
Supplementary Material for
Bayesian Experimental Design for Implicit Models

by Mutual Information Neural Estimation

A. Additional Information for the Linear
Model

A.1. Reference MI Calculation

In order to compute a reference mutual information (MI)
value at d∗, we rely on a nested Monte-Carlo sample average
of the MI and an approximation to the likelihood p(y |
d∗,θ).

In the setting where we wish to make D independent mea-
surements at d∗ = [d∗1, . . . , d

∗
D]>, the likelihood factorises

as p(y | d∗,θ) =
∏D
j=1 p(yj | d∗j ,θ). Using this and

by means of a sample-average of the marginal p(y | d∗),
we can approximate the MI (as shown in the main text) as
follows,

I(d∗) ≈ 1

N

N∑
i=1

[
log

∏D
j=1 p(y

(i)
j | d∗j ,θ(i))

1
M

∑M
s=1

∏D
j=1 p(y

(i)
j | d∗j ,θ(s))

]
,

(17)
where y(i)j ∼ p(yj | d∗j ,θ(i)), θ(i) ∼ p(θ) and θ(s) ∼ p(θ).

In order to be able to compute the MI approximation in (17)
for the linear model, we need to built an approximation to
the density p(yj | d∗j ,θ). The sampling path for the linear
model is given by yj = θ0+θ1d

∗
j+ε+ν, where ε ∼ N (0, 1)

and ν ∼ Γ(2, 2) are sources of noise. The distribution pnoise
of ε + ν is given by the convolution of the densities of
ε and ν. It could be computed via numerical integration.
Here we compute it by a Kernel Density Estimate (KDE)
based on 50,000 samples of ε and ν. By rearranging the
sampling path to yj − (θ0 + θ1d) = ε+ ν we then obtain
that p(yj | dj ,θ) = pnoise(yj − (θ0 + θ1d)), allowing us to
estimate the MI using (17). We here use N = 5,000 and
M = 500.

A.2. Hyper-Parameter Optimisation

We wish to find the optimal neural network size for the
10-dimensional linear model. To do so, we train sev-
eral neural networks with one hidden layer of sizes H ∈
{50, 100, 150, 200, 250} for 50,000 epochs using learning
rates lψ = 10−4 and ld = 10−2. By generating samples
from the prior distribution and the data-generating distribu-
tion at the optimal design, we can build a validation set that
we use to obtain an estimate of the MI lower bound. Re-
peating this several times for every trained neural network
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Figure 7. Mean and standard deviation of validation scores (MI
lower bound) for the 10-dimensional noisy linear model, using
one-layer neural networks with different number of hidden units.
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Figure 8. Convergence of the individual design dimensions for the
one-dimensional (blue curve) and 10-dimensional (orange curves)
linear model. Note how for the 10-dimensional linear model the
design dimensions end up in three different clusters.

yields mean MI lower bound estimates, as well as standard
deviations, as shown in Figure 7. Given that we wish to
obtain the maximum MI lower bound, we see that a neural
network of size H = 150 is most appropriate in our setting.

A.3. Convergence of Designs

In Figure 8 we show the convergence of the individ-
ual design dimensions for the one-dimensional and 10-
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Figure 9. Convergence of the mutual information lower bound (top)
and individual design dimensions (bottom) for the 100-dimensional
linear model. The dashed line shows a reference mutual informa-
tion value at the final, optimal design.

dimensional linear model. The one-dimensional design
converges quickly to the optimal design, while the different
dimensions of the 10-dimensional design converge more
slowly and end up in three clusters. Two clusters of optimal
designs are at the boundaries where the signal-to-noise ratio
is highest, allowing us to estimate the slope of the linear
model well. The other cluster is near zero, reducing the
effect of the slope and allowing us to estimate the offset
better.

A.4. 100-Dimensional Linear Model

In order to test the scalability of our method, we here apply
MINEBED to a 100-dimensional version of the linear model.
Because of the higher dimensionality of both the data vector
y and the design vector d, we require a neural network with
more parameters to obtain a tight bound. We found that
a deep neural network, i.e. more layers with less hidden
units, seemed to work better than a wide neural network,
i.e. less layers with more hidden units. Hence, we opted
to use a 5-layered network with 50 hidden units for each
layer. We train the network with 10,000 samples and use
the Adam optimiser, with initial learning rates of lψ = 10−4

and ld = 10−2.

The convergence of the mutual information lower bound and
the dimensions of the design vector are shown in the top and
bottom of Figure 9, respectively. Also shown is a reference
mutual information value computed as explained in Sec-
tion A.1. The mutual information lower bound converges
smoothly to a value that is higher than for the 1-dimensional
and 10-dimensional version of the linear model (see the
main text). This is intuitive, as more data allows us to gain
more information about the model parameters. The final
lower bound is relatively tight, as it is close to the reference
MI value. As can be seen from the bottom of Figure 9, the
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Figure 10. Comparison of posterior densities obtained for the 1-
dimensional (left), 10-dimensional (middle) and 100-dimensional
(right) noisy linear model. The red cross shows the true model
parameters.

different dimensions of the design vector converge to the
region dj ∈ [−8, 8], with more designs centred around zero.
Interestingly, this is a different strategy as for 1 and 10 de-
sign dimensions, see Figure 8, where most optimal designs
were found to be at the domain boundaries dj = −10 and
dj = 10.

In order to ascertain whether or not this experimental design
strategy is sensible, we compute reference MI values for
different strategies: 1) designs only clustered at the bound-
aries (MI = 4.61), 2) designs clustered at the boundaries
and at zero (MI = 4.83), akin to the optimal design for 10
dims, 3) equally spaced designs (MI = 4.91) and 4) random
designs (average of 4.92, standard deviation of 0.08 and
maximum value of 5.11 for 100 repeats). These values are
smaller than the value we obtained (MI = 5.78), indicating
that we may have found a (locally) optimal design. This
further implies that extrapolating the design strategy from
the 10-dimensional to the 100-dimensional linear model is
sub-optimal. If the experimenter knows that they can make
that many measurements, centring them around zero with
some dispersion allows for better parameter estimation.

In Figure 10 we show a comparison of the posterior distribu-
tions obtained for the 1-dimensional (left), 10-dimensional
(middle) and 100-dimensional (right) noisy linear model.
The posterior densities were computed using the trained
neural network, as explained in the main text. We find that
the posterior distribution becomes narrower, with modes
that are closer to the true model parameters, as we increase
the design dimensions. This is again intuitive, as more mea-
surements allow us to estimate the model parameters better.
Overall, these results show that we can effectively find opti-
mal designs and compute corresponding posterior densities
even for 100-dimensional experimental design problems.
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Figure 11. Mean validation scores, including standard deviations,
of different neural networks for the 10-dimensional PK model.
Tested were neural networks with one hidden layer of different
sizesH ∈ {100, 200, 300, 400, 500} and a multiplicative learning
rate scheduler of multiplier λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

B. Additional Information for the PK Model
B.1. Reference MI Calculation

Just like for the linear model, we use the nested Monte-Carlo
approximation of MI given in (17) to compute a reference
MI at d∗ = [t∗1, . . . , t

∗
D]> for the pharmacokinetic (PK)

model. Even though computing the MI is intractable, we can
write down an equation for the data-generating distribution
p(yj | tj ,θ), where θ = [ka, ke, V ]>, as both noise sources
are Gaussian,

p(yj | tj ,θ) = N (yj ; f(tj ,θ), f(tj ,θ)20.012 + 0.12),
(18)

where the function f(tj ,θ) is given by

f(tj ,θ) =
DV

V

ka
ka − ke

[
e−ketj − e−katj

]
. (19)

Using this expression and a sample average of p(y | d∗)
we can then compute a numerical approximation of the MI
given in (17). We here use N = 5,000 and M = 500.

B.2. Hyper-Parameter Optimisation

We here wish to select the best neural network architecture
for the task of finding D = 10 optimal designs for the PK
model. We test one-layer neural networks with a ReLU
activation function after the input layer and hidden units
H ∈ {100, 200, 300, 400, 500}. Furthermore, we also com-
pare different multipliers λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
in a multiplicative learning rate schedule; essentially, this
means that the initial learning rates of lψ = 10−3 and
ld = 10−2 are multiplied by λ every 5,000 epochs up until
a maximum of 50,000 training epochs. Using prior samples
we then generate a validation set of size 50,000 at d∗ and
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Figure 12. Convergence of the individual design dimensions for
the one-dimensional (blue curve) and 10-dimensional (orange
curves) PK model. Note how the optimal design clusters for the
10-dimensional PK Model are spread over early, middle and late
measurement times.

use this to compute the MI lower bound, i.e. the valida-
tion score, given the trained neural network with a certain
hyper-parameter combination. Doing this for a range of H
and λ yields the comparison of validation scores shown in
Figure 11. In this figure, we show the mean and standard
deviation of validation scores computed with several vali-
dation sets, as we can generate synthetic data at will. The
overall highest mean validation score is achieved by a neural
network with H = 300 and λ = 0.8.

B.3. Convergence of Designs

In Figure 12 we show the convergence of the design vector
for the one-dimensional (blue curve) and 10-dimensional
(orange curve) PK model. The one-dimensional design
converges after around 2,000 training epochs, while the
elements of the 10-dimensional design vector converge af-
ter roughly 30,000 training epochs. The one-dimensional
design ends up at a low design time. Looking at the sam-
pling path of the PK model and doing a Taylor expansion
for the exponents shows that this optimal design effectively
removes the effect of the elimination rate ke and estimates
the ratio ka/V . For the 10-dimensional PK model, we have
optimal designs at early, middle and late measurement times.
Late measurements allow us to reduce the effect of ka and
middle measurements are needed to identify the remaining
parameter. These optimal design clusters are intuitive and
match the ones found by Ryan et al. (2014).

B.4. Full Posterior Plots

We show the joint and marginal posterior distributions of the
model parameters θ = [ka, ke, V ]> for the one-dimensional
(D = 1) and 10-dimensional (D = 10) PK model in
Figures 13 and 14, respectively. As opposed to the one-
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Figure 13. Joint and marginal posterior distributions of the model
parameters for the one-dimensional PK model, computed using
posterior samples. Shown as red-dotted lines and red crosses are
the true model parameters.
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Figure 14. Joint and marginal posterior distributions of the model
parameters for the 10-dimensional PK model, computed using
posterior samples. Shown as red-dotted lines and red crosses are
the true model parameters.

dimensional PK model, the marginal posterior distributions
for the 10-dimensional PK model are narrower and closer to
the true model parameter values of θtrue = [1.5, 0.15, 15]>.
Similarly, the mode of the joint posteriors for D = 10 are
closer to the θtrue than for D = 1. Interestingly, ka and V
are correlated for both D = 1 and D = 10, allowing us to
measure the ratio of ka/V relatively well.
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Figure 15. Mean and standard deviation of validation scores (MI
lower bound) for the Gas Leak model withD = 5, using one-layer
neural networks with different number of hidden units.

C. Additional Information for the Gas Leak
Model

C.1. Hyperparameter Optimisation

We here aim to find the optimal neural network size for the
gas leak model when the number of measurements isD = 5.
To do so, we train several neural networks with one hid-
den layer of sizes H ∈ {50, 100, 150, 200, 250} for 50,000
epochs using learning rates lψ = 10−3 and ld = 10−2. By
generating samples from the prior and the likelihood at the
optimal design, we can build a validation set that we use to
obtain an estimate of the MI lower bound. Repeating this
several times for every trained neural network yields mean
MI lower bound estimates, as well as standard deviations, as
shown in Figure 15. The highest validation score is achieved
by a neural network with H = 200.

C.2. Additional Plots

To further visualise the design optimisation procedure when
gradients of the sampling path are unavailable, we show the
GP posterior mean of Î(d,ψ) for the gas leak model when
we perform D = 1 measurement in Figure 16. The BO
evaluations occur in locations where the MI lower bound is
high, quickly converging to the optimum in the north east
corner of the grid.

In Figure 17 we show the posterior density of the gas leak
source location θ when we know that the wind direction
is Wd = 45◦, for both D = 1 (left) and D = 5 (right).
As opposed to the situation where we marginalised out the
wind direction, see the main text, the posterior for D = 5 is
unimodal.
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Figure 16. GP posterior mean (left) and standard deviation of the
MI lower bound surface for the gas leak model withD = 1. Shown
as red circles are the BO evaluations of the MI lower bound.
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Figure 17. Posterior density for the source locations of the gas
leak with one measurement (left) and five measurements (right),
assuming we know that the wind points in the direction of Wd =
45◦. Shown as the red cross is the true gas leak location.

D. Comparison with Bayesian D-Optimality
Different utility functions in Bayesian experimental design
tend to be geared towards different purposes. This usu-
ally makes a meaningful, direct comparison between utility
functions difficult. Mutual information, which we have con-
sidered in this work, is used in order to optimally estimate
model parameters. Another popular utility function that is
used for parameter estimation is the Bayesian D-Optimality
(BD-Opt),

U(d) = Ep(y|d)
[

1

det(cov(θ | y,d))

]
, (20)

which is a measure of how precise, on average, the resulting
posterior is (Ryan et al., 2016). We here provide a short com-
parison of optimal designs obtained via mutual information
and BD-Opt.

We consider an oscillatory toy model that describes noisy

measurements of a stationary waveform sin(ωt). The design
variable is the measurement time t and our experimental aim
is to estimate the frequency ω in an optimal manner. The
data-generating distribution is given by

p(y | ω, t) = N (y; sin(ωt), σ2
noise), (21)

where σnoise = 0.1 is the standard deviation of some mea-
surement noise not depending on t; we here set the true
model parameter to ωtrue = 0.5. Furthermore, we choose
a uniform prior distribution p(ω) = U(ω; 0, π) over the
model parameter ω. We note that reference posterior den-
sities can be obtained by using the likelihood in (21) and
Bayes’ rule. This kind of model has also been considered
by Kleinegesse et al. (2020) to illustrate their sequential
Bayesian experimental design method.

We estimate and optimise the mutual information utility
with our MINEBED framework, using a two-layered neural
network with 100 hidden units each. The neural network is
trained with the Adam optimiser and 10,000 samples as the
training set. The initial learning rates are lψ = 5×10−3 and
ld = 10−3, both multiplied by a factor of 0.9 every 1,000
epochs.

In order to estimate the BD-Opt utility in (20) we require
samples from the posterior distribution (which we assume
is intractable for now). We here utilise LFIRE (Thomas
et al., 2016) to estimate the posterior density for a set of
prior parameter samples. Using the posterior density and
prior sample pairs, we then use categorical sampling to gen-
erate posterior samples (see e.g. Kleinegesse & Gutmann,
2019). These samples can then be used to approximate the
determinant of the covariance matrix needed in (20), for a
given marginal sample y | t. We can then approximate (20)
with a Monte-Carlo sample average, using 1,000 samples
from p(y|t). We optimise the approximated BD-Opt utility
by means of Bayesian Optimisation (Shahriari et al., 2016)
with a Gaussian Process surrogate model.

Using our MINEBED framework we converge to an optimal
design of t∗ = 2.19, whereas the optimum of the BD-Opt
utility is t∗ = 1.66. We note that the time to converge to the
optimum was significantly lower for MINEBED than for
the BD-Opt utility with Bayesian Optimisation. While the
optimal designs t∗ are quite close, the values are still sub-
tlety different, with BD-Opt favouring smaller measurement
times. This is because, by definition, BD-Opt penalises pos-
terior multi-modality that leads to larger variance because
it only takes into account the covariance matrix. Mutual
information on the other hand, is sensitive to multi-modality
and therefore does take into account multiple explanations
for observations.

This is further reflected in Figure 18, where we show the
posterior densities for data obtained using MINEBED (top)
and BD-Opt (bottom). The real-world observations at t∗
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Figure 18. Posterior densities for the oscillatory toy model using
MINEBED data (top) and BD-Opt data (bottom). The dashed
curves represent reference computations and the vertical dashed,
red lines represent the true model parameter value.

were generated using (21) and ωtrue = 0.5. The posterior
density for MINEBED data was computed via the trained
neural network (see the main text), while for BD-Opt data
this was done by Gaussian kernel density estimation of the
posterior samples. Reference posteriors are shown as dashed
lines. Ultimately, the posterior obtained with BD-Opt data
has modes that are closer together than for MINEBED data,
as we would expect because it favours posteriors with small
variances.
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