
Active World Model Learning with Progress Curiosity

Kuno Kim 1 Megumi Sano 1 Julian De Freitas 2 Nick Haber * 3 Daniel Yamins * 1 4

Abstract
World models are self-supervised predictive mod-
els of how the world evolves. Humans learn world
models by curiously exploring their environment,
in the process acquiring compact abstractions of
high bandwidth sensory inputs, the ability to plan
across long temporal horizons, and an understand-
ing of the behavioral patterns of other agents. In
this work, we study how to design such a curiosity-
driven Active World Model Learning (AWML)
system. To do so, we construct a curious agent
building world models while visually exploring a
3D physical environment rich with distillations of
representative real-world agents. We propose an
AWML system driven by �-Progress: a scalable
and effective learning progress-based curiosity
signal. We show that �-Progress naturally gives
rise to an exploration policy that directs attention
to complex but learnable dynamics in a balanced
manner, as a result overcoming the “white noise
problem”. As a result, our �-Progress-driven con-
troller achieves significantly higher AWML per-
formance than baseline controllers equipped with
state-of-the-art exploration strategies such as Ran-
dom Network Distillation and Model Disagree-
ment.

1. Introduction
Imagine yourself as an infant in your parent’s arms, sitting
on a playground bench. You are surrounded by a variety of
potentially interesting stimuli, from the constantly whirring
merry-go-round, to the wildly rustling leaves, to your par-
ent’s smiling and cooing face. After briefly staring at the
motionless ball, you grow bored. You consider the merry-
go-round a bit more seriously, but its periodic motion is
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ultimately too predictable to keep your attention long. The
leaves are quite entertaining, but after watching their ran-
dom motions for a while, your gaze lands on your parent.
Here you find something really interesting: you can antici-
pate, elicit, and guide your parents’ changes in expression
as you engage them in a game of peekaboo. Though just an
infant, you have efficiently explored and interacted with the
environment, in the process gaining strong intuitions about
how different things in your world will behave.

Here, you have learned a powerful world model — a self-
supervised predictive model of how the world evolves, both
due to its intrinsic dynamics and your actions. Through
learning world models, humans acquire compact abstrac-
tions of high bandwidth sensory inputs, the ability to plan
across long temporal horizons, and the capacity to anticipate
the behavioral patterns of other agents. Devising algorithms
that can efficiently construct such world models is an impor-
tant goal for the next generation of socially-integrated AI
and robotic systems.

A key challenge in world model learning is that real-world
environments contain a diverse range of dynamics with vary-
ing levels of learnability. The inanimate ball and periodic
merry-go-round display dynamics that are easy to learn. On
the other end of the spectrum, stimuli such as falling leaves
exhibit random noise-like dynamics. Lying in a “sweet spot”
on this spectrum are animate agents that have interesting and
complex yet learnable dynamics, e.g. your parent’s expres-
sions and play offerings. Balancing attention amidst a sea
of stimuli with diverse dynamics in a way that maximizes
learning progress is a challenging problem. Particularly
difficult is the white noise problem (Schmidhuber, 2010;
Pathak et al., 2017; Burda et al., 2018b; Pathak et al., 2019),
perseverating on unlearnable stimuli rather than pursuing
learnable dynamics. Thus, it is a natural hypothesis that
behind the infant’s ability to learn powerful world models
must be an equally powerful active learning algorithm that
directs its attention to maximize learning progress.

In this work, we formalize and study Active World Model
Learning (AWML) – the problem of determining a directed
exploration policy that enables efficient construction of bet-
ter world models. To do so, we construct a progress-driven
curious neural agent performing AWML in a custom-built
3D virtual world environment. Specifically, our contribu-
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tions are as follows:

1. We construct a 3D virtual environment rich with agents
displaying a wide spectrum of realistic stimuli behavior
types with varying levels of learnability, such as static,
periodic, noise, peekaboo, chasing, and mimicry.

2. We formalize AWML within a general reinforcement
learning framework that encompasses curiosity-driven
exploration and traditional active learning.

3. We propose an AWML system driven by �-Progress:
a novel and scalable learning progress-based curiosity
signal. We show that �-Progress gives rise to an explo-
ration policy that overcomes the white noise problem
and achieves significantly higher AWML performance
than state-of-the-art exploration strategies — includ-
ing Random Network Distillation (RND) (Burda et al.,
2018b) and Model Disagreement (Pathak et al., 2019).

2. Related Works
World Models A natural class of world models involve
forward dynamics prediction. Such models can directly
predict future video frames (Finn et al., 2016; Wang et al.,
2018; Wu et al., 2019), or latent feature representations
such as 3D point clouds (Byravan & Fox, 2017) or object-
centric, graphical representations of scenes (Battaglia et al.,
2016; Chang et al., 2016; Mrowca et al., 2018). Action-
conditioned forward-prediction models can be used di-
rectly in planning for robotic control tasks (Finn & Levine,
2017), as performance-enhancers for reinforcement learning
tasks (Ke et al., 2019), or as “dream” environment simula-
tions for training policies (Ha & Schmidhuber, 2018). In
our work, we focus on forward dynamics prediction with
object-oriented representations.

Active Learning and Curiosity A key question the agent
is faced with is how to choose its actions to efficiently learn
the world model. In the classical active learning setting (Set-
tles, 2011), an agent seeks to learn a supervised task with
costly labels, judiciously choosing which examples to ob-
tain labels for so as to maximize learning efficiency. More
recently, active learning has been implicitly generalized to
self-supervised reinforcement learning agents (Schmidhu-
ber, 2010; Oudeyer et al., 2013; Jaderberg et al., 2016). In
this line of work, agents typically self-supervise a world
model with samples obtained by curiosity-driven explo-
ration. Different approaches to this general idea exist, many
of which are essentially different approaches to estimat-
ing future learning progress — e.g. determining which
actions are likely to lead to the highest world model predic-
tion gain in the future. One approach is the use of novelty
metrics, which measure how much a particular part of the

environment has been explored, and direct agents into under-
explored parts of state-space. Examples include count-based
and psuedo-count-based methods (Strehl & Littman, 2008;
Bellemare et al., 2016; Ostrovski et al., 2017), Random
Network Distillation (RND) (Burda et al., 2018b), and em-
powerment (Mohamed & Rezende, 2015). Novelty-based
approaches avoid the difficult world model progress estima-
tion problem entirely by not depending at all on a specific
world model state, and relying on novelty as a (potentially
inconsistent) proxy for expected learning progress.

The simplest idea that takes into account the world model is
adversarial curiosity, which estimates current world model
error and directs agents to take actions estimated to max-
imize this error (Stadie et al., 2015; Pathak et al., 2017;
Haber et al., 2018). However, adversarial curiosity is espe-
cially prone to the white noise problem, in which agents are
motivated to waste time fruitlessly trying to solve unsolv-
able world model problems, e.g. predicting the dynamics
of random noise. The white noise problem can to some
degree be avoided by solving the world-modeling problem
in a learned latent feature space in which degeneracies are
suppressed (Pathak et al., 2017; Burda et al., 2018a).

Directly estimating learning progress (Oudeyer et al., 2007;
2013) or information gain (Houthooft et al., 2016) avoids
the white noise problem in a more comprehensive fashion.
However, such methods have been limited in scope because
they involve calculating quantities that cannot easily be
estimated in high-dimensional continuous action spaces.
Surprisal (Achiam & Sastry, 2017) and model disagree-
ment (Pathak et al., 2019) present computationally-tractable
alternatives to information gain, at the cost of the accuracy
of the estimation. For comprehensive reviews of intrinsic
motivation signal choices, see (Aubret et al., 2019; Linke
et al., 2019). In this work, we present a novel method for
estimating learning progress that is “consistent” with the
original prediction gain objective while also scaling to high-
dimensional continuous action-spaces.

Cognitive Science Research in cognitive science suggests
that humans are active world model learners from a young
age. Infants appear to actively gather information from their
environment by attending to objects in a highly non-random
manner (Smith et al., 2019), devoting more attention to
objects that violate their expectations (Stahl & Feigenson,
2015). They are also able to self-generate learning curricula,
with preference to stimuli that are complex enough to be
interesting but still predictable (Kidd et al., 2012). Interest-
ingly, infants seem to particularly attend to spatiotemporal
kinematics indicative of animacy, such as efficient move-
ment towards targets (Gergely et al., 1995) and contingent
behavior between agents (Frankenhuis et al., 2013). Our
work shows that a similar form of animate attention naturally
arises as a result of optimizing for learning progress.
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Figure 1. Virtual environment. Our 3D virtual environment is a distillation of key aspects of real-world environments. The curious
agent (white robot) is centered in a room, surrounded by various external agents (colored spheres) contained in different quadrants, each
with dynamics that correspond to a realistic inanimate or animate behavior (right box). The curious agent can rotate to attend to different
behaviors as shown by the first-person view images at the top. See https://bit.ly/31vg7v1 for videos.

3. Virtual World Environment
To faithfully replicate real-world algorithmic challenges, we
design our 3D virtual environment to preserve the following
key properties of real-world environments:

1. Diverse dynamics. Agents operate under a diverse set
of dynamics specified by agent-specific programs. An
agent’s actions may depend on those of another agent
resulting in complex intedependent relationships.

2. Partial observability. At no given time do we have
full access to the current state of every agent in the
environment. Rather, our learning is limited by what
lies within our field of view.

3. Contingency. How much we learn is contingent on how
we, as embodied agents, choose to interact with the
environment.

Concretely, Our virtual environment consists of two main
components, a curious agent and various external agents.

The curious agent, embodied by an avatar, is fixed at the
center of a room (Figure 1). Just as a human toddler can
control her gaze to visually explore her surroundings, the
agent is able to partially observe the environment based on
what lies in its field of view (see top of Figure 1). The agent
can choose from 9 actions: rotate 12�, 24�, 48�, or 96�, to
the left/right, or stay in its current orientation.

The external agents are spherical avatars that each act un-
der a hard-coded policy inspired by real-world inanimate
and animate stimuli. An external agent behavior consists
of either one external agent, e.g reaching, or two interact-
ing ones, e.g chasing. Since external agents are devoid
of surface features, the curious agent must learn to attend
to different behaviors based on spatiotemporal kinemat-
ics alone. We experiment with external agent behaviors
(see Figure 1, right) including static, periodic, noise, reach-
ing, chasing, peekaboo, and mimicry. The animate be-

haviors have deterministic and stochastic variants, where
the stochastic variant preserves the core dynamics under-
lying the behavior, albeit with more randomness. See
https://bit.ly/31vg7v1 for video descriptions of
the environment and external agent behaviors.

We divide the room into four quadrants, each of which
contains various auxiliary objects (e.g teddy bear, roller
skates, surfboard) and one external agent behavior. The
room is designed such that the curious agent can see at most
one external agent behavior at any given time. This design
is key in ensuring partial observability, such that the agent
is faced with the problem of allocating attention between
different external agent behaviors in an efficient manner.

4. Active World Model Learning
In this section, we formalize Active World Model Learning
(AWML) as a Reinforcement Learning (RL) problem that
generalizes conventional Active Learning (AL). We then
derive �-Progress, a scalable progress-based curiosity sig-
nal with algorithmic and computational advantages over
previous progress-based curiosity signals.

Consider an agent in an environment E = (S,A, P, P0)
where S,A are state, action spaces, P : S ⇥ A ! ⌦(S)
is the transition dynamics, ⌦(S) is the set of probability
measures on S, and P0 is the initial state distribution. The
agent’s goal is to optimize a sequence of data collection
decisions in order to learn a model !✓ of a target function ! :
X ! ⌦(Y) with as few data samples as possible. We model
this agent’s decision making process as an infinite horizon
Markov Decision Process (MDP) M = (S̄,A, P̄ , P̄0, c).
Intuitively, M is a meta-MDP that jointly characterizes
the evolution of the environment, collected data history,
and the model as the agent makes data collection decisions
to optimize the learning objective encoded by the MDP
reward. Specifically, s̄ 2 S̄ = S ⇥ H ⇥ ⇥ is a meta-
state that decomposes into s̄ = (s, H, ✓) where s 2 S is

https://bit.ly/31vg7v1
https://bit.ly/31vg7v1
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an environment state, H = {s0,a0, s1,a1...} 2 H is the
history of visited environment state-actions, and ✓ 2 ⇥ is
the current model parameters. Intuitively H is a raw form
of the data collected so far which can be post-processed
to yield a training set for !✓. a 2 A is a data collection
decision, e.g where to move next in the environment, and
the meta-dynamics P̄ : S̄ ⇥A! ⌦(S̄) is defined as:

(s0,H 0
, ✓

0) ⇠ P̄ (·|s̄ = (s, H, ✓),a) where
s0 ⇠ P (s,a), H 0 = H [ {a, s0}, ✓0 ⇠ P`(H

0
, ✓)

where P` : H ⇥ ⇥ ! ⌦(⇥) is transition function for
the model parameters, e.g a (stochastic) learning algorithm
which updates the parameters on the history of data. In
words, P̄ steps the environment state s according to the
environment dynamics P , appends the history with new
data, and updates the model !✓ on the augmented history.
The meta-initial state distribution is P̄0(s̄ = (s, H, ✓)) =
P0(s) (H = {})q(✓) where is the indicator function
and q(✓) is a prior distribution over the model parameters.
c : S⇤ ⇥ A⇤ ! R is the cost function which encodes
the learning objective of the agent. For example, c(s̄ =
(s, H, ✓)) = Lµ(✓) = Eµ[L(✓,x,y)] encodes the goal of
an agent seeking to minimize a loss function L on data
(x,y) ⇠ µ while training on a minimal number of data sam-
ples. A policy ⇡ : S ! ⌦(A) maps states to action distribu-
tions and an optimal policy ⇡

⇤ = argmax⇡ J(⇡) achieves
the highest performance J(⇡) = �E⇡[

P1
t=0

�
t
c(s̄)] where

0  �  1 is a discount factor. Overall, the MDP M
is constructed from an environment E = (S,A, P, P0), a
target function !, a learning algorithm P`, and a prior pa-
rameter distribution q(✓). Appendix B shows how several
variants of conventional active learning can be recovered by
appropriately defining the MDP M in relation to !,X ,Y .

We now formalize the Active World Model Learning
(AWML) problem using this general active learning frame-
work. Formally, AWML aims to find an optimal policy for
the meta MDP M with the additional constraint that X ,Y
are arbitrary length sequences of environment states and
actions. In words, the target function ! is constrained to be
a self supervised predictor on trajectories sampled from the
environment. We henceforth aptly refer to !✓ as the world
model. Consider a simple AWML problem of learning the
forward dynamics, i.e X = S ⇥A,Y = S, P = !, and

c(s̄,a, s̄0) = Lµ(✓)� Lµ(✓
0) (1)

where s̄ = (s, H, ✓), s̄0 = (s0, H 0
, ✓

0), with a discount factor
� < 1 to encourage minimal interactions with the environ-
ment. Recall that ✓0 = P`(H [ {a, s0}, ✓) is the updated
model parameters after collecting new data {a, s0}. Thus
�c(s̄,a, s̄0) measures the reduction in world model loss as a
result of obtaining new data {a, s0}, i.e the prediction gain.
Unfortunately, evaluating prediction gain at every environ-
ment step involves repeatedly computing Lµ(✓) � Lµ(✓0)

which is typically intractable as many samples are needed
estimate the expectation. This bottleneck necessitates an
efficiently computable proxy reward to estimate Eq. 1.
Thus, solving the AWML problem entails solving two sub-
problems: Proxy reward design and Reinforcement Learn-
ing (RL). See Appendix C to see how a variety of curiosity
signals proposed in prior work can be interpretted as (Stadie
et al., 2015; Burda et al., 2018b; Pathak et al., 2019; Achiam
& Sastry, 2017) solution attempts to the former problem. We
now motivate �-Progress by first outlining the limitations
of a previously proposed progress-based curiosity signal,
�-Progress.

�-Progress (Achiam & Sastry, 2017; Graves et al., 2017)
curiosity measures how much better the current new model
✓new is compared to an old model ✓old.

Lµ(✓)� Lµ(✓
0) ' log

!✓new(s
0|s,a)

!✓old(s
0|s,a) (2)

The choice of ✓new, ✓old is crucial to the efficacy of the
progress reward. A popular approach (Achiam et al., 2017;
Graves et al., 2017) is to choose

✓new = ✓k, ✓old = ✓k��, � > 0 (3)

where ✓k is the model parameter after k update steps using
P`. Intuitively, if the progress horizon � is too large, we
obtain an overly optimistic approximation of future progress.
However if � is too small, the agent may prematurely give
up on learning hard transitions, e.g where the next state
distribution is very sharp. In practice, tuning the value �

presents a major challenge. Furthermore, the widely pointed
out (Pathak et al., 2019) limitation of �-Progress is that
the memory usage grows O(�), i.e one must store � world
model parameters ✓k��, ..., ✓. As a result it is intractable in
practice to use � > 3 with deep neural net models.

�-Progress (Ours) We propose the following choice of
✓new, ✓old to overcome both hurdles:

✓new = ✓, ✓old = (1� �)
k�1X

i=1

�
k�1�i

✓0 (4)

In words, the old model is a weighted mixture of past models
where the weights are exponentially decayed into the past.
�-Progress can be interpreted as a noise averaged progress
signal. Conveniently, �-Progress can be implemented with
a simple ✓old update rule:

✓old  �✓old + (1� �)✓new (5)

Similar to Eq. 3, we may control the level of optimism
towards expected future loss reduction by controlling the
progress horizon �, i.e a higher � corresponds to a more
optimistic approximation. �-Progress has key practical ad-
vantages over �-Progress: � is far easier to tune than �, e.g
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Figure 2. Active World Model Learning with �-Progress The curious agent consists of a world model and a progress-driven controller.
The curious agent’s observations ot are passed through an encoding oracle e that returns an object-oriented representation xt containing
the positions of external agents that are in view, auxiliary object positions, and the curious agent’s orientation. Both the new (black) and
old (gray) models take as input xt�⌧in:t and predict x̂t:t+⌧out . The old model weights, ✓old, are slowly updated to the new model weights
✓new. The controller, ⇡�, is optimized to maximize �-Progress reward: the difference L(✓old)� L(✓new).

we use a single value of � throughout all experiments, and
memory usage is constant with respect to �. Crucially, the
second advantage enables us to tune the progress horizon
so that the model does not prematurely give up on explor-
ing hard transitions. The significance of these practical
advantages will become apparent from our experiments.

5. Methods
In this section we describe practical instantiations of the two
components in our AWML system: a world model which
fits the forward dynamics and a controller which chooses
actions to maximize �-Progress reward. See Appendix E
for full details on architectures and training procedures.

World Model As the focus of this work is not to resolve the
difficulty of representation learning from high-dimensional
visual inputs, we assume that the agent has access to an
oracle encoder e : O ! X that maps an image obser-
vation ot 2 O to a disentangled object-oriented feature
vector xt = (xext

t ,xaux
t ,xego

t ) where xext
t = (c̃t,mt) =

(c̃t,1, . . . c̃t,next ,mt,1, . . . ,mt,next) contains information
about the external agents; namely the observability masks
mt,i (mt,i = 1 if external agent i is in curious agent’s view
at time t, else mt,i = 0) and masked position coordinates
c̃t,i = ct,i if mt,i = 1 and else c̃t,i = ĉt,i. Here, ct,i is
the true global coordinate of external agent i and ĉt,i is
the model’s predicted coordinate of external agent i where
i = 1, . . . , next. Note that the partial observability of the
environment is preserved under the oracle encoder since it
provides coordinates only for external agents in view. xaux

t

contains coordinates of auxiliary objects, and xego
t contains

the ego-centric orientation of the curious agent.

Algorithm 1 AWML with �-Progress
Require: progress horizon �, step sizes ⌘!, ⌘Q
Initialize ✓new,�

for k = 1, 2, ... do
Update policy: ⇡�  ✏-greedy(Q�, ✏� 0.0001)
Sample (x,a, c) ⇠ ⇡� and place in Buffer B
where c = L(✓new,x,a)� L(✓old,x,a)
for j = 1, ...,M do

Sample batch bj ⇠ B
Update new world model:
✓new  ✓new � ⌘! ·r✓newL(✓new, bj)
Update old world model:
✓old  �✓old + (1� �)✓new
Update Q-network with DQN (Mnih et al., 2015):
� DQN(�, bj , ⌘Q)

end
end

Our world model !✓ is an ensemble of component networks
{!✓k}Ncc

k=1
where each !✓k independently predicts the for-

ward dynamics for a subset Ik ✓ {1, ..., dim(xext)} of the
input dimensions of xext corresponding to a minimal be-
haviorally interdependent group. For example, xext

t:t+⌧,Ik
may correspond to the masked coordinates and observabil-
ity masks of the chaser and runner external agents for times
t, t+1, ..., t+ ⌧ . We found that such a "disentangled" archi-
tecture outperforms a simple entangled architecture (see Ap-
pendix D for details). We assume {Ik}ncc

k=1
is given as prior

knowledge but future work may integrate dependency graph
learning into our pipeline. A component network !✓k takes
as input (xext

t�⌧in:t,Ik
, xaux

t�⌧in:t , x
ego
t�⌧in:t , at�⌧in:t+⌧out),
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Figure 3. AWML Performance. The animate external agent is varied across experiments according to the column labels. End performance
is the mean of the last five validation losses. Sample complexity plots show validation losses every 5000 environment steps. Error
bars/regions are standard errors of the best 5 seeds out of 10. (a). Mixture World: �-Progress achieves lower sample complexity than
all baselines on 7/8 behaviors while tying with RND on stochastic chasing. Notably, �-Progress also outperforms all baselines in end
performance on 6/8 behaviors. (b). Noise World: �-Progress is more robust to white noise than baselines and achieves lower sample
complexity and higher end performance on 8/8 behaviors. Baselines frequently perform worse than random due to noise fixation

where a denotes the curious agent’s actions, and out-
puts x̂ext

t:t+⌧out,Ik
. The outputs of the component net-

work are concatenated to get the final output x̂ext
t:t+⌧out

=
(ĉt:t+⌧out , m̂t:t+⌧out). The world model loss is:

L(✓,xt�⌧in:t+⌧out ,at�⌧in:t+⌧out) =

t+⌧outX

t0=t

NextX

i=1

mt0,i · kĉt0,i � c̃t0,ik2 + Lce(m̂t0,i,mt0,i)

where Lce is cross-entropy loss. We parameterize each
component network !✓k with a two-layer Long Short-Term
Memory (LSTM) network followed by two-layer Multi
Layer Perceptron (MLP). The number of hidden units are
adapted to the number of external agents being modeled.

The Progress-driven Controller Our controller ⇡� is a
two-layer fully-connected network with 512 hidden units
that takes as input xt�2:t and outputs estimated Q-values for
9 possible actions which rotate the curious agent at different
velocities. ⇡� is updated with the DQN (Mnih et al., 2013)
learning algorithm using the cost:

c(xt) = L(✓new,xt�⌧in�⌧out:t,at�⌧in�⌧out:t)�
L(✓old,xt�⌧in�⌧out:t,at�⌧in�⌧out:t) (6)

with � = 0.9995 across all experiments.

Table 1. Mean ratio of baseline end performance over Random
baseline end performance (standard error in parentheses)

MIXTURE WORLD NOISE WORLD

�-PROGRESS 7.83 (3.57) 13.79 (5.29)
�-PROGRESS 2.2 (0.51) 2.46 (0.55)
RND 1.25 (0.25) 0.85 (0.10)
DISAGREEMENT 0.62 (0.10) 0.76 (0.06)
ADVERSARIAL 0.62 (0.09) 0.59 (0.10)

6. Results
We evaluate the AWML performance of �-Progress on two
metrics: end performance and sample complexity. End
performance is the inverse of the the final world loss after a
larger number of environment interactions, and intuitively
measures the “consistency” of the proxy reward with respect
to the true reward. Sample complexity measures the rate
of reduction in world model loss Lµ(✓) with respect to the
number of environment interactions. The samples from the
validation distribution µ correspond to core validation cases
we crafted for each behavior. On the reaching behaviors,
for example, we validate the world model loss with objects
spawned at new locations. For details on each behavior-
specific validation case and metric computation, we refer
readers to Appendix F.
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Figure 4. Attention Patterns. a) The bar plot shows the total animate attention, which is the ratio between the number of time steps an
animate external agent was visible to the curious agent, and the number of time steps a noise external agent was visible. The time series
plots in the zoom-in box show the differences between mean attention to the animate external agents and the mean of attention to the other
agents in a 500 step window, with periods of animate preference highlighted in purple. Results are averaged across 5 runs. �-Progress
displays strong animate attention while baselines are either indifferent, e.g �-Progress, or fixating on white noise, e.g Adversarial. b)
Fraction of indifference and white noise failures, out of eight tasks.

Experiments are run in two virtual worlds: Mixture and
Noise. In the Mixture world, the virtual environment is
instantiated external agents spanning four representative
types: static, periodic, noise, and animate. This set up is a
natural distillation of a real-world environment containing
a wide spectrum of behaviors. In the Noise world, the
environment is instantiated with three noise agents and one
animate agent. This world strain tests the noise robustness
of �-Progress. For each world, we run separate experiments
in which the animate external agents are varied amongst the
deterministic and stochastic versions of reaching, chasing,
peekaboo, and mimicry agents (see Section 3). We compare
the AWML performance of the following methods:

�-Progress (Ours) is our proposed variant of progress cu-
riosity which chooses ✓old to be a geometric mixture of all
past models as in Eq. 4.

�-Progress (Achiam & Sastry, 2017; Graves et al., 2017)
is the �-step learning progress reward from Eq. 3 with � = 1.
We found that � = 1, 2, 3 perform similarly and any � > 3
is impractical due to memory constraints.

RND (Burda et al., 2018b) is a novelty-based method that
trains a predictor neural net to match the outputs of a random
state encoder. States for which the predictor networks fails
to match the random encoder are deemed “novel”, and thus
receive high reward.

Disagreement (Pathak et al., 2019) is the disagreement
based method from Eq. 9 with N = 3 ensemble models.
We found that N = 3 performs best out of N 2 {1, 2, 3}
and N > 3 is impractical due to memory constraints.

Adversarial (Stadie et al., 2015; Pathak et al., 2017) is

the prediction error based method from Eq. 8. We use the
`2 prediction loss of the world model as the reward.

Random chooses actions uniformly at random among the 9
possible rotations.

6.1. AWML Performance

Fig. 3a shows end performance (first row) and sample com-
plexity (second row) in the Mixture world, and Fig. 3b
shows the same for the Noise World. In the Mixture world,
we see that �-Progress has lower sample complexity than �-
Progress, Disagreement, Adversarial, and Random baselines
on all 8/8 behaviors and outperforms RND on 7/8 behav-
iors while tying on stochastic chasing. In the Noise world,
we see that �-Progress has lower sample complexity than
all baselines on all 8/8 behaviors. See Table 1 for aggregate
end performance, and https://bit.ly/31vg7v1 for
visualizations of model predictions.

6.2. Attention control analysis

Figure 4 shows the ratio of attention to animate vs other
external agents for each behavior in the Mixture world as
well as example animate-inanimate attention differential
timeseries (for the Noise world, see Appendix G). The �-
Progress agents spend substantially more time attending to
animate agents than do alternative policies. This increased
animate-inanimate attention differential often corresponds
to a characteristic attentional “bump” that occurs early as
the �-Progress curious agent focuses on animate external
agents quickly before eventually “losing interest” as predic-
tion accuracy is achieved. Strong animate attention emerges

https://bit.ly/31vg7v1
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for 7/7 behaviors when using �-Progress. Please see ap-
pendix H for a more in-depth of analysis of how attention,
and particular early attention, predicts performance and how
curiosity signal predicts attention.

Table 2. Failure modes Fraction of indifference and white noise
failures, out of eight external agent behaviors.

INDIFFERENCE NOISE FIXATION

�-PROGRESS 0/8 0/8
�-PROGRESS 7/8 0/8
RND 2/8 4/8
DISAGREEMENT 0/8 7/8
ADVERSARIAL 0/8 8/8

Baselines display two distinct modes that lead to lower
performance (Table 2). The first is attentional indiffer-
ence, in which it finds no particular external agent inter-
esting — more precisely, we say that an curiosity signal
choice displays attentional indifference if its average an-
imate/inanimate ratio in the Mixture world is within two
standard deviations of Random policy’s, thus achieving no
directed exploration. �-Progress frequently had attentional
indifference as the new and old world model, separated by a
fixed time difference, were often too similar to generate a
useful curiosity signal.

The second failure mode is white noise fixation, where the
observer is captivated by the noise external agents — more
precisely, we say that a curiosity signal choice displays
white noise fixation if its average animate/inanimate ratio
in the Noise world is more than two standard deviations
below Random policy’s. RND suffers from white noise fix-
ation due to the fact that our noise behaviors have the most
diffuse visited state distribution. We also observe that for
noise behaviors, a world model ensemble does not collec-
tively converge to a single mean prediction, and as a result
Disagreement finds the noise behavior highly interesting.
Finally, the Adversarial baseline fails since noise behaviors
yield the highest prediction errors. The white noise failure
mode is particularly detrimental to sample complexity, with
RND, Disagreement, and Adversarial, as evidenced by their
below-Random performance in the Noise world.

7. Future directions
In this work, we propose and test �-Progress, a
computationally-scalable progress curiosity signal that en-
ables an agent to efficiently train a world model in agent-rich
environments while overcoming the white noise problem.
Although in this work we limited the agent’s ways of in-
teracting with the world to visual attention, future works
may explore larger action spaces. Another exciting avenue
of research is investigating how to learn the world model
priors used in this work such as the visual encoder and dis-
entanglement prior. Finally, we hope see follow-up works
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Figure 5. Modeling human behavior. (a) A pilot human behav-
ior study. (b) Accuracy of early indicators of final performance,
as a function of time, and (c) factor analysis: curiosity signal
determines attention, which determines final performance.

applying �-Progress to other domains such as video games.

We also see several key next steps at the intersection of AI
and cognitive science.

Human behavior How might AWML-optimized agents
model human behavior? We have run a pilot human sub-
ject experiment (Figure 5a) in which we conveyed static,
periodic, animate, and noise stimuli to twelve human par-
ticipants via spherical robots while we tracked their gaze.
In aggregate, gaze is similar to �-Progress attention. In
follow-up work, we aim to make a finer model comparison
to the behavior of humans shown a diverse array of stimuli.

Early indicator analysis Eventually, we would like to use
curiosity-driven learning as a model for intrinsic motivation
in early childhood. In this interpretation, the attention time-
course is a readily observable behavioral metric, and per-
formance represents some more difficult-to-obtain measure
of social acuity. Variation in curiosity signal would, in this
account, be a latent correlate of developmental variability.
For example, Autism Spectrum Disorder is characterized
by both differences in low-level facial attention (Jones &
Klin, 2013) and high-level social acuity (Hus & Lord, 2014).
Motivated by this, we sought to determine whether attention
could be used as an early indicator of performance. We thus
train two models: (1) PERFT , which takes performance
before time T as input, and (2) ATTT , which takes atten-
tion before time T as input. As seen in Figure 5b, ATTT is
throughout most of the timecourse a more accurate indicator
than direct measurement of early-stage model performance
itself. The overall situation is conveyed by the factor dia-
gram Figure 5c — for further details, see Appendix H.1.
As models grow in their capacity to model early childhood
learning, translating such an analysis into a real-world exper-
imental population could lead to substantial improvements
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in diagnostics of developmental variability.
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