Variational Inference for Sequential Data with Future Likelihood Estimates

Geon-Hyeong Kim 1 Youngsoo Jang 1 Hongseok Yang 1 Kee-Eung Kim 1 2

Abstract

The recent development of flexible and scalable variational inference algorithms has popularized the use of deep probabilistic models in a wide range of applications. However, learning and reasoning about high-dimensional models with non-differentiable densities are still a challenge. For such a model, inference algorithms struggle to estimate the gradients of variational objectives accurately, due to high variance in their estimates. To tackle this challenge, we present a novel variational inference algorithm for sequential data, which performs well even when the density from the model is not differentiable, for instance, due to the use of discrete random variables. The key feature of our algorithm is that it estimates future likelihoods at all time steps. The estimated future likelihoods form the core of our new low-variance gradient estimator. We formally analyze our gradient estimator from the perspective of variational objective, and show the effectiveness of our algorithm with synthetic and real datasets.

1. Introduction

Learning a deep probabilistic model for complex data with latent variables is one of the most important tasks in machine learning. Such models are typically built using neural networks, and applied to analyze a wide variety of data, including high-dimensional ones such as images (Kingma & Welling, 2014; Rezende & Mohamed, 2015; Chen et al., 2016; Gulrajani et al., 2016), speech and music (Chung et al., 2015; Fraccaro et al., 2016), and videos (Babaeizadeh et al., 2017; Denton & Fergus, 2018). However, when these models do not have differentiable densities (for instance, due to discrete latent variables), learning and analyzing the models for high-dimensional data is still a challenge despite impressive progress in the past few years, including, but not limited to, tighter variational bounds (Burda et al., 2016; Maddison et al., 2017a; Naesseth et al., 2018; Le et al., 2018; Lawson et al., 2018; Masrani et al., 2019), low-variance gradient estimators (Mnih & Gregor, 2014; Mnih & Rezende, 2016; Tucker et al., 2017; Grathwohl et al., 2018), and techniques for preventing the diminishing gradient due to the multiple samples (Rainforth et al., 2018; Tucker et al., 2019).

In this paper, we tackle the challenge for models for sequential data in the context of black-box variational inference (Ranganath et al., 2014). For these models, the noise from the data or the algorithm accumulates over time, and the variance of the algorithm’s estimates typically grows exponentially with the number of time steps. As a result, parameter learning and posterior inference via black-box variational inference are particularly difficult for these models. While there have been a large amount of prior work on these models, such as tighter variational bound derived from sequential Monte Carlo (Maddison et al., 2017a; Naesseth et al., 2018; Le et al., 2018; Lawson et al., 2018), the current variational inference algorithms struggle to approximate the gradients of variational bounds accurately, due to high variance in their estimates, especially when the models use discrete latent variables and thus do not have smooth densities; in such a case, the techniques that leverage the smoothness of the model, such as reparameterization trick, are no longer straightforwardly applicable.

We propose a novel gradient estimator for a sequential variant of the importance-weighted-autoencoder (IWAE) objective (Burda et al., 2016), which is a provably tighter lower bound to the log marginal likelihood than the more traditional evidence-lower-bound (ELBO) objective. In order to approximate the gradient accurately, our estimator computes the estimates of future likelihoods at each time step, by exploiting the recursive nature of sequential models. The estimated future likelihoods are then used to improve the standard score-function-based gradient estimator of the IWAE objective. Specifically, they serve as baselines (i.e. control variates), and also enable to replace a high-variance part of this standard estimator with a low-variance counterpart. Our estimator does not require the differentiability of a model’s density, and can be applied to sequential models with both
discrete and continuous latent variables. Our use of future likelihoods is inspired by the use of the value functions in reinforcement learning to estimate future rewards (Sutton et al., 1998).

Based on the preliminaries provided in Section 2, we formally introduce our estimator in Section 3. In Section 4, we show that the estimator computes an unbiased estimate of not the IWAE objective, but its new lower bound, although our gradient estimator is derived from the IWAE objective and its gradient estimator. Effectively, it trades off the tightness of the IWAE objective with the reduction of variance. In Section 5, we position our estimator in the context of relevant prior work on variational inference. In Section 6, we report experimental results of our estimator with synthetic and polyphonic music datasets, to show its effectiveness compared to the state-of-the-art algorithms.

2. Preliminaries

2.1. Model learning via variational inference

Consider a probabilistic model defined by a parameterized density function $p_\theta(x, z)$ over random variables $z \in Z$ and $x \in X$. Here z is a latent variable, x an observed variable, and θ a model parameter. The goal of maximum likelihood estimation (MLE) is to find a value of θ that maximizes the log marginal likelihood $\log p_\theta(x)$ for a given x. Achieving this goal is difficult because it involves computing the integral $p_\theta(x) = \int p_\theta(x, z) \, dz$ which is intractable except for very simple models.

Instead of the intractable integral, the variational approach optimizes a lower bound for $\log p_\theta(x)$, typically using an approximate posterior $q_\phi(z | x)$. Two well-known lower bounds are ELBO (Jordan et al., 1999) and IWAE with N (independent) particles (Burda et al., 2016; Domke & Sheldon, 2018):

$$\mathcal{L}_{\text{ELBO}}(\theta, \phi; x) = \mathbb{E}\left[\log \frac{p_\theta(x, z)}{q_\phi(z | x)} \right],$$

$$\mathcal{L}_{\text{IWAE}}(\theta, \phi; x) = \mathbb{E}\left[\log \left(\frac{1}{N} \sum_{i=1}^{N} p_\theta(x, z^{(i)}) \right) \right].$$

where the expectations are taken with respect to $q_\phi(z | x)$ and $q_\phi(z^{(1:N)} | x) = \prod_{i=1}^{N} q_\phi(z^{(i)} | x)$, respectively. The fact that $\mathcal{L}_{\text{ELBO}}$ and $\mathcal{L}_{\text{IWAE}}$ are indeed lower bounds of $\log p_\theta(x)$ follows from Jensen’s inequality. Note that $\mathcal{L}_{\text{ELBO}}$ has the parameter N for controlling the number of particles inside the log. For $N = 1$, $\mathcal{L}_{\text{IWAE}}$ coincides with $\mathcal{L}_{\text{ELBO}}$, but as N increases, it becomes tighter, eventually converging to $\log p_\theta(x)$. In the paper, we focus on $\mathcal{L}_{\text{IWAE}}$.

In the variational approach, we typically optimize a target variational lower bound by stochastic gradient descent (SGD). The key step in this optimization is to estimate the gradient of the lower bound using samples. Two widely-used unbiased estimators are score-function estimator, also called REINFORCE (Williams, 1992) and likelihood ratio estimator (Glynn, 1990), and reparameterization estimator, also known as pathwise estimator (Kingma & Welling, 2014). The score-function estimator does not require differentiable densities and can be used for continuous as well as discrete latent variable models, but it is known to have high variance. The reparameterization estimator is, on the other hand, applicable only to differentiable models, but it typically has much lower variance than the score-function estimator. Our goal is to fix this high-variance problem in the score-function estimator, and develop a new gradient estimator that keeps the wide applicability of the score-function estimator but does not suffer from the high-variance issue.

We start with the score-function estimator derived from the gradient of the IWAE objective:

$$\nabla_\phi \mathbb{E}\left[\log \left(\frac{1}{N} \sum_{i=1}^{N} p_\theta(x, z^{(i)}) \right) \right] = \mathbb{E} \left[\nabla_\phi \log \left(\frac{1}{N} \sum_{i=1}^{N} p_\theta(x, z^{(i)}) \right) \right] + \mathbb{E} \left[\log \left(\frac{1}{N} \sum_{i=1}^{N} p_\theta(x, z^{(i)}) \right) \nabla_\phi \log q_\phi(z^{(1:N)} | x) \right],$$

where all the expectations are taken with respect to the distribution $q_\phi(z^{(1:N)} | x)$. The score-function estimator approximates the two expectation terms from above using samples. Specifically, it computes the following sum of two sample-based estimates:

$$g_{\text{low}} + g_{\text{high}},$$

where

$$g_{\text{low}} = \nabla_\phi \log \left(\frac{1}{N} \sum_{i=1}^{N} p_\theta(x, z^{(i)}) \right),$$

$$g_{\text{high}} = \log \left(\frac{1}{N} \sum_{i=1}^{N} p_\theta(x, z^{(i)}) \right) \nabla_\phi \log q_\phi(z^{(1:N)} | x),$$

and each $z^{(i)}$ is sampled from $q_\phi(z^{(i)} | x)$. In most cases, the estimate g_{high} has significantly higher variance than g_{low}, and it is the root cause of the high-variance issue for the score-function estimator. (More detailed discussion about score estimator is provided in Appendix B). Throughout the paper, we will delve into finding an alternative to g_{high} with significantly lower variance.

2.2. State-space model

The state-space model is a standard tool for modeling the dynamics behind sequential data. In the state-space model,
both the latent variable \(z \) and the observed \(x \) have the sequence form: \(z = (z_1, \ldots, z_T) \) and \(x = (x_1, \ldots, x_T) \) where \(T \) is the length of the sequence. The joint density of \(x \) and \(z \) is represented by an initial density \(p_0(x_1, z_1) \) and a transition density \(p_0(x_{t+1}, z_{t+1} \mid x_1, \ldots, x_t, z_1, \ldots, z_t) \) as follows:

\[
p_0(x, z) = p_0(x_1, z_1) \prod_{t=2}^{T} p_0(x_t, z_t \mid x_{1:t-1}, z_{1:t-1}). \tag{4}
\]

Here we use the subscript notation \(x_{i:j} \) to denote the subsequence \((x_i, x_{i+1}, \ldots, x_j) \). Note that this setup permits time-dependent transition densities on \(x_t \) and \(z_t \).

When variational inference is applied to a state-space model using an approximate posterior \(q_\phi(z \mid x) \) of the form

\[
q_\phi(z \mid x) = q_\phi(z_1 \mid x) \prod_{t=2}^{T} q_\phi(z_t \mid z_{1:t-1}, x), \tag{5}
\]

the IWAE objective in (2) and the \(g_{\text{high}} \) in (3) yield particularly convenient formulas. To see this, let \(w_t^{(i)} \) and \(w_{t:T}^{(i)} \) be the following importance weights:

\[
w_0^{(i)} = 1, \quad w_t^{(i)} = \frac{p_0(x_t, z_t^{(i)} \mid x_{1:t-1}, z_{1:t-1})}{q_\phi(z_t^{(i)} \mid z_{1:t-1}, x)}, \tag{6}
\]

\[
w_{t:T}^{(i)} = \prod_{t'=t}^{T} w_{t'}^{(i)}, \quad w_t^{(i)} = w_{1:T}^{(i)}.
\]

Then, the IWAE in (2) can be expressed as follows:

\[
\mathcal{L}_{\text{IWAE}}(\theta, \phi; x) = \mathbb{E} \log \frac{1}{N} \sum_{i=1}^{N} w_t^{(i)}
\]

where the expectation is taken with respect to the product of approximate posteriors:

\[
\prod_{i=1}^{N} q_\phi(z^{(i)} \mid x) = \prod_{i=1}^{N} q_\phi(z_1^{(i)} \mid x) \prod_{t=2}^{T} q_\phi(z_t^{(i)} \mid z_{1:t-1}, x).
\]

Also, the high-variance term \(g_{\text{high}} \) in (3) can be written in the factored form below:

\[
g_{\text{high}} = \sum_{t=1}^{T} \sum_{i=1}^{N} \left(\log \left(\frac{1}{N} \sum_{j=1}^{N} w_j^{(j)} \right) \right) \times \nabla_\phi \log q_\phi(z_t^{(i)} \mid z_{1:t-1}, x). \tag{6}
\]

We will assume these structured formulas for the rest of the paper.

3. Variational Inference using Future Likelihood Estimates

In this section, we describe our gradient estimator, which approximates future likelihoods at all time steps and uses this approximation to replace \(g_{\text{high}} \) by a low-variance alternative.

3.1. Future likelihood function

We first define a future likelihood function, which plays an important role in our new gradient estimator.

Definition 1 (Future likelihood function). For given parameters \(\theta \) and \(\phi \), we define the future likelihood function \(\Gamma_{\theta,\phi}(z_{1:t}, x) \) at step \(t \) to be the following function of latent variables \(z_{1:t} \) and observation \(x_{1:T} \):

\[
\Gamma_{\theta,\phi}(z_{1:t}, x) = \mathbb{E} \left[w_{t+1:T} \right] = \mathbb{E} \prod_{t'=t+1}^{T} w_{t'},
\]

where the expectations are taken with respect to

\[
q_\phi(z_{t+1:T} \mid z_{1:t}, x) = \prod_{t'=t+1}^{T} q_\phi(z_{t'} \mid z_{1:t'-1}, x).
\]

Note that \(\Gamma_{\theta,\phi}(z_{1:t}, x) \) is an importance-sampling formulation of the future marginal likelihood \(p_0(x_{t+1:T} \mid x_{1:t}, z_{1:t}) \).

Thus, it coincides with the future marginal likelihood, under the mild condition that the support of \(p_0(z_{t+1:T} \mid x_{1:t}, z_{1:t}) \) should be covered by that of \(q_\phi(z_{t+1:T} \mid z_{1:t}, x) \). In the remainder of the paper, we will denote \(\Gamma_{\theta,\phi}(z_{1:t}, x) \) and \(\Gamma_{\theta,\phi}(z^{(i)}_{1:t}, x) \) simply by \(\Gamma_t \) and \(\Gamma_t^{(i)} \), respectively, whenever the relevant latent variables and observation are clear from the context.

An important part of our gradient estimator is to utilize an approximator of the future likelihood functions at all time steps. Note that the definition of the future likelihood function immediately gives rise to a Monte-Carlo approximation scheme, which computes the average of the term inside the expectation of \(\Gamma_t \) using independent samples from \(q_\phi(z_{t+1:T} \mid z_{1:t}, x) \).

However, this scheme is not practical because of high variance. Thus, we instead approximate the future likelihood function by making use of the recursive nature of the state-space model, that is, the following recurrent relation satisfied by the future likelihood functions at consecutive time steps:

\[
\Gamma_{t-1} = \mathbb{E}_{z_t \sim q_\phi(z_t \mid z_{1:t-1}, x)} \left[w_t \Gamma_t \right]. \tag{7}
\]

Concretely, we fix a parameterized function \(\hat{\Gamma}_{\psi,t} \) to approximate \(\Gamma_t \) for every \(t \). Usually, \(\hat{\Gamma}_{\psi,t} \) is defined in terms of a neural network parameterized by \(\psi \). Then, we learn the value of the parameter \(\psi \) by optimizing the following
This term is just the coefficient of the gradient term for the particle \(i\) and the time step \(t\) in \((6)\) except that the \(w^{(i)}\) part in the coefficient is replaced by \(w^{(i)}_{t-1} \Gamma^{(i)}_{t-1}\). The replacement makes the term independent of \(z^{(i)}_t\), unlike the original coefficient, so that the term becomes a baseline for \(q_\phi(z^{(i)}_t \mid z^{(i)}_{t-1}, x)\). We subtract this baseline from the coefficient of the gradient term in \((6)\) for the particle \(i\) and the time step \(t\).

Our baseline is chosen to correlate the coefficient of the gradient term \(\nabla_\phi \log q_\phi(z^{(i)}_t \mid z^{(i)}_{t-1}, x)\) in \((6)\) well. We can see this by subtracting the baseline from the coefficient and simplifying the result slightly, as shown below:

\[
\log \frac{1}{N} \sum_{j=1}^N u^{(j)} - \log \frac{1}{N} \left(w^{(i)}_{t-1} \Gamma^{(i)}_{t-1} + \sum_{j \neq i} w^{(j)} \right) = \log \frac{1}{N} \left(\frac{w^{(i)}_{t-1} \Gamma^{(i)}_{t-1} + \sum_{j \neq i} w^{(j)}}{w^{(i)}_{t-1} \Gamma^{(i)}_{t-1} + \sum_{j \neq i} w^{(j)}} \right) \quad (9)
\]

The only difference between the numerator and the denominator here is whether we use \(w^{(i)}\) and \(w^{(i)}_{t-1} \Gamma^{(i)}_{t-1}\). Note that these two terms are closely related: the latter is the expectation of the former over the distribution \(q_\phi(z^{(i)}_t \mid z^{(i)}_{t-1}, x)\). By sharing large parts of their definitions, these two options are highly correlated, sometimes being close to each other, which means that the outcome of the subtraction in \((9)\) has smaller variance than the original coefficient \(\log(N)\).

Before moving on to the second step of our derivation of \(g_{\text{VIFLE}}\), we summarize the outcome of the first, which we denote by \(g_{\text{VIFLE}}^u\):

\[
g_{\text{VIFLE}}^u = \sum_{t=1}^T \sum_{i=1}^N \log \frac{w^{(i)} + \sum_{j \neq i} w^{(j)}}{\sum_{j \neq i} w^{(j)} + \sum_{j \neq i} w^{(j)}} \times \nabla_\phi q_\phi(z^{(i)}_t \mid z^{(i)}_{t-1}, x) \quad (10)
\]

We point out that \(g_{\text{VIFLE}}^u\) and \(g_{\text{high}}\) have the same expectation by Lemma 1, and that this relationship continues to hold even when we replace the future likelihood function \(\Gamma\) by its approximation \(\hat{\Gamma}_\psi\) (The superscript \(u\) emphasizes that it is an unbiased estimator).

Second, we approximate \(w^{(i)}\) in the numerator of \((10)\) by \(w^{(i)}_{t-1} \Gamma^{(i)}_{t-1}\), which gives the final formula \(g_{\text{VIFLE}}\) of our estimator:

\[
g_{\text{VIFLE}} = \sum_{t=1}^T \sum_{i=1}^N \log \frac{w^{(i)}_{t-1} \Gamma^{(i)}_{t-1} + \sum_{j \neq i} w^{(j)}}{\sum_{j \neq i} w^{(j)} + \sum_{j \neq i} w^{(j)}} \times \nabla_\phi q_\phi(z^{(i)}_t \mid z^{(i)}_{t-1}, x) \quad (11)
\]

Note that both the numerator and the denominator in \((11)\) are the expectations of the same formula \(\sum_{j=1}^N w^{(j)}\) but...
taken over different distributions. The former is over that of the random variables $z_{t+1:T}^{(i)}$ and the latter over that of $z_{t:T}^{(i)}$. As a result, they tend to be highly correlated, making g_{VIFLE} have low variance. Another reason for the reduction of variance is that g_{VIFLE} involves far fewer random variables than g_{VFLE}. Replacing $w^{(i)}$ by $w_{t:T}^{(i)}t$ stops the coefficient for the i-th particle and the step t from depending on the sequence of samples $z_{t+1:T}^{(i)}$. In so doing, it at least partially addresses the issue of the accumulation of model or algorithm noise over time steps, which often makes learning and inference particularly difficult for the state-space models.

The second step makes our gradient estimator depart from the score-function estimator. The new g_{VIFLE} and the old g_{high} no longer have the same expectation. This means that as an estimator for the gradient of the IWAE objective, our estimator is biased. However, in Section 4, we will identify a new variational lower bound and show that our estimator is unbiased with respect to this bound.

3.3. Gradient estimator in a general form

The main recipe for deriving g_{VIFLE} in our estimator is to replace the $w^{(i)}$ term in the definition of g_{high} by its expectation over $z_{t+1:T}^{(i)}$ or $z_{t:T}^{(i)}$. Our derivation restricts the application of this recipe to the current particle i (i.e. particle for which we compute $\nabla \phi \log q_{\phi}(z_t^{(i)} | z_{1:t-1}^{(i)}, x)$ in g_{high}), but this restriction can be lifted and we can derive a new gradient estimator in doing so. For instance, we may apply the recipe to every particle, and get the following alternative to g_{VIFLE} called FR, which stands for Full Replacement:

$$g_{\text{FR}} = \sum_{t=1}^{T} \sum_{i=1}^{N} \log \frac{\sum_{j=1}^{N} w_{t:T}^{(i)} \Gamma_{t}^{(j)}}{\prod_{j=1}^{N} w_{t:T}^{(j)} \Gamma_{t}^{(j)}} \times \nabla \phi \log q_{\phi}(z_t^{(i)} | z_{1:t-1}^{(i)}, x) \quad (12)$$

More generally, for every particle i, we can pick a set S_i of particles with $i \in S_i$. Let $S = \{S_i \mid 1 \leq i \leq N\}$. Then, we can apply our recipe to all the particles in S_i when we consider the coefficient of the gradient term for the particle i in g_{high}, i.e., $\nabla \phi \log q_{\phi}(z_t^{(i)} | z_{1:t-1}^{(i)}, x)$ in (6). This gives the following new variant of g_{high}:

$$g_S = \sum_{t=1}^{T} \sum_{i=1}^{N} \log \frac{\sum_{j \in S_i} w_{t:T}^{(j)} \Gamma_{t}^{(j)} + \sum_{j \notin S_i} w_{t:T}^{(j)} \Gamma_{t}^{(j)}}{\prod_{j \in S_i} w_{t:T}^{(j)} \Gamma_{t}^{(j)} + \prod_{j \notin S_i} w_{t:T}^{(j)} \Gamma_{t}^{(j)}} \times \nabla \phi \log q_{\phi}(z_t^{(i)} | z_{1:t-1}^{(i)}, x) \quad (13)$$

As in the case of g_{VIFLE}, the gradient estimator with g_{FR} and g_S no longer compute unbiased estimates of the IWAE objective, because they approximate the $w^{(j)}$ term in the numerator by $w_{t:T}^{(j)}t$. In Section 4, we formally show that for all S, the estimator g_S implicitly optimizes an alternative variational lower bound. We also establish the relationship between the IWAE objective and the lower bound for g_S, and also between g_S and g_{VFLE} for different S and S'. We leave as future work for the design of an algorithm that optimizes S.

3.4. Relationship with the VIMCO estimator

We can relate our gradient estimator with g_{VIFLE} with VIMCO (Mnih & Rezende, 2016). Essentially, VIMCO is a score-function estimator with the following baseline for each particle distribution $q_{\phi}(z_t^{(i)} | z_{1:t-1}^{(i)}, x)$ in g_{high}:

$$\log \bar{w}(i) + \sum_{j \neq i} w^{(j)} \text{ where } \bar{w}(i) = \prod_{j \neq i} w^{(j)}$$

Here, the term $\bar{w}(i)$ is the geometric mean of the $w^{(j)}$ with $j \in \{0, 1, \ldots, N\} \setminus \{i\}$. The idea is to approximate the $w^{(i)}$ for the particle i by the geometric mean over other particles. Thus, VIMCO is the score-function estimator (3) with g_{high} replaced by:

$$g_{\text{VIMCO}} = \sum_{t=1}^{T} \sum_{i=1}^{N} \log \frac{N \sum_{j=1}^{N} w^{(j)} \nabla \phi \log q_{\phi}(z_t^{(i)} | z_{1:t-1}^{(i)}, x)}{\prod_{j \neq i} w^{(j)}} \quad \times \nabla \phi \log q_{\phi}(z_t^{(i)} | z_{1:t-1}^{(i)}, x) \quad (14)$$

Both VIMCO and our estimator share the idea of using information from other particles to form a baseline, but with following substantial differences: VIMCO does not approximate any terms in the numerator, and it remains unbiased with respect to the IWAE objective. On the other hand, our estimator does approximate a term there, and in so doing, it changes the target variational lower bound. In addition, our estimator utilizes the future likelihood function approximator to further reduce its variance.

4. Theoretical Analysis

We analyze theoretical properties of our gradient estimator with $g_{\text{VIFLE}}, g_{\text{FR}},$ and more generally g_S for a family of index sets S. As we have stated earlier, none of these estimators computes an unbiased estimate of the IWAE objective, although they all originate from an unbiased estimator for the objective. Our first result says that in fact, these estimators target at different variational lower bounds, and for these new bounds, the estimators are unbiased.

Theorem 1. Fix θ and x. Then, for every parameter $\phi = \phi_0$,

there are variational objectives L_{VIFLE} and L_{FR} such that

$$L_{\text{IWAE}}(\theta, \phi_0; x) \geq L_{\text{VIFLE}}(\theta, \phi_0; x) \geq L_{\text{FR}}(\theta, \phi_0; x),$$

$$\nabla_{\phi} L_{\text{VIFLE}}(\theta, \phi; x)|_{\phi=\phi_0} = \mathbb{E}[g_{\text{low}} + g_{\text{VIFLE}}],$$

$$\nabla_{\phi} L_{\text{FR}}(\theta, \phi; x)|_{\phi=\phi_0} = \mathbb{E}[g_{\text{low}} + g_{\text{FR}}].$$

The expectations in the second and third equations are taken with respect to the distribution $q_{\phi_0}(z^{(1:N)}|x)$, and the gradients inside $g_{\text{low}}, g_{\text{VIFLE}}$ and g_{FR} are computed at the point $\phi = \phi_0$. More generally, for all families of index sets, \mathcal{S} and \mathcal{T}, if $S_i \subseteq T_i$ for every i, then there are variational objectives $L_{\mathcal{S}}$ and $L_{\mathcal{T}}$ such that

$$L_{\text{IWAE}}(\theta, \phi_0; x) \geq L_{\mathcal{S}}(\theta, \phi_0; x) \geq L_{\mathcal{T}}(\theta, \phi_0; x).$$

The next theorem shows that the target lower bound L_{VIFLE} of our estimator enjoys the same convergence property of the IWAE objective.

Theorem 2. The bound L_{VIFLE} converges to $\log p_0(x)$ almost surely, as the number of particles N goes to infinity.

All of these results support the use of our gradient estimator in variational inference. The detailed proofs for the results can be found in the supplementary material due to the page limit.

5. Related Works

In the context of variational inference, there have been a number of prior works to estimate quantities involving future time steps in the state-space models and exploit these estimates for approximating gradients of variational objectives accurately (Weber et al., 2015; Levine, 2018; Grathwohl et al., 2018), sometimes using the connection between variational inference and reinforcement learning. However, these works are based on the standard ELBO objective, not the IWAE objective, and they compute the future ELBO, not the future likelihood, unlike our gradient estimator. If we naively adjusted those works to the IWAE objective, we would have to estimate the future IWAE objective, which is apparently a more difficult task than estimating the future likelihood because of the use of multiple particles in the IWAE.

The existing approaches for handling discrete latent variables in variational inference can be roughly classified into three categories. The first category of approaches use the score-function estimator with a carefully-designed variance reduction technique. Mnih & Gregor (2014) developed such techniques for the ELBO objective, and Mnih & Rezende (2016) developed VIMCO for the IWAE objective. The second class of approaches relax discrete variables to continuous ones, and approximate the gradient using the reparameterization estimator. A well-known relaxation for the categorical distribution is a technique called Gumbel-Softmax (Jang et al., 2017) and also Concrete distribution (Maddison et al., 2017b). The approaches in the last categories, such as REBAR (Tucker et al., 2017) and RELAX (Grathwohl et al., 2018), combine the techniques of the other two groups and use both the score-function estimator and the reparameterization estimator with relaxation, so as to remove the bias issue in the approaches in the second group. Our gradient estimator falls into the first group, and shows for the first time how to use future likelihood estimates to obtain a low-variance gradient estimator for an IWAE-like multi-particle variational objective.

The multi-particle variational objectives, such as IWAE, are usually tighter lower bounds for the marginal likelihood than the standard ELBO objective. It has been observed this tightening helps learning the generative model, but it has a side-effect of hindering learning the variational distribution (Rainforth et al., 2018). The current solution for this issue (Tucker et al., 2019) is based on the repeated application of the reparameterization idea, and is applicable only to models with differentiable densities. Since our gradient estimator is designed for a multi-particle objective and is not limited to models with differentiable densities, an interesting future direction is to investigate whether and how it can be used for that line of research.

Some previous studies (Maddison et al., 2017a; Naesseth et al., 2018; Le et al., 2018; Lawson et al., 2018) proposed tighter variational bounds for the state-space models, by exploiting sequential Monte Carlo (SMC) and its ability for estimating the marginal likelihood without any bias. However, the gradient estimator for the bound suffers from the high-variance issue, and these studies simply drop the high-variance term from the estimator. Our idea of using future likelihood estimates and applying approximation only to some particles may lead to a new approach for addressing this issue in these studies. We also want to point out several studies about reducing the variance of the gradient estimator for the state-space models (Weber et al., 2015; Ahmed et al., 2019). As explained earlier, these estimators target at the gradient of the ELBO, not the IWAE, and they do not use the notion of future likelihood estimates.

6. Experiments

6.1. Synthetic datasets from two dynamical systems

Our first set of experiments uses synthetic datasets from two dynamical systems, and has the goal of computing posterior distributions.

The first dynamical system models a simple continuous linear dynamics with Gaussian noises, and it is defined as
We performed posterior inference on both dynamical systems, each on finite different datasets with different maximum time steps, 10, 20, 50, 100, and 200. In all of these cases, we tried five variational inference algorithms that optimize multi-particle variational objectives, such as IWAE. The tried algorithms are (a) REINFORCE that estimates the gradient by the score-function estimator \(g_{\text{low}} + g_{\text{high}}\); (b) VIMCO based on \(g_{\text{low}} + g_{\text{VIMCO}}\); (c) VIFLE_U that uses the gradient estimator \(g_{\text{low}} + g_{\text{VIFLE}}\); (d) VIFLE based on \(g_{\text{low}} + g_{\text{VIFLE}}\); (f) FR with the gradient estimator \(g_{\text{low}} + g_{\text{FR}}\). In our experiments, we trained the parameters \(\phi\) of approximate posterior distributions \(q_\phi\) using these algorithms, and measured the qualities of the trained \(q_\phi\)'s by computing the ELBO which is equivalent to negative KL divergence between true posterior \(p(z|x)\) and \(q_\phi(z|x)\) plus log evidence, which is a constant in this case.

The results of our experiments are given in Figure 1. They show a general trend that as the length of data increases, the performance of VIFLE and FR improves, while other three algorithms deteriorates. The only exception to this trend is the 200-step case for FR in the continuous dynamical system. One possible explanation for the behaviour of FR is that it relies too much on the future likelihood approximator, and its error is manifested in particularly long sequences. Otherwise, the use of approximate future likelihood functions generally helped reduce the variance of the gradient estimator. Furthermore, we can see that VIFLE and FR generally performs better as we increase the length of data, which is actually due to the increase in the amount of training data for training the future likelihood functions. We can also notice the unstable performance of VIMCO in the discrete dynamical system, which was highly dependent on how the initial samples were generated.

VIFLE uses the approximate future likelihood function in two places, one for a baseline and the other for replacing a part of the coefficient of a particle-specific gradient term. Our experimental results show the impact of each of these two uses. Comparing the results for REINFORCE, VIMCO, and VIFLE_U reveals that using future likelihood estimates as baselines help, but it is not as effective as using the baselines of VIMCO. We hypothesize that this is due to...
We considered two types of models, one with a continuous state space and the other one with a discrete latent state space. The model parameters θ are learned by the standard stochastic gradient ascent with respect to the IWAE objective. On the other hand, the parameters ϕ of approximate distributions are found by different variational inference algorithms. The model distributions are factorized as in (4), and the approximate posteriors assume the form $q_\phi(z_t | z_{1:t-1}, x) = q_\phi(z_t | z_{1:t-1}, x_{1:t})$. We used four and eight particles for each algorithm. As for the learning rate, we report the best results among the choices in $\{3 \times 10^{-4}, 1 \times 10^{-4}, 3 \times 10^{-5}, 1 \times 10^{-5}\}$. For more details on the experimental setting, we refer the readers to Appendix H.

Table 1 shows the results on the model with continuous state variables, and Table 2 the results on the model with discrete state variables. VIFLE shows the state-of-the-art performance except for the continuous model on the Nottingham dataset. This result suggests that our algorithm can be used to solve real-world problems.

7. Conclusion

We have presented a new variational inference algorithm for sequential data, which is demonstrated to be highly effective even when the models have non-differentiable densities, for instance, due to the use of discrete latent variables. Our algorithm optimizes a multi-particle variational lower bound of the marginal likelihood, and uses a gradient estimator for this bound that achieves a low variance by using an approximator of the future likelihoods at all time steps. Our gradient estimator originates from the score-function estimator for the IWAE objective, but it computes an approximation of a new multi-particle lower bound, as shown in our theoretical analysis of the estimator. Our experiments with synthetic and real datasets show that our algorithm is highly effective for models with discrete latent variables and also for real-world data.

As for the future work, we hope to provide a more principled approach to the trade off between variance and tightness, based on our generalized form presented in Section 3.3. Although we mostly focused on g_{VIFLE} and g_{FR}, finding a good index set S may further improve the performance of the posterior inference. Another promising approach is to

<table>
<thead>
<tr>
<th>N</th>
<th>Training algorithm</th>
<th>JSB</th>
<th>Nottingham</th>
<th>MuseData</th>
<th>Piano-midi.de</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>REPARAM (Kingma & Welling, 2014)</td>
<td>-7.47</td>
<td>-3.59</td>
<td>-6.47</td>
<td>-8.47</td>
</tr>
<tr>
<td></td>
<td>VIFLE</td>
<td>-7.22</td>
<td>-2.92</td>
<td>-6.34</td>
<td>-8.42</td>
</tr>
<tr>
<td></td>
<td>VIFLE</td>
<td>-7.11</td>
<td>-3.03</td>
<td>-5.94</td>
<td>-8.06</td>
</tr>
<tr>
<td>8</td>
<td>REPARAM (Kingma & Welling, 2014)</td>
<td>-7.49</td>
<td>-3.84</td>
<td>-6.48</td>
<td>-8.49</td>
</tr>
<tr>
<td></td>
<td>VIFLE</td>
<td>-7.25</td>
<td>-2.84</td>
<td>-5.95</td>
<td>-8.30</td>
</tr>
<tr>
<td></td>
<td>VIFLE</td>
<td>-7.23</td>
<td>-3.01</td>
<td>-5.92</td>
<td>-8.02</td>
</tr>
</tbody>
</table>

Table 1. Test-set marginal log-likelihood bounds for the trained models with continuous latent variables by three algorithms. For each algorithm, we pick a model by its validation performance, and report the $\mathcal{L}_{\text{IWAE}}^{(128)}$ for the model.

<table>
<thead>
<tr>
<th>N</th>
<th>Training algorithm</th>
<th>JSB</th>
<th>Nottingham</th>
<th>MuseData</th>
<th>Piano-midi.de</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>CONCRETE (Maddison et al., 2017b)</td>
<td>-8.58</td>
<td>-3.55</td>
<td>-6.47</td>
<td>-8.26</td>
</tr>
<tr>
<td></td>
<td>VIFLE</td>
<td>-8.54</td>
<td>-3.66</td>
<td>-7.18</td>
<td>-8.44</td>
</tr>
<tr>
<td></td>
<td>VIFLE</td>
<td>-8.40</td>
<td>-3.16</td>
<td>-6.10</td>
<td>-8.17</td>
</tr>
<tr>
<td>8</td>
<td>CONCRETE (Maddison et al., 2017b)</td>
<td>-8.71</td>
<td>-3.83</td>
<td>-6.41</td>
<td>-8.58</td>
</tr>
<tr>
<td></td>
<td>VIFLE</td>
<td>-8.56</td>
<td>-3.92</td>
<td>-6.42</td>
<td>-8.36</td>
</tr>
<tr>
<td></td>
<td>VIFLE</td>
<td>-8.53</td>
<td>-3.15</td>
<td>-6.13</td>
<td>-8.29</td>
</tr>
</tbody>
</table>

Table 2. Test-set marginal log-likelihood bounds for the trained models with discrete latent variables by three algorithms. For each algorithm, we pick a model by its validation performance, and report the $\mathcal{L}_{\text{IWAE}}^{(128)}$ for the model.
generalize VIFLE. We only focused on the IWAE objective, but VIFLE can be extended to other objectives with multiple particles such as Filtering Variational Objective (FIVO) \cite{maddison2017filtering}. The gradient estimator of FIVO is known to have a high variance term from resampling, and VIFLE may provide an approach to address this issue.

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea (NRF-2019R1A2C1087634 and NRF-2019M3F2A1072238), the Ministry of Science and Information communication Technology (MSIT) of Korea (IITP No. 2020-0-00940, IITP 2019-0-00075 and IITP No. 2017-0-01779 XAI), and POSCO. Yang was supported by the Engineering Research Center Program through the National Research Foundation of Korea (NRF) funded by the Korean Government MSIT (NRF-2018R1A5A1059921), and also by Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (2017M3C4A7068177).

References

