
Adversarial Multi-Source PAC Learning

A. Proof of Theorem 1 and its corollaries
Theorem 1. Let N,m, k ∈ N be integers, such that k ∈ (N/2, N ]. Let α = N−k

N < 1
2 be the proportion of corrupted

sources. Assume that H has the uniform convergence property with rate function s. Then there exists a learner L :
(X×Y)

N×m → H with the following two properties.

(a) Let G be a fixed subset of [N ] of size |G| = k. For S
′

= {S′

1, . . . , S
′

N}
i.i.d.∼ D, with probability at least 1− δ over the

sampling of S′:

R(L(A(S
′
)))−min

h∈H
R(h) ≤ 2s

(
km,

δ

2
, SG

)
+ 6αmax

i∈[N ]
s
(
m,

δ

2N
,Si
)
, (22)

uniformly against all fixed-set adversaries with preserved set G, where S = {S1, . . . , SN} = A(S
′
) is the dataset

modified the adversary and SG = ∪i∈GSi is the set of all uncorrupted data.

(b) For S
′

= {S′

1, . . . , S
′

N}
i.i.d.∼ D, with probability at least 1− δ over the sampling of S′:

R(L(A(S
′
)))−min

h∈H
R(h) ≤ 2s

(
km,

δ

2
(
N
k

) , SG)+ 6αmax
i∈[N ]

s
(
m,

δ

2N
,Si
)
, (23)

uniformly against all flexible-set adversaries with preserved size k, where S = {S1, . . . , SN} = A(S
′
) is the dataset

returned by the adversary, G is the set of sources not modified by the adversary and SG = ∪i∈GSi is the set of all
uncorrupted data.

Proof. Denote by S′i = {(x′i,1, y′i,1), . . . , (x′i,m, y
′
i,m)} for i = 1, . . . , N the initial datasets and by Si =

{(xi,1, yi,1), . . . , (xi,m, yi,m)} for i = 1, . . . , N the datasets after the modifications of the adversary. As explained in
the main body of the paper, we denote by:

R̂i(h) =
1

m

m∑
j=1

`(h(xi,j), yi,j) (24)

the empirical risk of any hypothesis h ∈ H on the dataset Si and by:

dH(Si, Sj) = sup
h∈H
|R̂i(h)− R̂j(h)| (25)

the empirical discrepancy between the datasets Si and Sj .

We show that a learner that first runs a certain filtering algorithm (Algorithm 1) based on the discrepancy metric and then
performs empirical risk minimization on the remaining data to compute a hypothesis satisfies the properties stated in the
theorem. The full algorithm for the learner is therefore given in Algorithm 2.

(a) The key idea of the proof is that the clean sources are close to each other with high probability, so they get selected when
running Algorithm 1. On the other hand, if a bad source has been selected, it must be close to at least one of the good
sources, so it can not have too bad an effect on the empirical risk.

Algorithm 1
input Datasets S1, . . . , SN

Initialize T = {} // trusted sources
for i = 1, . . . , N do

if dH
(
Si, Sj

)
≤ s

(
m, δ

2N , Si
)

+ s
(
m, δ

2N , Sj
)
,

for at least bN2 c values of j 6= i, then
T = T ∪ {i}

end if
end for

output
⋃
i∈T Si // indices of the trusted sources
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Algorithm 2
input Datasets S1, . . . , SN

Run Algorithm 1 to compute ST =
⋃
i∈T Si

Compute hA = argminh∈H
1
|ST|

∑
(x,y)∈ST

`(h(x), y) //empirical risk minimizer over all trusted sources
output hA

For all i ∈ G, let Ei be the event that:

sup
h∈H

∣∣∣R(h)− R̂i(h)
∣∣∣ ≤ s(m, δ

2N
,Si

)
. (26)

Further, let EG be the event that:

sup
h∈H

∣∣∣R(h)− R̂G(h)
∣∣∣ ≤ s(km, δ

2
, SG

)
, (27)

where

R̂G(h) =
1

km

∑
i∈G

m∑
j=1

`(h(xi,j), yi,j).

Denote by Eci and EcG the complements of these events. Then we know that P (EcG) ≤ δ
2 , and P (Eci ) ≤ δ

2N for all i ∈ G.
Therefore, if E = EG ∧ (∧i∈GEi), we have:

P (Ec) = P (EcG ∨ (∨i∈GEci )) ≤ P (EcG) +
∑
i∈G

P (Eci ) ≤ δ

2
+ k

δ

2N
≤ δ. (28)

Hence, the probability of the event E that all of (26) and (27) hold, is at least 1− δ. We now show that under the event E ,
Algorithm 2 returns a hypothesis that satisfies the condition in (a).

Indeed, fix an arbitrary fixed-set adversary A with preserved set G. Whenever E holds, for all i, j ∈ G we have:

dH (Si, Sj) = sup
h∈H

(|R̂i(h)− R̂j(h)|) ≤ sup
h∈H

(
|R̂i(h)−R(h)|

)
+ sup
h∈H

(
|R(h)− R̂j(h)|

)
≤ s

(
m,

δ

2N
,Si

)
+ s

(
m,

δ

2N
,Sj

)
.

(29)

Now since k ≥ bN2 c + 1, we get that G ⊆ T. Moreover, for any i ∈ T \ G, there exists at least one j ∈ G, such that
dH(Si, Sj) ≤ s

(
m, δ

2N , Si
)

+ s
(
m, δ

2N , Sj
)
. For any i ∈ T \G, denote by f(i) the smallest such j. Therefore, for any

i ∈ (T \G):

|R̂i(h)−R(h)| ≤ |R̂i − R̂f(i)(h)|+ |R̂f(i)(h)−R(h)| ≤ dH
(
Si, Sf(i)

)
+ s

(
m,

δ

2N
,Sf(i)

)
(30)

≤ s
(
m,

δ

2N
,Si

)
+ 2s

(
m,

δ

2N
,Sf(i)

)
(31)

Denote by

R̂T(h) =
1

|T|
∑
i∈T
R̂i(h) =

1

|ST|
∑

(x,y)∈ST

`(h(x), y) (32)

the loss over all the trusted data. Then for any h ∈ H we have:

∣∣∣R̂T(h)−R(h)
∣∣∣ ≤ 1

|T|m

∣∣∣∣∣∑
i∈G

m∑
l=1

(`(h(xi,l), yi,l)−R(h))

∣∣∣∣∣+
∑

i∈(T\G)

∣∣∣∣∣
m∑
l=1

(`(h(xi,l), yi,l)−R(h))

∣∣∣∣∣
 (33)

=
k

|T|

∣∣∣R̂G(h)−R(h)
∣∣∣+

1

|T|
∑

i∈(T\G)

∣∣∣R̂i(h)−R(h)
∣∣∣ (34)
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≤ k

|T|
s

(
km,

δ

2
, SG

)
+

1

|T|
∑

i∈(T\G)

∣∣∣R̂i(h)−R(h)
∣∣∣ (35)

≤ k

|T|
s

(
km,

δ

2
, SG

)
+

1

|T|
∑

i∈(T\G)

(
s

(
m,

δ

2N
,Si

)
+ 2s

(
m,

δ

2N
,Sf(i)

))
(36)

≤ k

|T|
s

(
km,

δ

2
, SG

)
+ 3
|T| − k
|T|

max
i∈[N ]

s

(
m,

δ

2N
,Si

)
(37)

≤ s
(
km,

δ

2
, SG

)
+ 3

N − k
N

max
i∈[N ]

s

(
m,

δ

2N
,Si

)
(38)

Finally, let h∗ = argminh∈HR(h) and hA = L(A(S′)) = argminh∈H R̂T(h). Then:

R(hA)−R(h∗) =
(
R(hA)− R̂T(hA)

)
+
(
R̂T(hA)−R(h∗)

)
≤
(
R(hA)− R̂T(hA)

)
+
(
R̂T(h∗)−R(h∗)

)
(39)

≤ 2 sup
h∈H

∣∣∣R̂T(h)−R(h)
∣∣∣ . (40)

Since we showed this result for an arbitrary fixed-set adversary with preserved set G, the result follows.

(b) The crucial difference in the case of the flexible-set adversary is that the set G is chosen after the clean data is observed.
We thus need concentration results for all of the subsets of [N ] of size k, as well as all individual sources.

For all i ∈ [N ], let Ei be the event that:

sup
h∈H

∣∣∣R(h)− R̂′i(h)
∣∣∣ ≤ s(m, δ

2N
,S′i

)
, (41)

where

R̂′i =
1

m

m∑
j=1

`(h(x′i,j), y
′
i,j) (42)

Further, for any A ⊆ [N ] of size |A| = k, let EA be the event that:

sup
h∈H

∣∣∣R(h)− R̂′A(h)
∣∣∣ ≤ s(km, δ

2
(
N
k

) , S′A
)
, (43)

where S′A = ∪i∈AS′i and

R̂′A(h) =
1

km

∑
i∈A

m∑
l=1

`(h(x′i,l), y
′
i,l). (44)

Then we know that P (Eci ) ≤ δ
2N for all i ∈ [N ] and P (EcG) ≤ δ

2(Nk)
for all A ⊆ [N ] with |A| = k. Therefore, if

E = (∧AEA) ∧
(
∧i∈[N ]Ei

)
, we have:

P (Ec) = P
(
(∨AEcA) ∨

(
∨i∈[N ]Eci

))
≤
∑
A

P (EcA) +
∑
i∈[N ]

P (Eci ) ≤
(
N

k

)
δ

2
(
N
k

) +N
δ

2N
= δ. (45)

Hence, the probability of the event E that all of (41) and (43) hold, is at least 1− δ. In particular, under E :

sup
h∈H

∣∣∣R(h)− R̂G(h)
∣∣∣ = sup

h∈H

∣∣∣R(h)− R̂′G(h)
∣∣∣ ≤ s(km, δ

2
(
N
k

) , S′G
)

= s

(
km,

δ

2
(
N
k

) , SG) (46)

and

sup
h∈H

∣∣∣R(h)− R̂i(h)
∣∣∣ = sup

h∈H

∣∣∣R(h)− R̂′i(h)
∣∣∣ ≤ s(m, δ

2N
,S′i

)
= s

(
m,

δ

2N
,Si

)
, (47)
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for all i ∈ G.

Now, for any flexible-set adversary with preserved size k, the same argument as in (a) shows that:

R(hA)−R(h∗) ≤ 2s

(
km,

δ

2
(
N
k

) , SG)+ 6
N − k
N

max
i∈[N ]

s

(
m,

δ

2N
,Si

)
(48)

holds under the event E .

We now show how to obtain data-dependent guarantees, via the notion of Rademacher complexity. Let

RS (` ◦ H) = Eσ

(
sup
h∈H

1

n

n∑
i=1

σi`(h(xi), yi)

)
(49)

be the Rademacher complexity of H with respect to the loss function ` on a sample S = {(x1, y1), . . . , (xn, yn)}. Let
SG = ∪i∈GSi, Ri = RSi (` ◦ H) and RG = RSG (` ◦ H). Then we have:

Corollary 2. In the setup of Theorem 1, against a fixed-set adversary, it holds that

R(L(A(S
′
)))−min

h∈H
R(h) ≤ 4RG + 6

√
log( 4

δ )

2km
+ α

(
18

√
log
(
4N
δ

)
2m

+ 12 max
i∈[N ]

Ri

)
. (50)

Proof. We use the standard generalization bound based on Rademacher complexity. Assume that S =
{(x1, y1) , . . . , (xn, yn)} ∼ D, then with probability at least 1− δ over the data (Mohri et al., 2018):

sup
h∈H
|E (`(h(x), y))− 1

n

n∑
i=1

`(h(xi), yi)| ≤ 2RS (` ◦ H) + 3

√
log
(
2
δ

)
2n

. (51)

Substituting into the result of Theorem 1 gives the result.

Corollary 3. In the setup of Theorem 1, against a flexible-set adversary, it holds that

R(L(A(S
′
)))−min

h∈H
R(h) ≤ 4RG + 12αmax

i∈[N ]
Ri + Õ

(
4
√
α√
m

)
. (52)

Proof. Using the concentration result from Corollary 2 and
(
N
k

)
=
(

N
(1−α)N

)
=
(
N
αN

)
≤ 2H(α)N , where H(p) =

−p log2(p)− (1− p) log2(1− p) is the binary entropy function, we obtain:

R(L(A(S′)))−min
h∈H
R(h) ≤ 4RG + 6

√
log(

4(Nk)
δ )

2km
+ α

18

√
log
(
4N
δ

)
2m

+ 12 max
i∈[N ]

Ri

 (53)

= 4RG + 6

√
log(

(
N
k

)
)

2km
+

log( 4
δ )

2km
+ α

18

√
log
(
4N
δ

)
2m

+ 12 max
i∈[N ]

Ri

 (54)

≤ 4RG + 6

√
H(α)N log(2)

2(1− α)Nm
+

log( 4
δ )

2(1− α)Nm
+ α

18

√
log
(
4N
δ

)
2m

+ 12 max
i∈[N ]

Ri

 (55)

≤ 4RG + 12αmax
i∈[N ]

Ri + Õ
(

4
√
α√
m

)
(56)

where for the last inequality we used H(α) ≤ 2
√
α(1− α), 1− α ∈ ( 1

2 , 1] and 4
√
α > α.

For the case of binary classifiers, we also provide a simpler bound in terms of the VC dimension ofH.
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Corollary 4. Assume that Y = {−1, 1} and thatH has finite VC-dimension d. Then:

(a) In the case of the fixed-set adversary there exists a universal constant C, such that:

R(L(A(S′)))−min
h∈H
R(h) ≤ 2C

√
d

km
+ 2

√
2 log(4

δ )

km
+ α

6C

√
d

m
+ 6

√
2 log

(
4N
δ

)
m

 . (57)

(b) In the case of the flexible-set adversary:

R(L(A(S′)))−min
h∈H
R(h) ≤ O

(√
d

km
+

4
√
α√
m

+ α

√
d

m
+ α

√
log(N)

m

)
. (58)

Proof. (a) WheneverH is of finite VC-dimension d, there exists a constant C, such that the following generalization bound
holds (Bousquet et al., 2004):

sup
h∈H
|E (`(h(x), y))− 1

n

n∑
i=1

`(h(xi), yi)| ≤ C
√
d

n
+

√
2 log

(
2
δ

)
n

(59)

and henceH has the uniform convergence property with rate function s = C
√

d
n +

√
2 log( 2

δ )
n . Substituting into the result

of Theorem 1 gives the result.

(b) Using the concentration result from (a) and
(
N
k

)
=
(

N
(1−α)N

)
=
(
N
αN

)
≤ 2H(α)N , where H(p) = −p log2(p) − (1 −

p) log2(1− p) is the binary entropy function, we obtain:

R(L(A(S′)))−min
h∈H
R(h) ≤ 2C

√
d

km
+ 2

√
2 log(

4(Nk)
δ )

km
+ α

6C

√
d

m
+ 6

√
2 log

(
4N
δ

)
m

 (60)

= 2C

√
d

km
+ 2

√
2 log(

(
N
k

)
)

km
+

2 log(4
δ )

km
+ α

6C

√
d

m
+ 6

√
2 log

(
4N
δ

)
m

 (61)

≤ 2C

√
d

km
+ 2

√
2H(α)N log(2)

(1− α)Nm
+

2 log(4
δ )

(1− α)Nm
+ α

6C

√
d

m
+ 6

√
2 log

(
4N
δ

)
m


(62)

≤ O

(√
d

km
+

4
√
α√
m

+ α

√
d

m
+ α

√
log(N)

m

)
, (63)

where for the last inequality we used H(α) ≤ 2
√
α(1− α) and 1− α ∈ ( 1

2 , 1].
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B. Proof of Theorem 2
Theorem 2. LetH be a non-trivial hypothesis space. Let m and N be any positive integers and let G be a fixed subset of
[N ] of size k ∈ {1, . . . , N − 1}. Let L : (X × Y)N×m → H be a multi-source learner that acts by merging the data from
all sources and then calling a single-source learner. Let S′ ∈ (X × Y)

N×m be drawn i.i.d. from D. Then there exists a
distribution D with minh∈HR(h) = 0 and a fixed-set adversary A with index set G, such that:

PS′∼D

(
R
(
L(A(S′)

)
>

α

8(1− α)

)
>

1

20
, (64)

where α = N−k
N is the power of the adversary.

We use a similar proof technique as in the lower bound results in (Bshouty et al., 2002) and in the classic sample complexity
lower bound for binary classification, e.g. Theorem 3.20 in (Mohri et al., 2018). An overview is as follows. Consider a
distribution on X that has support only at two points - the common point x1 and the rare point x2. Take P(x2) = O( α

1−α ).

Then the expected number of occurrences of the point x2 in G is O
(

α
1−α (1− α)Nm

)
= O (αNm). Thus, one can show

that with constant probability the number of x2’s in G is at most αNm and hence the adversary (that has access to exactly
αNm points in total) can insert the same number of x2’s, but wrongly labelled, into the final dataset. Therefore, based on
the union of the corrupted datasets, no algorithm can guess with probability greater than 1/2 what the true label of x2 was.

Proof. We prove that there exists a distribution D on X and a labelling function f ∈ H, such that the resulting joint
distribution on X × Y , defined by x ∼ D and y = f(x), satisfies the desired property.

Without loss of generality, let G = [1, 2, . . . , k]. SinceH is non-trivial, there exist h1, h2 ∈ H and x1, x2 ∈ X , such that
h1(x1) = h2(x1), while h1(x2) = 1, but h2(x2) = −1. Consider the following distribution on X :

PD(x1) = 1− 4ε and PD(x2) = 4ε, (65)

where ε = 1
8

α
1−α . Assume that the points are labelled by a function f ∈ H (to be chosen later as either h1 or h2). Denote

the initial uncorrupted collection of datasets by S′ = (S′1, . . . , S
′
N ), with S′i = {(x′i,1, f(x′i,1)), . . . , (x′i,m, f(x′i,m))} and

x′i,j being i.i.d. samples from D.

First we show that with constant probability the point x2 appears at most αNm times in G. Indeed, let C be this number
of appearances. Then C is a binomial random variable with probability of success 4ε and number of trials (1 − α)Nm.
Therefore, by the Chernoff bound:

PS′(C ≥ αNm) = PS′(C ≥ (1 + 1)4ε(1− α)Nm) ≤ e−αNm6 ≤ e−1/6 < 17

20
(66)

and so:
PS′(C ≤ αNm) >

3

20
. (67)

Now consider the following policy for the fixed-set adversary As : S′ → S. For any index i ∈ [N ] the adversary replaces
S′i = {(x′i,1, f(x′i,1)), . . . , (x′i,m, f(x′i,m))} with a dataset Si = {(xi,1, yi,1) . . . , (xi,m, yi,m)}, such that:

(xi,j , yi,j) =


(x′i,j , f(x′i,j)), if i ∈ G = [1, 2, . . . , k]

(x2,−f(x2)), if i ∈ [k + 1, . . . , N ] and (i− k − 1)m+ j ≤ C
(x1, f(x1)), otherwise

(68)

Then the adversary returns S = (S1, . . . , SN ). That is, the adversary keeps the datasets in G untouched, and fills the datasets
in [N ]\G with as many x2’s as there are in G, but wrongly labelled.

Crucially, whenever C ≤ αNm, the union of the data in all N sets will look the same no matter if the original labelling
function was h1 or h2. In particular, L(As(S′)) will be identical in both cases.

Finally, we argue that under the event C ≤ αNm and the chosen adversary, the learner would incur high loss and show that
this implies the result in (19). Let S be the set of all datasets in (X × Y)

N×m, such that C ≤ αNm holds. We just showed
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that PS′(S′ ∈ S) > 3
20 and that whenever S′ ∈ S , L(As(S′)) is independent of whether the original labelling function was

h1 or h2.

Consider a fixed set S′ ∈ S and let S = As(S′) and hS = L(S). Denote by R(hS , f) = PD(hS(x) 6= f(x) ∩ x 6= x1)
and note thatR(hS , f) ≤ PD(hS(x) 6= f(x)) = R(L(As(S′))). Notice that:

R(hS , h1) +R(hS , h2) =
∑
i=1,2

1hS(xi) 6=h1(xi)1xi 6=x1
P(xi) +

∑
i=1,2

1hS(xi)6=h2(xi)1xi 6=x1
P(xi) (69)

= 1hS(x2)6=h1(x2)4ε+ 1hS(x2) 6=h2(x2)4ε (70)
= 4ε, (71)

where we used that h1(x2) = 1 = −h2(x2) and that hS is independent of the underlying labelling function.

Since the above holds for any S′ ∈ S, it also holds in expectation, conditioned on S′ ∈ S:

ES′∈S (R(hS , h1) +R(hS , h2)) ≥ 4ε. (72)

Therefore, ES′∈S (R(hS , hi)) ≥ 2ε for at least one of i = 1, 2. Take f to be h1, if h1 satisfies the inequality, and h2
otherwise. Conditioning on {R(hS , f) ≥ ε} and usingR(hS , f) ≤ PD(x 6= x1) = 4ε:

2ε ≤ ES′∈S (R(hS , f)) = ES′∈S (R(hS , f)|R(hS , f) ≥ ε)PS′∈S (R(hS , f) ≥ ε) (73)
+ ES′∈S (R(hS , f)|R(hS , f) < ε)PS′∈S (R(hS , f) < ε) (74)
≤ 4εPS′∈S (R(hS , f) ≥ ε) + εPS′∈S (R(hS , f) < ε) (75)
= ε+ 3εPS′∈S (R(hS , f) ≥ ε) . (76)

Hence,

PS′∈S (R(hS , f) ≥ ε) ≥ 1

3ε
(2ε− ε) =

1

3
(77)

Finally,

PS′ (R(L(As(S′))) ≥ ε) ≥ PS′ (R(hS , f) ≥ ε) ≥ PS′∈S (R(hS , f) ≥ ε)PS′ (S′ ∈ S) >
1

3

3

20
=

1

20
. (78)
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C. Proof of Theorem 3
Theorem 3. LetH ⊂ {h : X → Y} be a hypothesis space, let m and N be any integers and let G be a fixed subset of [N ]

of size k ∈ {1, . . . , N − 1}. Let S′ ∈ (X × Y)
N×m be drawn i.i.d. from D. Then the following statements hold for any

multi-source learner L:

(a) Suppose that H is non-trivial. Then there exists a distribution D on X with minh∈HR(h) = 0, and a fixed-set
adversary A with index set G, such that:

PS′

(
R
(
L(A(S′)

)
>

α

8m

)
>

1

20
. (79)

(b) Suppose thatH has VC dimension d ≥ 2. Then there exists a distribution D on X × Y and a fixed-set adversary A
with index set G, such that:

PS′

(
R
(
L(A(S′)

)
−min
h∈H
R(h) >

√
d

1280Nm
+

α

16m

)
>

1

64
. (80)

In both cases, α = N−k
N is the power of the adversary.

To prove part (a), we use a similar technique as in the lower bound results in (Bshouty et al., 2002) and in the classic
sample complexity lower bound for binary classification, e.g. Theorem 3.20 in (Mohri et al., 2018). An overview is as
follows. Consider a distribution on X that has support only at two points - the common point x1 and the rare point x2. Take
P(x2) = O( αm ). Then one can show that with constant probability the number of datasets that contain x2 is at most αN .
We show that in this case there exists an algorithm for the strong adversary that will return the same unordered collection of
datasets, regardless of the true label of x2. Thus no learner can guess with probability greater than 1/2 what the true label of
x2 was.

Part (b) follows from part (a) and the standard lower bound for agnostic binary classification.

Proof. a) As in Theorem 2, we prove that there exists a distribution D on X and a labeling function f ∈ H, such that the
resulting joint distribution on X × Y , defined by x ∼ D and y = f(x), satisfies the desired property.

Without loss of generality, let G = [1, 2, . . . , k]. Since H is non-trivial (d ≥ 2), there exist h1, h2 ∈ H and x1, x2 ∈ X ,
such that h1(x1) = h2(x1), while h1(x2) = 1, but h2(x2) = −1. Consider the following distribution on X :

PD(x1) = 1− 4ε and PD(x2) = 4ε, (81)

where ε = α
8m . Assume that the points are labelled by a function f ∈ H (to be chosen later as either h1 or h2). Denote the

initial uncorrupted collection of datasets by S′ = (S′1, . . . , S
′
N ), with S′i = {(x′i,1, f(x′i,1)), . . . , (x′i,m, f(x′i,m))} and x′i,j

being i.i.d. samples from D.

First we show that with constant probability the point x2 is contained in no more than αN sources. Indeed, let Cb be the
number of sources that contain x2 and let Cp be the number of points (out of the Nm in total) that are equal to x2. Clearly
Cb ≤ Cp. Note that Cp is a binomial random variable with probability of success 4ε and number of trials Nm. Therefore,
by the Chernoff bound:

PS′(Cp ≥ αN) = PS′(Cp ≥ (1 + 1)4εNm) ≤ e−αN6 ≤ e−1/6 < 17

20
(82)

and so:

PS′(Cb ≤ αN) ≥ PS′(Cp ≤ αN) >
3

20
. (83)

Now consider the following policy for the adversary As : S′ → S. Whenever Cb ≤ αN , let M ⊂ G be the list of indexes
i ∈ G, such that S′i contains x2. Let l = |M | and note that l ≤ Cb ≤ αN . For any index i ∈ [N ] the adversary replaces
S′i = {x′i,1, f(x′i,1), . . . , (x′i,m, f(x′i,m))} with a dataset Si = {(xi,1, yi,1) . . . , (xi,m, yi,m)}, such that:
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(xi,j , yi,j) =


(x′i,j , f(x′i,j)), if i ∈ G = [1, 2, . . . , k]

(x1, f(x1)), if i ∈ [k + 1, . . . , k + l] and x′M [i−k],j = x1

(x2,−f(x2)), if i ∈ [k + 1, . . . , k + l] and x′M [i−k],j = x2

(x1, f(x1)), if i ∈ [k + l + 1, . . . , N ]

(84)

Then the adversary returns S = (S1, . . . , SN ). That is, the adversary keeps the datasets in G untouched, copies all of the
datasets in M into its own data, flipping the labels of the x2’s, and, in case there are additional sources at its disposal, it fills
them with (correctly labelled) x1’s only.

Crucially, the resulting (unordered) collection is the same no matter if the original labelling function was h1 or h2. In
particular, L(S) will be the same in both cases.

In the case when Cb > αN , the adversary leaves the data unchanged, i.e. S = S′.

Finally, we argue that under the event Cb ≤ αN and the chosen adversary, the learner would incur high loss and show that
this implies the result in (20). Let S be the set of all datasets in (X × Y)

N×m, such that Cb ≤ αN holds. We just showed
that PS′(S′ ∈ S) > 3

20 and that whenever S′ ∈ S , L(As(S′)) is independent of whether the original labelling function was
h1 or h2.

Now the proof proceeds just as in Theorem 2. Consider a fixed set S′ ∈ S and let S = As(S′) and hS = L(S). Denote by
R(hS , f) = PD(hS(x) 6= f(x) ∩ x 6= x1) and note thatR(hS , f) ≤ PD(hS(x) 6= f(x)) = R(L(As(S′))). Notice that:

R(hS , h1) +R(hS , h2) =
∑
i=1,2

1hS(xi) 6=h1(xi)1xi 6=x1P(xi) +
∑
i=1,2

1hS(xi)6=h2(xi)1xi 6=x1P(xi) (85)

= 1hS(x2)6=h1(x2)4ε+ 1hS(x2)6=h2(x2)4ε (86)
= 4ε, (87)

where we used that h1(x2) = 1 = −h2(x2) and that hS is independent of the underlying labelling function.

Since the above holds for any S′ ∈ S, it also holds in expectation, conditioned on S′ ∈ S:

ES′∈S (R(hS , h1) +R(hS , h2)) ≥ 4ε. (88)

Therefore, ES′∈S (R(hS , hi)) ≥ 2ε for at least one of i = 1, 2. Take f to be h1, if h1 satisfies the inequality, and h2
otherwise. Conditioning on {R(hS , f) ≥ ε} and usingR(hS , f) ≤ PD(x 6= x1) = 4ε:

2ε ≤ ES′∈S (R(hS , f)) = ES′∈S (R(hS , f)|R(hS , f) ≥ ε)PS′∈S (R(hS , f) ≥ ε) (89)
+ ES′∈S (R(hS , f)|R(hS , f) < ε)PS′∈S (R(hS , f) < ε) (90)
≤ 4εPS′∈S (R(hS , f) ≥ ε) + εPS′∈S (R(hS , f) < ε) (91)
= ε+ 3εPS′∈S (R(hS , f) ≥ ε) . (92)

Hence,

PS′∈S (R(hS , f) ≥ ε) ≥ 1

3ε
(2ε− ε) =

1

3
(93)

Finally,

PS′ (R(L(As(S′))) ≥ ε) ≥ PS′ (R(hS , f) ≥ ε) (94)
≥ PS′∈S (R(hS , f) ≥ ε)PS′ (S′ ∈ S) (95)

>
1

3

3

20
=

1

20
. (96)
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b) First we argue that there exists a distribution D1 on X × Y and a fixed-set adversary As1, such that:

PS′∼D1

(
R(L(As1(S′)))−min

h∈H
R(h) >

√
d

320Nm

)
>

1

64
. (97)

This follows directly from the classic lower bound for binary classification in the unrealizable case. Indeed, applying
Theorem 3.23 in (Mohri et al., 2018) and setting the adversary to be the identity mapping gives the result.

Now, since any hypothesis space with VC dimension d ≥ 2 is non-trivial, we also know from a) that there exists an adversary
As2 and a distribution D2 on X × Y , such that:

PS′∼D2

(
R(L(As2(S′)))−min

h∈H
R(h) >

α

8m

)
>

1

20
. (98)

Fix any set of values for N,m, d, k. Then at least one of the pairs (As1,D1) and (As2,D2) satisfies:

PS′

(
R(L(As(S′)))−min

h∈H
R(h) >

√
d

1280Nm
+

α

16m

)
≥ PS′

(
R(L(As(S′))) > 2 max{

√
d

1280Nm
,
α

16m
}

)
(99)

= PS′

(
R(L(As(S′))) > max{

√
d

320Nm
,
α

8m
}

)
(100)

>
1

64
. (101)


