes using the connection between 
variational inference and reinforcement learning. However, 
these works are based on the standard ELBO objective, not 
the IWAE objective, and they compute the future ELBO, 
not the future likelihood, unlike our gradient estimator. If 
we naively adjusted those works to the IWAE objective, we 
would have to estimate the future IWAE objective, which is 
apparently a more difficult task than estimating the future 
likelihood because of the use of multiple particles in the 
IWAE. 

The existing approaches for handling discrete latent vari
ables in variational inference can be roughly classified into 
three categories. The first category of approaches use the 
score-function estimator with a carefully-designed vari
ance reduction technique. Mnih & Gregor (2014) devel
oped such techniques for the ELBO objective, and Mnih 
& Rezende (2016) developed VIMCO for the IWAE objec
tive. The second class of approaches relax discrete vari
ables to continuous ones, and approximate the gradient 

using the reparameterization estimator. A well-known re
laxation for the categorical distribution is a technique called 
Gumbel-Softmax (Jang et al., 2017) and also Concrete dis
tribution (Maddison et al., 2017b). The approaches in the 
last categories, such as REBAR (Tucker et al., 2017) and 
RELAX (Grathwohl et al., 2018), combine the techniques 
of the other two groups and use both the score-function esti
mator and the reparameterization estimator with relaxation, 
so as to remove the bias issue in the approaches in the sec
ond group. Our gradient estimator falls into the first group, 
and shows for the first time how to use future likelihood 
estimates to obtain a low-variance gradient estimator for an 
IWAE-like multi-particle variational objective. 

The multi-particle variational objectives, such as IWAE, are 
usually tighter lower bounds for the marginal likelihood 
than the standard ELBO objective. It has been observed this 
tightening helps learning the generative model, but it has 
a side-effect of hindering learning the variational distribu
tion (Rainforth et al., 2018). The current solution for this 
issue (Tucker et al., 2019) is based on the repeated applica
tion of the reparameterization idea, and is applicable only 
to models with differentiable densities. Since our gradient 
estimator is designed for a multi-particle objective and is 
not limited to models with differentiable densities, an inter
esting future direction is to investigate whether and how it 
can be used for that line of research. 

Some previous studies (Maddison et al., 2017a; Naesseth 
et al., 2018; Le et al., 2018; Lawson et al., 2018) proposed 
tighter variational bounds for the state-space models, by 
exploiting sequential Monte Carlo (SMC) and its ability 
for estimating the marginal likelihood without any bias. 
However, the gradient estimator for the bound suffers from 
the high-variance issue, and these studies simply drop the 
high-variance term from the estimator. Our idea of using 
future likelihood estimates and applying approximation only 
to some particles may lead to a new approach for addressing 
this issue in these studies. We also want to point out several 
studies about reducing the variance of the gradient estimator 
for the state-space models (Weber et al., 2015; Ahmed et al., 
2019). As explained earlier, these estimators target at the 
gradient of the ELBO, not the IWAE, and they do not use 
the notion of future likelihood estimates. 

6. Experiments 
6.1. Synthetic datasets from two dynamical systems 

Our first set of experiments uses synthetic datasets from two 
dynamical systems, and has the goal of computing posterior 
distributions. 

The first dynamical system models a simple continuous 
linear dynamics with Gaussian noises, and it is defined as 
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Figure 1. In this figure, the x-axis indicates the length of observed sequences in each dataset, and the y-axis indicates in log scale the 
ELBO per time step to measure the trends of negative KL divergence between proposal distribution and true posterior distribution. In 
Gaussian dynamics, each error bar represents the sample standard error with 5 random samples. In Bernoulli dynamics, each error bar 
represents the sample standard error with 10 random samples. 

follows: 

z0 = v0, zt = Azt−1 + vt, xt = Bzt + wt, 

where variables zt, xt, vt, and wt are 20-dimensional vec
tors, A and B are randomly-generated 20×20 matrices with 
determinant 1, and vt and wt denote Gaussian noises with 
covariance 0.1I . We use an approximate posterior distribu
tion of the form qφ(zt | zt−1, xt), where qφ is a Gaussian 
distribution. 

The second dynamical system models a dynamics on a dis
crete latent state space and continuous observations, given 
by: 

z1 ∼ Bern(0.5), zt = F (zt−1), xt = Azt + sin(10zt)+ wt. 

Here variables zt, xt, and wt are 20-dimensional vectors, A 
is a randomly-generated 20 × 20 matrix with determinant 
1, and F is a transition function on the boolean vectors that 
flips each component independently with probability 0.1. 
Also, wt denotes a Gaussian noise with covariance 0.1I . 
For this model, we use an approximate posterior distribution 
of the form qφ(zt | zt−1, xt) where qφ is a Bernoulli distri
bution. The detailed settings for the two dynamical systems 
are provided in Appendix H. 

We performed posterior inference on both dynamical sys
tems, each on finite different datasets with different maxi
mum time steps, 10, 20, 50, 100, and 200. In all of these 
cases, we tried five variational inference algorithms that op
timize multi-particle variational objectives, such as IWAE. 
The tried algorithms are (a) REINFORCE that estimates the 
gradient by the score-function estimator glow + ghigh; (b) 
VIMCO based on glow + gVIMCO; (c) VIFLE U that uses 

uthe gradient estimator glow + g ; (d) VIFLE based on VIFLE

glow +gVIFLE; (f) FR with the gradient estimator glow +gFR. 
In our experiments, we trained the parameters φ of approxi
mate posterior distributions qφ using these algorithms, and 
measured the qualities of the trained qφ’s by computing the 
ELBO which is equivalent to negative KL divergence be
tween true posterior p(z|x) and qφ(z|x) plus log evidence, 
which is a constant in this case. 

The results of our experiments are given in Figure 1. They 
show a general trend that as the length of data increases, the 
performance of VIFLE and FR improves, while other three 
algorithms deteriorates. The only exception to this trend 
is the 200-step case for FR in the continuous dynamical 
system. One possible explanation for the behaviour of FR is 
that it relies too much on the future likelihood approximator, 
and its error is manifested in particularly long sequences. 
Otherwise, the use of approximate future likelihood func
tions generally helped reduce the variance of the gradient 
estimator. Furthermore, we can see that VIFLE and FR 
generally performs better as we increase the length of data, 
which is actually due to the increase in the amount of train
ing data for training the future likelihood functions. We 
can also notice the unstable performance of VIMCO in the 
discrete dynamical system, which was highly dependent on 
how the initial samples were generated. 

VIFLE uses the approximate future likelihood function in 
two places, one for a baseline and the other for replacing 
a part of the coefficient of a particle-specific gradient term. 
Our experimental results show the impact of each of these 
two uses. Comparing the results for REINFORCE, VIMCO, 
and VIFLE U reveals that using future likelihood estimates 
as baselines help, but it is not as effective as using the 
baselines of VIMCO. We hypothesize that this is due to 



Variational Inference for Sequential Data with Future Likelihood Estimates 

N Training algorithm JSB Nottingham MuseData Piano-midi.de 
REPARAM (Kingma & Welling, 2014) -7.47 -3.59 -6.47 -8.47 

4 VIMCO (Mnih & Rezende, 2016) -7.22 -2.92 -6.34 -8.42 
VIFLE -7.11 -3.03 -5.94 -8.06 

REPARAM (Kingma & Welling, 2014) -7.49 -3.84 -6.48 -8.49 
8 VIMCO (Mnih & Rezende, 2016) -7.25 -2.84 -5.95 -8.30 

VIFLE -7.23 -3.01 -5.92 -8.02 

Table 1. Test-set marginal log-likelihood bounds for the trained models with continuous latent variables by three algorithms. For each 
(128)algorithm, we pick a model by its validation performance, and report the LIWAE for the model. 

N Training algorithm JSB Nottingham MuseData Piano-midi.de 
CONCRETE (Maddison et al., 2017b) -8.58 -3.55 -6.47 -8.26 

4 VIMCO (Mnih & Rezende, 2016) -8.54 -3.66 -7.18 -8.44 
VIFLE -8.40 -3.16 -6.10 -8.17 

CONCRETE (Maddison et al., 2017b) -8.71 -3.83 -6.41 -8.58 
8 VIMCO (Mnih & Rezende, 2016) -8.56 -3.92 -6.42 -8.36 

VIFLE -8.53 -3.15 -6.13 -8.29 

Table 2. Test-set marginal log-likelihood bounds for the trained models with discrete latent variables by three algorithms. For each 
(128)algorithm, we pick a model by its validation performance, and report the LIWAE for the model. 

the fact that the baselines for VIMCO do not require any 
further estimation, whereas those for VIFLE U do require 
the estimation of future likelihoods. The benefit of the 
other use of future likelihood estimates is more prominent 
in our experimental results. In Figure 1, the graphs for 
VIFLE clearly dominate those for VIFLE U and VIMCO 
in both dynamical systems, and the domination gets more 
prominent as the length of data grows. This means that for 
these two dynamical systems, dramatic performance gain 
can be attained by trading off the tightness of a variational 
bound over the reduction of variance in gradient estimation. 

6.2. Polyphonic music datasets 

We further conducted experiments on real-world datasets 
using four polyphonic music datasets (Boulanger
lewandowski et al., 2012). Here, the goal is to learn the 
generative model parameter pθ as well as the approximate 
posterior parameter qφ as in standard variational inference. 
We considered two types of models, one with a continuous 
latent state space and the other one with a discrete latent 
state space. The model parameters θ are learned by the 
standard stochastic gradient ascent with respect to the 
IWAE objective. On the other hand, the parameters φ of 
approximate distributions are found by different variational 
inference algorithms. The model distributions are factorized 
as in (4), and the approximate posteriors assume the form 
qφ(zt | z1:t−1, x) = qφ(zt | z1:t−1, x1:t). We used four and 
eight particles for each algorithm. As for the learning 
rate, we report the best results among the choices in 
{3 × 10−4 , 1 × 10−4 , 3 × 10−5 , 1 × 10−5}. For more 
details on the experimental setting, we refer the readers to 

Appendix H. 

Table 1 shows the results on the model with continuous state 
variables, and Table 2 the results on the model with discrete 
state variables. VIFLE shows the state-of-the-art perfor
mance except for the continuous model on the Nottingham 
dataset. This result suggests that our algorithm can be used 
to solve real-world problems. 

7. Conclusion 
We have presented a new variational inference algorithm for 
sequential data, which is demonstrated to be highly effective 
even when the models have non-differentiable densities, for 
instance, due to the use of discrete latent variables. Our al
gorithm optimizes a multi-particle variational lower bound 
of the marginal likelihood, and uses a gradient estimator for 
this bound that achieves a low variance by using an approxi
mator of the future likelihoods at all time steps. Our gradient 
estimator originates from the score-function estimator for 
the IWAE objective, but it computes an approximation of a 
new multi-particle lower bound, as shown in our theoretical 
analysis of the estimator. Our experiments with synthetic 
and real datasets show that our algorithm is highly effec
tive for models with discrete latent variables and also for 
real-world data. 

As for the future work, we hope to provide a more principled 
approach to the trade off between variance and tightness, 
based on our generalized form presented in Section 3.3. Al
though we mostly focused on gVIFLE and gFR, finding a 
good index set S may further improve the performance of 
the posterior inference. Another promising approach is to 
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generalize VIFLE. We only focused on the IWAE objec
tive, but VIFLE can be extended to other objectives with 
multiple particles such as Filtering Variational Objective 
(FIVO) (Maddison et al., 2017a). The gradient estimator of 
FIVO is known to have a high variance term from resam
pling, and VIFLE may provide an approach to address this 
issue. 
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A. Cumulative Noise Example 
In this section, we show the example of cumulative noise in sequential structure. Suppose that the true posterior is given by 

T T 
p(z|x) = N (zt|0, 12) and it is approximated by q(z|x) = N (zt|0, 22). Then, t=1 t=1 

Var 
1 
N 

N (i) 
i=1 w

p(x) 

Nt1 p(z(i)|x)
= Var 

N q(z(i)|x)
i=1 ⎡ 

Nt1 p(z(i)|x) 
= E ⎣ 

z(1:N)∼q( |x) N q(z(i)|x)
i=1 ⎡ 
Nt1 p(z(i)|x) 

= E ⎣ 
z(1:N)∼q( |x) N q(z(i)|x)

i=1 ⎡ 

⎤ 
2 ⎦ − Ez(1:N )∼q( |x) ⎤ 
2 ⎦ − 1 

⎤ 

1 
N 

Nt p(z(i)|x) 
q(z(i)|x)

i=1 

2 

N Nt t1 p(z(i)|x) p(z(j)|x) 
= E ⎣ 

z(1:N)∼q( |x) 
⎦ − 1 

N2 q(z(i)|x) q(z(j)|x)
i=1 j=1 ⎡ ⎤ 
Nt1 

= E ⎣ 
z(1:N)∼q( |x) N2 

i=1 

p(z(i)|x) 
q(z(i)|x) 

2 t1 p(z(i)|x) p(z(j)|x)
+ ⎦ − 1 
N2 q(z(i)|x) q(z(j)|x)

i#=j 

= Ez(1:N)∼q( |x) 

Nt1 
N2 

i=1 

p(z(i)|x) 
q(z(i)|x) 

2 
N2 − N 

+ 
N2 

− 1 

= 

= 

= 

2
1 p(z|x) 1
Ez∼q( |x) − 

N q(z|x) N  
1 p(z|x)2 

dz − 1 
N q(z|x)z   T!1 4 1� exp
N 3z1:T 2π(2/3)t=1

3 2− zt4 
dz1:T − 1 

1 4 T /2 

= 
N 3 

− 1 , 

1where i w
(i) is an unbiased estimator of p(x). (i.e. Eq[ 1 

i w
(i)] = p(x)) This example shows that the variance can N N 

be exponentially increased over time T . 
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B. Details for Score Estimator 
First we provide the detailed derivation of (3): 

1 
N

N 
i=1 

t 
(i)vφE log wz(1:N)∼qφ( |x) 

N

w
N 

t1(1:N )|x) log 

Nt 

(i) (1:N )dzqφ(z= vφ 
(1:N )z i=1 

N

i=1 

t 
w

1 1(i) (1:N)|x) + qφ(z
(1:N )|x)vφ logvφqφ(z

Nt 

(i) (1:N)dzlog= w
N Nz(1:N ) 

i=1 

1 
N 

tN
i=1 

1(1:N )|x) log 

t 

(i) (1:N)|x) + qφ(z
(1:N )|x)vφ log 

N

vφ log qφ(z w(i) (1:N)dzqφ(z= w
Nz(1:N ) 

i=1 

Nt1 1(1:N )|x) w(i) vφ log qφ(z
(1:N)|x) + vφ log (i) (1:N)dzqφ(z log= w

N

N 

t 

N 

tN(1:N )z i=1 i=1 

1 1(i) vφ log qφ(z
(1:N)|x) + vφ log (i)= E log w wz(1:N )∼qφ( |x) N N 

i=1 i=1 

= Ez(1:N )∼qφ( |x)[ghigh + glow]. 

In this equation, the fourth line is obtained by log derivative trick. Now, we rearrange glow as: 

tN
glow = vφ log w

N 
i=1 

1 N (i) 
N i=1 vφw= 

N 
N j=1 w

(j)1 

1 (i) 

N (i) (i)vφ log wi=1 w= 
N 
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tN
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N

(i)w (i)vφ log w= 

(i)w vφ log qφ(z
(i)|x).

N 
j=1 w

(j) 
= − 

i=1 

In this equation, the weight of each gradient vφ log qφ(z(i)|x) 
(i)w

,
N 
j=1 w

(j) 

is bounded in (0, 1) and sum of these weights are just 1. However, ghigh has following formula 

tN
w

N 
i=1 

1 (i) (1:N )|x).vφ log qφ(zghigh = log 

Here, the weight of each gradient vφ log qφ(z(i)|x) 

tN
log w
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i=1 

has large magnitude, which causes large variance. 
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詞w

z 

詞Γ
詞Γ

= vq(z)dz 

詞w詞Γ詞Γ

C. Proof of Lemma 1 
Proofs for Lemma 1 Firstly, we can easily derive the following equation: . 

E [ log ( )] = ( ) log ( )dzv vq z q z q z∼ ( )z q z

z 

( )dzv= q z

More generally, for any which does not depend on B z, 

(i) (i)詞N N T (i) (j)詞Γ w
|( )VIFLE z x (i) (i) (i)詞φ Γ

詞|1 ( ) wq z x 1:φ j=1 tt
FR (i) (j) (j)Nφ
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1 = 0v= . 

E [B log ( )] = ( )B log ( )dzv vq z q z q z∼ ( )z q z
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詞w

z 

= B vq(z)dz 
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= Bv1 = 0. 

D. Proof of Theorem 1
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(N) (N ) (N) (N) (N)We simply denote L (θ, φ0, φ0; x) as L (θ, φ0; x), L (θ, φ0, φ0; x) as L (θ, φ0; x), and L (θ, φ0, φ0; x)VIFLE FR FR S 
(N) (N) (N) (N) (N )as L (θ, φ0; x). More g
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(N) (N)and L (θ, φ, φ̃; x) as L (θ, φ; x) for φ̃ = stop grad

VIFLE

(φ). Using these defin
VIFLE

itions, we pro
FR

vide the proof of gradients in S S 
Theorem 1. 

Lemma 2. Note that 

(N )vφL (θ, φ; x)|φ=φ0 = E[glow + gVIFLE],VIFLE

(N)vφLFR (θ, φ; x)|φ=φ0 = E[glow + gFR], 

where the expectations are taken with respect to qφ0 (z
(1:N)|x) and the gradients at φ = φ0. 
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Proof. Using the definition of LVIFLE and φ̃ = stop grad(φ), we can easily derive the following equation: 

N N T (j) (i) (i) (i) 

vφL(N) 
(θ, φ, φ̃; x) = E (1:N ) |x) vφ log 

1 
w(i) + log j #=i + w詞1:t t vφqφ(zt |x) 

VIFLE q ̃ (zφ N w(j) + w詞(i) (i) 
q˜(z

(i)|x)i=1 i=1 t=1 j=# i 1:t−1 t−1 φ t 

N N T (j) (i) (i) (i)
1 (i) j # + w1:tΓ vφqφ(zt |x)=i w t 

= Eqφ(z(1:N ) |x) vφ log w + log . 
(i) (i) (i)N 

=i w
(j) + w Γ qφ(z |x)i=1 i=1 t=1 j # 1:t−1 t−1 t 

This equation leads vφL (θ, φ; x)|φ=φ0 = E[glow + gVIFLE]. Similarly, we can get the other equation 
(N) 

詞詞 Γw 詞詞 Γ

(N ) 

EL (θ, φ ) [ ]; +v x = g g .φ φ φ low FRFR = 0|
VIFLE

Now, we prove the proof of inequalities in Theorem 1. 

Proof. From the definitions of andL L ,IWAE VIFLE

Lemma 3. The inequality 
(N) (N)L (θ, φ; x) ≥ L (θ, φ; x)IWAE VIFLE

holds for any θ, φ, and x. 

t
t 

t
t 

t
t 

(i) (i)ttN T
(N ) (N) j=i w#

(j) + w Γ1:t t 
(θ, φ; x) = EL (θ, φ; x) − L (1:N )∼qφ( |x) − logIWAE VIFLE z (i) (i) 

=i w
(j) + w Γ# 1:t−1i=1 t=1 t−1jt

t
t 

N (i)(j) + Γ
= E =i w

(1:N )∼qφ( |x) log j # 0 
z

=i w
(j) + w(i) 

j #

N (j) (i)] 

i=1 

+ E=i w (i)∼qφ( |x)[w
= Ez(1:N )∼qφ( |x) log j # z

N 
i=1 j=1 w

(j) 

N (j) (i)+ w=i w≥ Ez(1:N )∼qφ( |x) log 
i=1 

j #
N 
j=1 w

(j) 
= 0. 

Here, the last inequality is derived from the Jensen’s inequality. 

Lemma 4. The inequality 
(N ) (N)L (θ, φ; x) ≥ L (θ, φ; x)VIFLE FR 

holds for any fixed θ, φ, and x. 

Proof. Using definitions, we can derive the following inequality: 
(N) (N)L (θ, φ; x) − L (θ, φ; x)VIFLE FR 

(i) (i) N (j) (j)tN
(1:N ) ∼qφ( |x) logz

tT (j) + W =i w# Γ Γj=1 w1:tj t t t 
= E − log

(i) (i) N (j) (j) 
=i w

(j) + w# Γ Γj=1 wi=1 t=1 1:t−1 t−1 1:t−1 t−1jt
t
t
t 

N (j) (i) N (j) 
j # + w j=1 w=i w

= Ez(1:N ) ∼qφ( |x) log − log
(i) N (j) 

=i w
(j) + Γ Γi=1 j # 0 j=1 0 

N N (j)
Γj=1 0 

= E (1:N ) ∼qφ( |x) logz


=i w
(j) + Γ

(i)
 
i=1 j # 0 

N (i)Ez(j)∼qφ( |x)[w
(j)] + Γj # 0=i 

= E (1:N ) ∼qφ( |x) logz


=i w
(j) + Γ

(i)
 
i=1 j # 0 

N (i)(j) + Γ=i wj # 0≥ Ez(1:N ) ∼qφ( |x) log = 0. 
=i w

(j) + Γ
(i) 

i=1 j # 0 
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To derive the inequality in the last line, we use Jensen’s inequality. 

Lemma 5. For all index sets S and T , if Si ⊆ Ti for every i, then there are variational objectives LS and LT have 
following relation: 

LS (θ, φ0; x) ≥ LT (θ, φ0; x) 

for any fixed θ, φ, and x. 

Proof. From the inequality 

(N) (N )L (θ, φ; x) − L (θ, φ; x)S T 

N Ttt (j) (j) (j) (j)(j) (j)Γ Γ+ +w w w w1:t 1:tj∈Si j /∈Si j∈Ti j /∈Tit t 
= Ez(1:N)∼qφ( |x) − loglog 

(j) (j) 
t−1 + (j) (j) 

t−1 +w(j) w(j)Γ Γw wi=1 t=1 1:t−1 1:t−1j∈Si j /∈Si j∈Ti j /∈Ti 

N

(1:N)∼qφ( |x) log 
t (j) (j)w + wj∈Si j /∈Si 

Γ
(j) 

+ w(j) 

(j) (j)w + wj∈Ti j /∈Ti 

Γ
(j) 

+ w(j) 
= Ez − log 

i=1 0 0j∈Si j /∈Si j∈Ti j /∈Ti 

(j) (j)Γ + wj∈Ti 0 j /∈Ti 

N

= Ez(1:N)∼qφ( |x) log 
t 

(j) 
w(j)Γ +i=1 0j∈Si j /∈Si 

(j) (j)Γ + E[w(j)] + j / wj∈Si 0 j∈Ti\Si ∈Ti 

N

= E (1:N)∼qφ( |x) logz

t 
(j) 

w(j)Γ +i=1 0j∈Si j /∈Si 

(j) (j) (j)Γ + w + wj∈Si 0 j∈Ti\Si j /∈Ti 

N

≥ Ez(1:N)∼qφ( |x) log 
t 

(j) 
w(j)Γ +i=1 0j∈Si j /∈Si 

(j)N

= E logz

t (j)Γ + wj∈Si 0 j /∈Si = 0.(1:N)∼qφ( |x) (j) 
w(j)Γ +i=1 0j∈Si j /∈Si 

To derive the inequality in the last line, we use Jensen’s inequality. 

Now, we are ready to prove the Theorem 1. 

Proof of Theorem 1. Lemma 2 states that gradient estimators are indeed unbiased gradient estimators of surrogate objectives 
LVIFLE and LFR. Moreover, Lemma 3, Lemma 4 prove the remaining statement of theorem. 

E. Proof of Theorem 2 
Proof. Using the mean value theorem, we obtain the following equation: ⎧⎨ 

⎧⎨ 
⎫⎬ 

⎫⎬ 
⎧⎨ 

⎫⎬ 
⎞⎛ ⎞⎛ ttN N

j=1 j=# i j=1 j #=i 

1 N 1 (j)where the value m lies between (j) and =i w + pθ(x)N j=1 w N j #

From the fact that Ez(i)∼qφ( |x)[w
(i)] = pθ(x), the strong law of large number states that 

t t1 1 1 1 1(j) (j) (j) − w(j) + pθ(x)⎠⎝ ⎠ ⎝− loglog + pθ(x)w w = w ,⎩ ⎭ ⎩ ⎭ ⎩ ⎭N N N Nm 

1 tN
lim w
N→∞ N 

i=1 

a.s.(i) −−→ pθ(x). (15) 
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1 1 N 1 (j)We notice that for sufficient large N , pθ(x) ≤ (i) and 1 pθ(x) ≤ =i w + pθ(x) from (15). Thus, 2 N i=1 w 2 N j #

⎞⎛ ⎞⎛ t t1 1 1 1(j) (j)−M

      w + pθ(x)⎠
      ≤ log 

N 

N

j=1 

t 
w(j) − log 

N

N N 

t 
(j) − ⎝ ⎝ + pθ(x)⎠w w . 

N 
j=1 #=i #=ij j

where M = 2 . pθ (x) 

In addition, (15) guarantees that 

(N) a.s.
lim L −−→ log pθ(x)IWAE 
N→∞ 

as shown by Burda et al. (2016). 

N 
j=1 w

N
(N) (N)L (θ, φ; x) = L (θ, φ; x) + Ez(1:N ) ∼qφ( |x) logVIFLE IWAE

t 

i=1 

(j) 

=i w
(j) + pθ(x)j #

1 N (j) 
N j=1 w

Nt 
(N) 
IWAE(θ, φ; x) + Ez= L (1:N ) ∼qφ( |x) log 

1 
=i w

(j) + pθ(x)i=1 N j #      
      

⎡ ⎞⎛ ⎤ ⎦ 
ttN N

N 
i=1 j=1 j #=i 

t1(N) 
IWAE

(j) − w(j) − pθ(x)(θ, φ; x) − E ⎣M ⎝ ⎠≥ L wz(1:N ) ∼qφ( |x)      w(i) − pθ(x)

     tN
N 

i=1 

1(N) 
IWAE(θ, φ; x) − MEz(1:N )∼qφ ( |x)= L

a.s.−−→ log pθ(x) + 0 

(N) (N) (N) a.s.Since the inequality L ≥ L always holds, we can conclude that L −−→ log pθ(x).IWAE VIFLE VIFLE 

F. Variance of Gradient 
Figure 2 shows the variance of gradient of VIFLE, VIMCO, and reparameterization trick in 20-dim Gaussian linear 
dynamics. The variance of gradient is measured by trace of sample covariance matrix during training. Note that the variance 
of REINFORCE is above 500, so does not appear in the figure. 

G. Generalization of VIFLE 
For sequential model learning, there are tighter objectives based on SMC (Maddison et al., 2017a; Naesseth et al., 
2018; Le et al., 2018). For these objectives, we extend our work. Suppose that our algorithm resamples S times at 
0 = t1 < t2 < · · · < tS+1 = T . Then, FIVO objective becomes 

!tN ts+1

s=1 i=1 t=ts+1 

Here, the gradient of FIVO w.r.t. φ is given by 

tS
LFIVO = E log 

1 (i)
w .tN 

tttT N S
(i) (i) (i)vφLFIVO = E vφ log p̂FIVO + log p̂FIVOvφ log qφ(zt |z1:t−1, x) + log p̂FIVOvφ log rs 

t=1 i=1 s=1 
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Figure 2. In this figure, the x-axis indicates the number of training iterations, and the y-axis indicates the variance of gradient measured by 
trace of sample covariance matrix. 

where 

S N ts+1t t !1 (i)
p̂FIVO = log w ,

N t 
s=1 i=1 t=ts +1 

(i) 
(i) 

wts+1:ts+1 r = .s N (j) 
j=1 wts +1:ts+1 

Due to the high variance, we ignore gradient term from resampling as same as previous works. 
(i) (i) 
t1 1To compute the baselines for qφ(z |z1:t1 −1, x), suppose that t ' ∈ [ts + 1, ts1+1]. Then, 

⎛ ⎞ ⎡ ⎛ ⎞⎤ 
s 1 −1 N ts+1t t ! t 

(i) (j) (j) (j) (i) (i)
b(z1:t1−1, x; φ) = log ⎝ 1 

w ⎠+log ⎣ 1 ⎝ w Γ(z −1, x) + w Γ(z1:t1−1, x)
⎠⎦ 

t t 1 +1:t 1:t t 1 +1:t1 −1s s1 +1 s1+1 sN N 
s=0 j=1 +1 #t=ts j=i 

(i) (i) (i)is not depend on z , so it is a baselines for qφ(z |z1:t1−1, x). Now, we will derive the biased but low-variance objective: t1 t1
 

T N
tt 
(i) (i) (i) (i)

gVIFLE = (b ' (z , x; φ) − b(z , x; φ))vφ log qφ(z |z1:t−1, x)1:t 1:t t 
t=1 i=1 
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where ⎡ ⎛ ⎞⎤ 
s 1 −1 N ts+1t t ! t1 1(j) (i) (i) (i) (j) (j)

b ' (z1:t1 , x; φ) = log wt + log ⎣ ⎝ wts1 +1:ts1+1 
Γ(z1:t 1 +1 

, x) + wt 1 +1:t1 Γ(z1:t1 , x)⎠⎦ . 
s sN N 

s=0 i=1 +1 #t=ts i=j 

When S = 0, it reduces to IWAE case. 

H. Experiment Details 
All gradient estimators show similar running times for all tasks. For synthetic datasets, the proposal distributions are of the 
form 

qφ(zt|zt−1, xt) = Bernoulli(fφ(zt−1, xt)), 

qφ(zt|zt−1, xt) = N (µφ(zt−1, xt), σφ
2 (zt−1, xt)) 

with respect to Bernoulli dynamics and Gaussian dynamics. Here, µθ and σ2 are implemented by a neural network to θ 
generate the mean and diagonal of covariance matrix for Gaussian distribution respectively. Also, fφ is implemented by 
neural networks to generate logit for Bernoulli distribution. During the posterior inference in synthetic domains, we use 
Adam optimizer with learning rate 10−3. Each neural network is composed of one fully connected layer. 

For polyphonic music datasets, our algorithm is implemented based on variational recurrent neural network (VRNN) (Chung 
et al., 2015) and especially, each joint distribution pθ(xt, zt|x1:t−1, z1:t−1) is factorized by 

pθ(zt|z1:t−1, x1:t−1)pθ(xt|z1:t, x1:t−1). 

Here, it is factorized by pθ(z1)pθ(x1|z1) for t = 1 case. Also, all distributions are of the form 

pθ(zt|z1:t−1, x1:t−1) = N (µθ(z1:t−1, x1:t−1), σθ 
2(z1:t−1, x1:t−1)), 

pθ(xt|z1:t, x1:t−1) = Bernoulli(fθ(z1:t, x1:t−1)), 

qφ(zt|z1:t−1, x1:t) = N (µφ(z1:t−1, x1:t), σφ
2 (z1:t−1, x1:t)) 

for continuous latent variable model. Here, µθ and σ2 are implemented by a neural network to generate the mean and θ 
diagonal of covariance matrix for Gaussian distribution respectively. Also, fθ and fφ are implemented by neural networks, 
which generate logit for Bernoulli distribution. For discrete latent variable model, 

(1)
pθ(zt|z1:t−1, x1:t−1) = Bernoulli(f (z1:t−1, x1:t−1)),θ 

(2)
pθ(xt|z1:t, x1:t−1) = Bernoulli(f (z1:t, x1:t−1)),θ 

qφ(zt|z1:t−1, x1:t) = Bernoulli(fφ(z1:t−1, x1:t)) 

for discrete latent variables. Here, all fθ and fφ are implemented by neural networks, which generate logit for Bernoulli 
distribution. All neural networks use a fully connected layer and share a recurrent neural network to summarize z1:t−1, x1:t−1. 
In addition, for both discrete and continuous latent variable models, we use 32-dimensional latent variables for JSB dataset 
and 64-dimensional latent variables for the others. 
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