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Abstract
Uncertainty quantification is a fundamental yet un-
solved problem for deep learning. The Bayesian
framework provides a principled way of uncer-
tainty estimation but is often not scalable to mod-
ern deep neural nets (DNNs) that have a large
number of parameters. Non-Bayesian methods
are simple to implement but often conflate differ-
ent sources of uncertainties and require huge com-
puting resources. We propose a new method for
quantifying uncertainties of DNNs from a dynam-
ical system perspective. The core of our method
is to view DNN transformations as state evolution
of a stochastic dynamical system and introduce a
Brownian motion term for capturing epistemic un-
certainty. Based on this perspective, we propose
a neural stochastic differential equation model
(SDE-Net) which consists of (1) a drift net that
controls the system to fit the predictive function;
and (2) a diffusion net that captures epistemic
uncertainty. We theoretically analyze the exis-
tence and uniqueness of the solution to SDE-Net.
Our experiments demonstrate that the SDE-Net
model can outperform existing uncertainty esti-
mation methods across a series of tasks where
uncertainty plays a fundamental role.

1. Introduction
Deep Neural Nets (DNNs) have achieved enormous success
in a wide spectrum of tasks, such as image classification
(Krizhevsky et al., 2012), machine translation (Choukroun
et al., 2016), and reinforcement learning (Li, 2017). Despite
their remarkable predictive performance, DNNs are poor
at quantifying uncertainties for their predictions. Recent
studies have shown that DNNs are often overconfident in
their predictions and produce mis-calibrated output proba-
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bilities for classification (Guo et al., 2017). Moreover, they
can make erroneous yet wildly confident predictions for out-
of-distribution samples that are very different from training
data (Nguyen et al., 2015). Uncertainty quantification, a
key component to equip DNNs with the ability of knowing
what they do not know, has become an urgent need for many
real-life applications, ranging from self-driving cars to cyber
security to automatic medical diagnosis.

Existing approaches to uncertainty quantification for neural
nets can be categorized into two lines. The first line is based
on Bayesian neural nets (BNNs) (Denker & Lecun, 1991;
MacKay, 1992). BNNs quantify predictive uncertainty by
imposing probability distributions over model parameters
instead of using point estimates. While BNNs provide a
principled way of uncertainty quantification, exact inference
of parameter posteriors is often intractable. Moreover, spec-
ifying parameter priors for BNNs is challenging because the
parameters of DNNs are huge in size and uninterpretable.

Along another line, several non-Bayesian approaches have
been proposed for uncertainty quantification. The most
prominent idea in this line is model ensembling (Lakshmi-
narayanan et al., 2017), which trains multiple DNNs with
different initializations and uses their predictions for un-
certainty estimation. However, training an ensemble of
DNNs can be prohibitively expensive in practice. Other
non-Bayesian methods (Geifman et al., 2019) suffer from
the drawback of conflating aleatoric uncertainty—the natu-
ral randomness inherent in the task, with epistemic uncer-
tainty—the model uncertainty caused by lack of observation
data. In many tasks, it is important to separate these two
sources of uncertainties. Taking active learning as an exam-
ple, one would prefer to collect data from regions with high
epistemic uncertainty but low aleatoric uncertainty (Hafner
et al., 2018).

We propose a deep neural net model for uncertainty quan-
tification based on neural stochastic differential equation.
Our model, named SDE-Net, enjoys a number of benefits
compared with existing methods: (1) It explicitly models
aleatoric uncertainty and epistemic uncertainty and is able
to separate the two sources of uncertainties in its predic-
tions; (2) It is efficient and straightforward to implement,
avoiding the need of specifying model prior distributions
and inferring posterior distributions as in BNNs; and (3) It
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(a) Low aleatoric uncertainty, low epis-
temic uncertainty.
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(b) High aleatoric uncertainty, low epis-
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(c) High aleatoric uncertainty, high epis-
temic uncertainty.

Figure 1. Different behaviors of a probabilistic model under aleatoric and epistemic uncertainties for classification and regression tasks.
The heat maps represent the distributions of model’s predictive distributions. The triangles represent classification simplexes and the
squares represent regression parameter spaces (x-axis is the predictive mean µ(x∗) ; y-axis is the predictive variance σ(x∗)).

is applicable to both classification and regression tasks.

Our model design (Section 3) is motivated by the connec-
tion between neural nets and dynamical systems. From the
dynamical system perspective, the forward passes in DNNs
can be viewed as state transformations of a dynamic sys-
tem, which can be defined by an NN-parameterized ordinary
differential equation (ODE) (Chen et al., 2018). However,
neural ODE is deterministic and cannot capture any uncer-
tainty information. In contrast, our model characterizes the
transformation of hidden states with stochastic differential
equation (SDE) and adds a Brownian motion term to explic-
itly quantify epistemic uncertainty. Our proposed SDE-Net
model thus consists of (1) a drift net that parameterizes a
differential equation to fit the predictive function, and (2) a
diffusion net that parameterizes the Brownian motion and
encourages high diffusion for data outside the training dis-
tribution. From a control point of view, the drift net controls
the system to achieve good predictive accuracy, while the
diffusion net characterizes model uncertainty in a stochastic
environment. We theoretically analyze the existence and
uniqueness of solution to the proposed stochastic dynamical
system, which provides insights to design a more efficient
and stable network architecture.

Empirical results are presented in Section 4. We evalu-
ate four tasks where uncertainty plays a fundamental role:
out-of-distribution detection, misclassification detection, ad-
versarial samples detection and active learning. We find
that SDE-Net can outperform state-of-the-art uncertainty
estimation methods or achieve competitive results across
these tasks on various datasets.

2. Aleatoric Uncertainty and Epistemic
Uncertainty

For supervised learning, we are given a training dataset
D = {xj , yj}Nj=1; we train a model M parameterized by
θ and use the model M to make predictions for any new
test instance x∗. The predictive uncertainty comes from
two sources (Kendall & Gal, 2017): aleatoric uncertainty
and epistemic uncertainty. Aleatoric uncertainty represents

the natural randomness (e.g., class overlap, data noise, un-
known factors) inherent in the task and cannot be explained
away with data; while epistemic uncertainty represents our
ignorance about model caused by the lack of observation
data and is high in regions lacking training data.

Figure 1 illustrates the behaviors of a probabilistic model
under the influence of the two sources of uncertainties: (1)
When both aleatoric and epistemic uncertainties are low
(Figure 1a), the model outputs confident predictions with
low variance. This makes the output distributions sharply
concentrate at a simplex corner (for classification) or a small-
variance region (for regression); (2) When aleatoric uncer-
tainty is high but epistemic uncertainty is low (Figure 1b),
the predictive distributions concentrate around the simplex
center or large-variance regions; (3) When epistemic uncer-
tainty is high (Figure 1c), the predictive distributions scatter
in a highly diffused way over the classification simplex and
the regression parameter space.

Bayesian neural networks (BNNs) model epistemic uncer-
tainty by imposing distributions over model parameters.
They are realized by first specifying prior distributions for
neural net parameters, then inferring parameter posteriors
and further integrating over them to make predictions. Un-
fortunately, such modeling of epistemic uncertainty has two
drawbacks. First, it is difficult to specify the prior distribu-
tions since the parameters of DNNs are uninterpretable.
Second, exact parameter posterior inference is often in-
tractable due to the large number of parameters in DNNs.
Most approaches for learning BNNs fall into one of two
categories: variational inference (VI) methods (Blundell
et al., 2015; Louizos & Welling, 2017; Wu et al., 2019) and
Markov chain Monte Carlo (MCMC) methods (Welling &
Teh, 2011; Li et al., 2016). VI methods require one to choose
a family of approximating distributions, which may lead to
underestimation of true uncertainties. MCMC methods are
time-consuming and require maintaining many copies of the
model parameters, which can be costly for large NNs. To
overcome such drawbacks, we will propose a more direct
and efficient way to model uncertainties.
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3. Uncertainty Quantification via Neural
Stochastic Differential Equation

We propose a new uncertainty aware neural net from the
stochastic dynamical system perspective. The proposed
method can distinguish the two sources of uncertainties
with no need of specifying priors of model parameters and
performing complicated Bayesian inference.

3.1. Neural Net as Deterministic Dynamical System

Our approach relies on the connection between neural nets
and dynamic systems, which has been investigated in (Chen
et al., 2018). As neural nets map an input x to an output y
through a sequence of hidden layers, the hidden represen-
tations can be viewed as the states of a dynamical system.
It is thus possible to define a dynamical system by parame-
terizing its ordinary differential equation with a neural net.
To see this, consider the transformation between layers in
ResNet (He et al., 2016):

xt+1 = xt + f(xt, t), (1)

where t is the index of the layer while xt is the hidden
state at layer t. We rearrange this equation as xt+∆t−xt

∆t =
f(xt, t) where ∆t = 1. Letting ∆t→ 0, we obtain:

lim
∆→0

xt+∆t − xt

∆t
=
dxt

dt
= f(xt, t)⇐⇒ dxt = f(xt, t)dt.

(2)
The transformations in ResNet can thus be viewed as the
discretization of a dynamical system, whose continuous dy-
namics is given by f(xt, t). The idea of the neural ODE
method (Chen et al., 2018) is to parameterize f(xt, t) with
a neural net and exploit an ODE solver to evaluate the hid-
den unit state wherever necessary. Such a neural ODE
formulation enables evaluating hidden unit dynamics with
arbitrary accuracy and enjoys better memory and parameter
efficiency.

3.2. Modeling Epistemic Uncertainty with Brownian
Motion

However, neural ODE is a deterministic model and cannot
model epistemic uncertainty. We develop a neural SDE
model to characterize a stochastic dynamical system instead
of a deterministic one. The core of our neural SDE model
is to capture epistemic uncertainty with Brownian motion,
which is widely used to model the randomness of moving
atoms or molecules in Physics (Bass, 2011).

Definition 3.1 A standard Brownian motion Wt is a
stochastic process which satisfies the following properties:
a) W0 = 0; b) Wt−Ws isN (0, t− s) for all t ≥ s ≥ 0; c)
For every pair of disjoint time intervals [t1, t2] and [t3, t4],
with t1 < t2 ≤ t3 ≤ t4, the increments Wt4 −Wt3 and
Wt2 −Wt1 are independent random variables.

We add the Brownian motion term into Eq. (2), which leads
to a neural SDE dynamical system. The continuous-time
dynamics of the system are then expressed as:

dxt = f(xt, t)dt+ g(xt, t)dWt. (3)

Here, g(xt, t) denotes the variance of the Brownian motion
and represents the epistemic uncertainty for the dynamical
system. This variance is determined by which region the
system is in. As shown in Fig. 2, if the system is in the region
with abundant training data and low epistemic uncertainty,
the variance of the Brownian motion will be small; if the
system is in the region with scarce training data and high
epistemic uncertainty, the variance of the Brownian motion
will be large. We can thus obtain an epistemic uncertainty
estimate from the variance of the final time solution xT .
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(a) System in the region with low
uncertainty
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(b) System in the region with
high uncertainty

Figure 2. 1-D trajectories of a linear SDE for five simulations.
When the system is in the region with low uncertainty, i.e. small
g(xt, t), the trajectories are more deterministic with small variance.
When the system is in the region with high uncertainty, i.e. large
g(xt, t), the trajectories are more scattered with large variance.

3.3. SDE-Net for Uncertainty Estimation

As discussed above, we can quantify epistemic uncertainty
using Brownian motion. To make the system able to achieve
good predictive accuracy and meanwhile provide reliable
uncertainty estimates, we design our SDE-Net model to
use two separate neural nets to represent the drift and the
diffusion of the system as in Fig. 3.

The drift net f in SDE-Net aims to control the system to
achieve good predictive accuracy. Another important role
of the drift net f is to capture aleatoric uncertainty. This
is achieved by representing model output as a probabilistic
distribution, e.g., categorical distribution for classification
and Gaussian distribution for regression.

The diffusion net g in SDE-Net represents the diffusion
of the system. The diffusion of the system should satisfy
the following: (1) For regions in the training distribution,
the variance of the Brownian motion should be small (low
diffusion). The system state is dominated by the drift term
in this area and the output variance should be small; (2) For
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Figure 3. Components of the proposed SDE-Net. For in-distribution data, the system is dominated by the drift net f and achieves good
predictive accuracy; for out-of-distribution data, the system is dominated by the diffusion net g and shows high diffusion.

regions outside the training distribution, the variance of the
Brownian motion should be large and the system is chaotic
(high diffusion). In this case, the variance of the outputs for
multiple evaluations should be large.

Based on the above desired properties, we propose the fol-
lowing objective function for training our SDE-Net model:

min
θf

Ex0∼PtrainE(L(xT )) + min
θg

Ex0∼Ptraing(x0;θg)

+ max
θg

Ex̃0∼POODg(x̃0;θg)

s.t. dxt = f(xt, t;θf )︸ ︷︷ ︸
drift neural net

dt+ g(x0;θg)︸ ︷︷ ︸
diffusion neural net

dWt, (4)

where L(·) is the loss function dependent on the task, e.g.
cross entropy loss for classification, T is the terminal time
of the stochastic process, Ptrain is the distribution for training
data, and POOD is the out-of-distribution (OOD) data. To
obtain OOD data, we choose to add additive Gaussian noise
to obtain noisy inputs x̃0 = x0 + ε and then distribute the
inputs according to the convolved distribution as in (Hafner
et al., 2018). An alternative is to use a different, real dataset
as a set of samples from the OOD. However, this requires
a careful choice of a real dataset to avoid overfitting (Lee
et al., 2018).

Unlike the traditional neural nets where each layer has its
own parameters, the parameters in our proposed SDE-Net
are shared by each layer. This can decrease the number of
parameters and leads to significant memory reduction. In
the objective function, we also make a simplification that
the variance of the diffusion term is only determined by
the starting point x0 instead of the instantaneous value xt,
which is usually sufficient and can make the optimization
procedure easier.

Uncertainty Quantification: Once an SDE-Net is learned,

we can obtain multiple random realizations of the
SDE-Net to get samples {xT }Mm=1 and then compute
the two uncertainties from them. The aleatoric un-
certainty is given by the expected predictive entropy
Ep(xT |x0,θf,g)[H[p(y|xT )]] in classification and expected
predictive variance Ep(xT |x0,θf,g)[σ(xT )] in regression.
The epistemic uncertainty is given by the variance of the
final solution Var(xT ). This sampling-and-computing op-
eration shares similar spirit with the traditional ensembling
method. However, a key difference exists between the two:
ensembling methods require training multiple deterministic
NNs, while our method just trains one neural SDE model
and uses the Brownian motion to encode uncertainty, which
incurs much lower time and memory costs.

3.4. Theoretical Analysis

In this subsection, we study the existence and uniqueness of
the solution xt(0 ≤ t ≤ T ) of the proposed stochastic sys-
tem. Through this theoretical analysis, we can gain insights
in designing a more effective network architecture for both
the drift net f and the diffusion net g.

Theorem 1 When there exists C > 0 such that

||f(x, t;θf )− f(y, t;θf )||+ ||g(x;θg)− g(y;θg)||
≤ C||x− y||, ∀x,y ∈ Rn, t ≥ 0.

(5)

Then, for every x0 ∈ Rn, there exists a unique continuous
and adapted process (xx0

t )t≥0 such that for t ≥ 0

xx0
t = x0 +

∫ t

0

f(xx0
s , t;θf )ds+

∫ t

0

g(x0;θg)dWs (6)

Moreover, for every T ≥ 0, E(sup1≤s≤T |xs|2) < +∞.
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The proof of Theorem 1 can be found in the supplementary
material.

Remark. According to Theorem 1, f(x, t;θf ) and g(x;θg)
must both be uniformly Lipschitz continuous. This can
be satisfied by using Lipshitz nonlinear activations in the
network architectures, such as ReLU, sigmoid and Tanh
(Anil et al., 2019). However, if we naı̈vely optimize the
loss function in Equation (4), g(x0;θg) can be infinitely
large for the input from out-of-distribution. This will lead
to explosive solution and make the optimization procedure
unstable. To solve this problem, we define the maximum
value of the output of g(x;θg) as a hyper-parameter σmax.
Then, the output of the diffusion neural net is given by a
sigmoid function times σmax.

3.5. SDE-Net Training

There is no closed form solution to the true final random
variable xT . In principle, we can simulate the stochastic dy-
namics using any high-order numerical solver with adaptive
step size (Platen, 1999). However, high-order numerical
methods can be costly in the context of deep learning where
the input can have thousands of dimensions. Since we fo-
cus on supervised learning and uncertainty quantification,
we choose to use the simple Euler-Maruyama scheme with
fixed step size (Kloeden & Platen, 1992) for efficient net-
work training. Under such a scheme, the time interval [0, T ]
is divided into N subintervals. Then, we can simulate the
SDE by:

xk+1 = xk + f(xk, t;θf )∆t+ g(x0;θg)
√

∆tZk (7)

where Zk ∼ N (0, 1) is the standard Gaussian random vari-
able and ∆t = T/N . We will show that empirically it
suffices to sample only one path for each data point during
training time. The number of steps for solving the SDE can
be considered equivalently as the number of layers in the
definition of traditional neural nets. Then, the training of
SDE-Net is actually the forward and backward propagations
as in standard neural nets, which can be easily implemented
with libraries such as Tensorflow and Pytorch. The drift
neural net f and the diffusion neural net g are optimized
alternately, as shown in Algorithm 1.

4. Experiments
In this section, we study how the estimated uncertainty
can improve model robustness and label efficiency. We
first study three tasks on model robustness: (1) out-of-
distribution detection, (2) misclassification detection, and
(3) adversarial sample detection. We then study how the es-
timated uncertainties can improve label efficiency on active
learning.

Algorithm 1 Training of SDE-Net. h1 is the downsampling
layer; h2 is the fully connected layer; f and g are the drift
net and diffusion net; L is the loss function.

Initialize h1, f, g and h2

for # training iterations do
Sample minibatch of NM data from in-distribution:
XNM ∼ ptrain(x)
Forward through the downsampling layer: XNM

0 =
h1(XNM )
Forward through the SDE-Net block:
for k = 0 to N − 1 do

Sample ZNM

k ∼ N (0, I)

XNM

k+1 = XNM

k +f(XNM

k , t)∆t+g(XNM
0 )
√

∆tZk

end for
Forward through the fully connected layer: XNM

f =

h2(XNM

k )

Update h1, h2 and f by∇h1,h2,f
1

NM
L(XNM

f )
Sample minibatch ofNM data from out-of-distribution:
XNM ∼ pOOD(x)
Forward through the downsampling layer:
XNM

0 , X̃NM
0 = h1(XNM ), h1(X̃NM )

Update g by∇gg(XNM
0 )−∇gg(X̃0

NM
)

end for

4.1. Experimental Setup

We compare our SDE-Net model with the following meth-
ods: (1) Threshold (Hendrycks & Gimpel, 2017), which
is used in the deterministic DNNs (2) MC-dropout (Gal &
Ghahramani, 2016), (3) DeepEnsemble1(Lakshminarayanan
et al., 2017), (4) Prior network (PN) (Malinin & Gales,
2018), (5) Bayes by Backpropagation (BBP) (Blundell et al.,
2015), (6) preconditioned Stochastic gradient Langevin dy-
namics (p-SGLD) (Li et al., 2016).

The network architecture of the compared methods is a
residual net (Chen et al., 2018). For our method, we use
one SDE-Net block in place of residual blocks and set the
number of subintervals as the number of residual blocks in
ResNet for fair comparison—the number of hidden layers
in SDE-Net is the same as the baseline models under such
settings. For our SDE-Net, we sample one path during
training and perform 10 stochastic forward passes at test
time in all experiments.

As PN and SDE-Net both involve OOD samples during the
training process, we purturb the training data with Gaussian
noise (zero mean and variance four for both MNIST and
SVHN) as pseudo OOD data. Our supplementary materials
provide more details about the implementation, setup, and
additional experimental results.

1We use five neural nets in the ensemble.
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Table 1. Classification and out-of-distribution detection results on MNIST and SVHN. All values are in percentage, and larger values
indicates better detection performance. We report the average performance and standard deviation for 5 random initializations.

ID OOD Model # Parameters Classification
accuracy

TNR
at TPR 95%

AUROC Detection
accuracy

AUPR
in

AUPR
out

MNIST SEMEION

Threshold 0.58M 99.5± 0.0 94.0± 1.4 98.3± 0.3 94.8± 0.7 99.7± 0.1 89.4± 1.1
DeepEnsemble 0.58M× 5 99.6± NA 96.0± NA 98.8± NA 95.8± NA 99.8± NA 91.3± NA

MC-dropout 0.58M 99.5± 0.0 92.9± 1.6 97.6± 0.5 94.2± 0.7 99.6± 0.1 88.5± 1.7
PN 0.58M 99.3± 0.1 93.4± 2.2 96.1± 1.2 94.5± 1.1 98.4± 0.7 88.5± 1.3

BBP 1.02M 99.2± 0.3 75.0± 3.4 94.8± 1.2 90.4± 2.2 99.2± 0.3 76.0± 4.2
p-SGLD 0.58M 99.3± 0.2 85.3± 2.3 89.1± 1.6 90.5± 1.3 93.6± 1.0 82.8± 2.2
SDE-Net 0.28M 99.4± 0.1 99.6± 0.2 99.9± 0.1 98.6± 0.5 100.0± 0 99.5± 0.3

MNIST SVHN

Threshold 0.58M 99.5± 0.0 90.1± 2.3 96.8± 0.9 92.9± 1.1 90.0± 3.5 98.7± 0.3
DeepEnsemble 0.58M×5 99.6± NA 92.7± NA 98.0± NA 94.1± NA 94.5± NA 99.1± NA

MC-dropout 0.58M 99.5± 0.0 88.7± 0.6 95.9± 0.4 92.0± 0.3 87.6± 2.0 98.4± 0.1
PN 0.58 M 99.3± 0.1 90.4± 2.8 94.1± 2.2 93.0± 1.4 73.2± 7.3 98.0± 0.6

BBP 1.02M 99.2± 0.3 80.5± 3.2 96.0± 1.1 91.9± 0.9 92.6± 2.4 98.3± 0.4
p-SGLD 0.58M 99.3± 0.2 94.5± 2.1 95.7± 1.3 95.0± 1.2 75.6± 5.2 98.7± 0.2
SDE-Net 0.28M 99.4± 0.1 97.8± 1.1 99.5± 0.2 97.0± 0.2 98.6± 0.6 99.8± 0.1

SVHN CIFAR10

Threshold 0.58M 95.2± 0.1 66.1± 1.9 94.4± 0.4 89.8± 0.5 96.7± 0.2 84.6± 0.8
DeepEnsemble 0.58M×5 95.4± NA 66.5± NA 94.6± NA 90.1± NA 97.8± NA 84.8± NA

MC-dropout 0.58M 95.2± 0.1 66.9± 0.6 94.3± 0.1 89.8± 0.2 97.6± 0.1 84.8± 0.2
PN 0.58M 95.0± 0.1 66.9± 2.0 89.9± 0.6 87.4± 0.6 92.5± 0.6 82.3± 0.9

BBP 1.02M 93.3± 0.6 42.2± 1.2 90.4± 0.3 83.9± 0.4 96.4± 0.2 73.9± 0.5
p-SGLD 0.58M 94.1± 0.5 63.5± 0.9 94.3± 0.4 87.8± 1.2 97.9± 0.2 83.9± 0.7
SDE-Net 0.32 M 94.2± 0.2 87.5± 2.8 97.8± 0.4 92.7± 0.7 99.2± 0.2 93.7± 0.9

SVHN CIFAR100

Threshold 0.58M 95.2± 0.1 64.6± 1.9 93.8± 0.4 88.3± 0.4 97.0± 0.2 83.7± 0.8
DeepEnsemble 0.58M×5 95.4± NA 64.4± NA 93.9± NA 89.4± NA 97.4± NA 84.8± NA

MC-dropout 0.58M 95.2± 0.1 65.5± 1.1 93.7± 0.2 89.3± 0.3 97.1± 0.2 83.9± 0.4
PN 0.58M 95.0± 0.1 65.8± 1.7 89.1± 0.8 86.6± 0.7 91.8± 0.8 81.6± 1.1

BBP 1.02M 93.3± 0.6 42.4± 0.3 90.6± 0.2 84.3± 0.3 96.5± 0.1 75.2± 0.9
p-SGLD 0.58M 94.1± 0.5 62.0± 0.5 91.3± 1.2 86.0± 0.2 93.1± 0.8 81.9± 1.3
SDE-Net 0.32M 94.2± 0.2 83.4± 3.6 97.0± 0.4 91.6± 0.7 98.8± 0.1 92.3± 1.1

4.2. Out-of-Distribution Detection

Our first task is out-of-distribution (OOD) detection, which
aims to use uncertainty to help the model recognize out-of-
distribution samples at test time. In open-world settings, the
model needs to deal with continuous data that may come
from different data distributions or unseen classes. For
OOD samples, it is wiser to let the model say ‘I don’t know’
instead of making an absurdly wrong predictions. We inves-
tigate the OOD detection task under both classification and
regression settings. Following previous work (Hendrycks &
Gimpel, 2017), we use four metrics for the OOD detection
task: (1) True negative rate (TNR) at 95% true positive rate
(TPR); (2) Area under the receiver operating characteristic
curve (AUROC); (3) Area under the precision-recall curve
(AUPR); and (4) Detection accuracy. Larger values of them
indicate better detection performance.

OOD detection for classification. We first evaluate the
performance of different models for OOD detection in clas-
sification tasks. For fair comparison, all the methods use
the probability of the final predicted class for detection. Ta-
ble 1 shows the OOD detection performance as well as the
classification accuracy on two image classification datasets:
MNIST and SVHN. We mix different test OOD datasets
with the target dataset (MNIST or SVHN) and evaluate the
performance of different models in OOD detection. As
shown, SDE-Net consistently achieves the best OOD de-
tection performance among all the models under different
combinations. DeepEnsemble is the strongest among the

baselines but it still underperforms SDE-Net consistently.
Furthermore, DeepEnsemble needs to train multiple DNNs
and incurs much larger computational costs. While PN and
SDE-Net both use pseudo OOD data (with Gaussian noise)
during training, SDE-Net consistently outperforms PN in
all the settings. In addition to using the Gaussian-purturbed
OOD data, we also compared the performance of SDE-Net
and PN when using real-life OOD datasets during training
(see supplementary material). We find that PN is easy to be
overfitted, while our SDE-Net is more robust to the choice
of OOD data used for training.
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Figure 4. Effect of number of forward passes / ensembles on out-
of-distribution (OOD) detection. We use MNIST as the ID data
and SVHN as the OOD data.

Fig. 4 shows the impact of the number of forward passes
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or ensembles on OOD detection, using MNIST as the ID
data and SVHN as the OOD data. As we can see, the BNNs
(MC-dropout, p-SGLD and BBP) require more samples than
SDE-Net to reach their peak performance at test time. For
DeepEnsemble, its performance is already almost saturated
when using five nets and larger ensemble sizes can bring
little performance gain.

In addition to the OOD detection metrics, we also studied
the classification accuracy of different models. We find that
the predictive performance of SDE-Net is very close to state-
of-the-art results even with significantly fewer parameters.
One can further achieve better results by stacking multiple
SDE-Net blocks together.

OOD detection for regression. We now investigate OOD
detection in regression tasks. Different from classification,
few works have studied the OOD detection task for regres-
sion. We use the Year Prediction MSD dataset (Dua & Graff,
2017) as training data and the Boston Housing dataset (Bos)
as test OOD data. Threshold and PN are excluded here
since they only apply to classification tasks. To detect OOD
samples for regression tasks, all the methods rely on the
variance of the predictive mean. Table 2 shows the OOD
detection performance for different methods. The results of
other metrics are put into the supplementary material due to
the space limit. Because of the imbalance of the test ID and
OOD data, AUPR out is a better metric than AUPR in. OOD
detection for regression is more difficult than for classifi-
cation, because regression is a continuous and unbounded
problem which makes uncertainty estimation difficult. For
this challenging task, all the baselines perform quite poorly,
yet SDE-Net still achieves strong performance. The reason
is that the diffusion net in SDE-Net directly models the rela-
tionship between the input data and epistemic uncertainty,
which encourages SDE-Net to output large uncertainty for
OOD data and low uncertainty for ID data even for this
challenging task.

Table 2. Out-of-distribution detection for regression on Year Pre-
diction MSD + Boston Housing. We report the average perfor-
mance and standard deviation for 5 random initializations.

Model # Parameters RMSE AUROC AUPR
out

DeepEnsemble 14.9K×5 8.6± NA 59.8± NA 1.3± NA
MC-dropout 14.9K 8.7± 0.0 53.0± 1.2 1.1± 0.1

BBP 30.0K 9.5± 0.2 56.8± 0.9 1.3± 0.1
p-SGLD 14.9K 9.3± 0.1 52.3± 0.7 1.1± 0.2
SDE-Net 12.4K 8.7± 0.1 84.4± 1.0 21.3± 4.1

4.3. Misclassification Detection

Besides OOD data detection, another important use of un-
certainty is to make the model aware when it may make
mistakes at test time. Thus, our second task is misclassifi-
cation detection (Hendrycks & Gimpel, 2017), which aims

Table 3. Misclassification detection performance on MNIST and
SVHN. We report the average performance and standard deviation
for 5 random initializations.

Data Model AUROC AUPR
succ

AUPR
err

MNIST

Threshold 94.3± 0.9 99.8± 0.1 31.9± 8.3
DeepEnsemble 97.5± NA 100.0± NA 41.4± NA

MC-dropout 95.8± 1.3 99.9± 0.0 33.0± 6.7
PN 91.8± 0.7 99.8± 0.0 33.4± 4.6

BBP 96.5± 2.1 100.0± 0.0 35.4± 3.2
P-SGLD 96.4± 1.7 100.0 ± 0.0 42.0 ± 2.4
SDE-Net 96.8± 0.9 100.0 ± 0.0 36.6± 4.6

SVHN

Threshold 90.1± 0.3 99.3± 0.0 42.8± 0.6
DeepEnsemble 91.0± NA 99.4± NA 46.5± NA

MC-dropout 90.4± 0.6 99.3± 0.0 45.0± 1.2
PN 84.0± 0.4 98.2± 0.2 43.9± 1.1

BBP 91.8± 0.2 99.1± 0.1 50.7± 0.9
P-SGLD 93.0± 0.4 99.4± 0.1 48.6± 1.8
SDE-Net 92.3± 0.5 99.4 ± 0.0 53.9± 2.5

at leveraging the predictive uncertainty to identify test sam-
ples on which the model have misclassified. Table 3 shows
the misclassification detection results for different models
on MNIST and SVHN. p-SGLD achieves the best overall
performance for this task. SDE-Net achieves comparable
performance with DeepEnsemble and outperforms other
baselines. However, p-SGLD needs to store the copies of
the parameters for evaluation, which can be prohibitively
costly for large NNs. DeepEnsemble requires training mul-
tiple models and incurs high computational cost. Therefore,
we argue that SDE-Net is a better choice for the misclassifi-
cation task in practice.

4.4. Adversarial Sample Detection

Our third task studies adversarial sample detection. Exist-
ing works (Szegedy et al., 2014; Goodfellow et al., 2015b)
have shown that DNNs are extremely vulnerable to adver-
sarial examples crafted by adding small adversarial pertur-
bations. The ability to detect such adversarial samples is
important for AI safety. Different from existing literature
on adversarial training, we do not use adversarial training
but only examine the uncertainty-aware models’ ability in
detecting adversarial samples. We study two attacks: Fast
Gradient-Sign Method (FGSM) (Goodfellow et al., 2015a),
and Projected Gradient Descent (PGD) (Madry et al., 2018).

Fig. 5 shows the detection performance of different models
when facing FGSM attacks. As shown, when the pertur-
bation size ε varies, SDE-Net can achieve similar AUROC
with p-SGLD and outperforms all other methods. On the
simpler MNIST dataset, all methods can achieve ∼100%
AUROC when the perturbation size is large. However, on
the more challenging SVHN dataset, only SDE-Net still
converges to 100% AUROC, while other baselines achieve
only about 90% AUROC even with perturbation size of one.

Fig. 6 shows the detection performance of different models
when facing PGD attacks. We use the default parameters in
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Figure 5. The performance of adversarial sample detection under
FGSM attacks. ε is the step size in FGSM.
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Figure 6. The performance of adversarial sample detection under
PGD attacks.

(Madry et al., 2018) and plot the AUROC curve versus the
number of PGD iterations. Under the stronger PGD attacks,
the AUROCs of all the baselines on MNIST drop below
70% after 60 iterations, while SDE-Net can still achieves
over 80% AUROC after 100 iterations. On SVHN, we
observe a different picture where all the methods quickly
become overconfident except for the costly DeepEnsemble
method. This is likely due to higher dimensionality of the
data manifold in SVHN. Further work is needed to design
efficient and robust uncertainty-aware models that can detect
high-dimensional adversarial samples generated by such
strong attackers.

4.5. Active Learning

Finally, we study how the estimated uncertainties can im-
prove label efficiency for active learning. Uncertainty plays
an important role in active learning. Intuitively, accurate
uncertainty estimates can dramatically reduce the amount
of labeled data for model training, while inaccurate esti-
mates make the model choose uninformative instances and
even lead to worse performance due to overfitting. For ac-
tive learning, we use the acquisition function proposed in
(Hafner et al., 2018):

{xnew, ynew} ∼ pnew(x, y) ∝
(

1 +
Var[µ(x)]

σ2(x)

)2

. (8)
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Figure 7. The performance of different models for active learn-
ing on the Year Prediction MSD dataset. We report the average
performance and standard deviation for 5 random initializations.

This acquisition function allows us to extract the data from
the region where the model has high epistemic uncertainty
but the data has low aleatoric noise. For the deterministic
neural network, we use the predictive variance as a proxy
since it cannot model epistemic uncertainty.

We use the Year Prediction MSD regression dataset, where
the task is to predict the release year of a song from 90
audio features. It has total 515,345 data points of which
463,715 are for training. We experiment with the following
procedure. Starting from 50 labels, the models select a
batch of 50 additional labels in every 100 epochs. The
remaining data points in the training dataset are available
for acquisition, and we evaluate performance on the whole
test set.

As we can see from Fig. 7, the RMSE of SDE-Net con-
sistently decreases as we acquire more labeled data. Such
results show that SDE-Net successfully acquire data from
informative region. However, the performance gain of BBP
and p-SGLD are still negligible even after 100 acquisitions.
We can also observe that the performance of the determin-
istic NN and DeepEnsemble start to degrade after several
iterations. This is because they keep extracting uninforma-
tive data points and thus suffer from overfitting due to the
small training data size.

5. Additional Related Work
Uncertainty estimation: BNNs is a principled way for
uncertainty quantification. Performing exact Bayesian infer-
ence is inefficient and computationally intractable. A com-
mon workaround is to use approximation methods like vari-
ational inference (Blundell et al., 2015; Louizos & Welling,
2017; Shi et al., 2018; Louizos & Welling, 2016; Zhang
et al., 2018), Laplace approximation (Ritter et al., 2018),
expectation propagation (Li et al., 2015), stochastic gra-
dient MCMC (Li et al., 2016; Welling & Teh, 2011) and
so on. Gal & Ghahramani (2016; 2015) proposed to use
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Monte-Carlo Dropout (MC-dropout) at test time to estimate
the uncertainty which has a nice interpretation in terms of
variational Bayes. Another key element which can affect
the performance of BNNs is the choice of prior distribution.
The most common prior to use is the independent Gaussian
distribution which can only give limited and even biased
information for uncertainty. Recently, Hafner et al. (2018)
proposed to use noise contrastive priors (NCPs) to obtain
reliable uncertainty estimates. Functional variational BNNs
(fBNNs) (Sun et al.) employ Gaussian Process (GP) priors
and use BNNs for inference.

A number of non-Bayesian methods have also been pro-
posed for uncertainty quantification. DeepEnsemble (Lak-
shminarayanan et al., 2017) trains an ensemble of NNs and
reports competitive uncertainty estimates to MC dropout.
Pereyra et al. (2017) adds an entropy penalty as the network
regularizer. In (Lee et al., 2018), the authors proposed to
minimize a new confidence loss to both a sharp predictive
distribution for training data and a flat predictive distribu-
tion for OOD data. The OOD data is generated by using a
generative model. Prior network (Malinin & Gales, 2018;
2019) parametrized a Dirichlet distribution over categorical
output distributions which allows high uncertainty for OOD
data, but it is only applicable to classification tasks.

Neural dynamic system: E (2017) first observed the link
between ResNet and ODE (Ince, 1956). The residual block
which is formulated as xn+1 = xn + f(xn) can be con-
sidered as the forward Euler discretization of the ODE
dxt = f(xt). In (Lu et al., 2018), the authors show that
many state-of-the-art deep network architectures, such as
PolyNet (Zhang et al., 2017), FractalNet (Larsson et al.,
2017) and RevNet (Gomez et al., 2017), can be regarded as
different discretization schemes of ODEs. Chen et al. (2018)
further generalized the discrete ResNet to a continuous-
depth network by making use of the existing ODE solvers.
The adjoint method (Plessix, 2006) is used during ODE-Net
training, which allows constant memory cost and adaptive
computation. However, these works all focus on improving
the predictive accuracy while our work quantifies model un-
certainty based on the SDE formulation and the introduced
Brownian motion term. Concurrently with this paper, Tzen
& Raginsky (2019) establish a connection between infinitely
deep residual networks and solutions to SDE. Li et al. (2020)
propose a generalization of the adjoint method to compute
gradients through solutions of SDEs and apply a latent SDE
for continuous time-series data modeling. Our approaches
were developed simultaneously but focus on using neural
SDEs for uncertainty quantification.

6. Conclusion
We proposed a neural stochastic differential equation model
(SDE-Net) for quantifying uncertainties in deep neural nets.

The proposed model can separate different sources of un-
certainties compared with existing non-Bayesian methods
while being much simpler and more straightforward than
Bayesian neural nets. Through comprehensive experiments,
we demonstrated that SDE-Net has strong performance com-
pared to state-of-the-art techniques for uncertainty quantifi-
cation on both classification and regression tasks. To the
best of our knowledge, our work represents the first study
which establishes the connection between stochastic dynam-
ical system and neural nets for uncertainty quantification.
As the approach is general and efficient, we believe this is
a promising direction for equipping neural nets with mean-
ingful uncertainties in many safety-critical applications.
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