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Abstract
Coagent policy gradient algorithms (CPGAs) are
reinforcement learning algorithms for training a
class of stochastic neural networks called coagent
networks. In this work, we prove that CPGAs con-
verge to locally optimal policies. Additionally, we
extend prior theory to encompass asynchronous
and recurrent coagent networks. These extensions
facilitate the straightforward design and analysis
of hierarchical reinforcement learning algorithms
like the option-critic, and eliminate the need for
complex derivations of customized learning rules
for these algorithms.

1. Introduction
Reinforcement learning (RL) policies are often represented
by stochastic neural networks (SNNs). SNNs are networks
where the outputs of some units are not deterministic func-
tions of the units’ inputs. Several classes of algorithms
from various branches of RL research, such as those using
options (Sutton et al., 1999) or hierarchical architectures
(Bacon et al., 2017), can be formulated as using SNN poli-
cies (see Section 2 for more examples). In this paper we
study the problem of deriving learning rules for RL agents
with SNN policies.

Coagent networks are one formulation of SNN policies for
RL agents (Thomas & Barto, 2011). Coagent networks are
comprised of conjugate agents, or coagents; each coagent
is an RL algorithm learning and acting cooperatively with
the other coagents in its network. In this paper, we focus
specifically on the case where each coagent is a policy gradi-
ent RL algorithm, and call the resulting algorithms coagent
policy gradient algorithms (CPGAs). Intuitively, CPGAs
cause each individual coagent to view the other coagents as
part of the environment. That is, individual coagents learn
and interact with the combination of both the environment
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and the other coagents as if this combination was a single
environment.

Typically, algorithm designers using SNNs must create spe-
cialized training algorithms for their architectures and prove
the correctness of these algorithms. Coagent policy gradient
algorithms (CPGAs) provide an alternative: they allow algo-
rithm designers to easily derive stochastic gradient update
rules for the wide variety of policy architectures that can be
represented as SNNs. To analyze a given policy architec-
ture (SNN), one must simply identify the inputs and outputs
of each coagent in the network. The theory in this paper
then immediately provides a policy gradient (stochastic gra-
dient ascent) learning rule for each coagent, providing a
simple mechanism for obtaining convergent update rules for
complex policy architectures. This process is applicable to
SNNs across several branches of RL research.

This paper also extends that theory and the theory in prior
work to encompass recurrent and asynchronous coagent
networks. A network is recurrent if it contains cycles. A
network is asynchronous if units in the neural network do
not execute simultaneously or at the same rate. The latter
property allows distributed implementations of large neural
networks to operate asynchronously. Additionally, a coagent
network’s capacity for temporal abstraction (learning, rea-
soning, and acting across different scales of time and task)
may be enhanced, not just through the network topology,
but by designing networks where different coagents execute
at different rates. Furthermore, these extensions facilitate
the straightforward design and analysis of hierarchical RL
algorithms like the option-critic.

The contributions of this paper are: 1) a complete and formal
proof of a key CPGA result on which this paper relies (prior
work provides an informal and incomplete proof), 2) a gen-
eralization of the CPGA framework to handle asynchronous
recurrent networks, 3) empirical support of our theoretical
claims regarding the gradients of asynchronous CPGAs,
and 4) a proof that asynchronous CPGAs generalize the
option-critic framework, which serves as a demonstration of
how CPGAs eliminate the need for the derivation of custom
learning rules for architectures like the option-critic. Our
simple mechanistic approach to gradient derivation for the
option-critic is a clear example of the usefulness of the co-
agent framework to any researcher or algorithm designer
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creating or analyzing stochastic networks for RL.

2. Related Work
Klopf (1982) theorized that traditional models of classical
and operant conditioning could be explained by modeling
biological neurons as hedonistic, that is, seeking excita-
tion and avoiding inhibition. The ideas motivating coagent
networks bear a deep resemblance to Klopf’s proposal.

Stochastic neural networks have applications dating back
at least to Marvin Minsky’s stochastic neural analog re-
inforcement calculator, built in 1951 (Russell & Norvig,
2016). Research of stochastic learning automata continued
this work (Narendra & Thathachar, 1989); one notable ex-
ample is the adaptive reward-penalty learning rule for train-
ing stochastic networks (Barto, 1985). Similarly, Williams
(1992) proposed the well-known REINFORCE algorithm
with the intent of training stochastic networks. Since then,
REINFORCE has primarily been applied to deterministic
networks. However, Thomas (2011) proposed CPGAs for
RL, building on the original intent of Williams (1992).

Since their introduction, CPGAs have proven to be a prac-
tical tool for defining and improving RL agents. CPGAs
have been used to discover “motor primitives” in simulated
robotic control tasks and to solve RL problems with high-
dimensional action spaces (Thomas & Barto, 2012). They
are the RL precursor to the more general stochastic compu-
tation graphs.

The formalism of stochastic computation graphs was pro-
posed to describe networks with a mixture of stochastic and
deterministic nodes, with applications to supervised learn-
ing, unsupervised learning, and RL (Schulman et al., 2015).
Several recently proposed approaches fit into the formalism
of stochastic networks, but the relationship has frequently
gone unnoticed. One notable example is the option-critic
architecture (Bacon et al., 2017). The option-critic provides
a framework for learning options (Sutton et al., 1999), a
type of high-level and temporally extended action, and how
to choose between options. Below, we show that this frame-
work is a special case of coagent networks. Subsequent
work, such as the double actor-critic architecture for learn-
ing options (Zhang & Whiteson, 2019) and the hierarchical
option-critic (Riemer et al., 2018) also fit within and can be
informed by the coagent framework.

The Horde architecture (Sutton et al., 2011) is similar to
the coagent framework in that it consists of independent RL
agents working cooperatively. However, the Horde archi-
tecture does not cause the collection of all agents to follow
the gradient of the expected return with respect to each
agent’s parameters—the property that allows us to show the
convergence of CPGAs.

CPGAs can be viewed as a special case of multi-agent re-
inforcement learning (MARL), the application of RL in
settings where multiple agents exist and interact. However,
MARL differs from CPGAs in that MARL agents typically
have separate manifestations within the environment; ad-
ditionally, the objectives of the MARL agents may or may
not be aligned. Working within the MARL framework, re-
searchers have proposed a variety of principled algorithms
for cooperative multi-agent learning (Guestrin et al., 2002;
Zhang et al., 2007; Liu et al., 2014). An overview of MARL
is given by Buşoniu et al. (2010).

3. Background
We consider an MDP, M = (S,A,R, P,R, d0, γ), where
S is the finite set of possible states, A is the finite set of
possible actions, andR is the finite set of possible rewards
(although this work extends to MDPs where these sets are
infinite and uncountable, the assumption that they are finite
simplifies notation). Let t ∈ {0, 1, 2, . . . } denote the time
step. St, At, and Rt are the state, action, and reward at time
t, and are random variables that take values in S, A, and
R, respectively. P :S×A×S→[0, 1] is the transition func-
tion, given by P (s, a, s′) := Pr(St+1=s′|St=s,At=a).
R:S×A×S×R→[0, 1] is the reward distribution, given
by R(s, a, s′, r) := Pr(Rt=r|St=s,At=a, St+1=s′). The
initial state distribution, d0:S → [0, 1], is given by d0(s) :=
Pr(S0=s). The reward discount parameter is γ ∈ [0, 1]. An
episode is a sequence of states, actions, and rewards, starting
from t=0 and continuing indefinitely. We assume that the
discounted sum of rewards over an episode is finite.

A policy, π : S × A → [0, 1], is a stochastic method of
selecting actions, such that π(s, a) := Pr(At=a|St=s). A
parameterized policy is a policy that takes a parameter vec-
tor θ ∈ Rn. Different parameter vectors result in different
policies. More formally, we redefine the symbol π to denote
a parameterized policy, π : S × A × Rn → [0, 1], such
that for all θ ∈ Rn, π(·, ·, θ) is a policy. We assume that
∂π(s, a, θ)/∂θ exists for all s ∈ S, a ∈ A, and θ ∈ Rn.
An agent’s goal is typically to find a policy that maximizes
the objective function J(π) := E [

∑∞
t=0 γ

tRt|π] , where
conditioning on π denotes that, for all t, At ∼ π(St, ·).
The state-value function, vπ : S → R, is defined as
vπ(s) := E

[∑∞
k=0 γ

kRt+k
∣∣St=s, π] . The discounted re-

turn, Gt, is defined as Gt :=
∑∞
k=0 γ

kRt+k. We denote
the objective function for a policy that has parameters θ as
J(θ), and condition probabilities on θ to denote that the
parameterized policy uses parameter vector θ.

A coagent network is a parameterized policy that consists
of an acyclic network of nodes (coagents), which do not
share parameters. Each coagent can have several inputs
that may include the state at time t, a noisy and incomplete
observation of the state at time t, and/or the outputs of
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Figure 1. Diagram of the three-step process for action generation
for a fully connected feedforward network (we do not require the
network to have this structure). The circle in the middle denotes
the ith coagent. First, preceding nodes are executed to compute
the inputs to this coagent. Second, the coagent uses these inputs
to produce its output, Ut. Third, the remainder of the network is
executed to produce an action. For each coagent, all inputs are
optional. That is, our approach encompasses architectures where
St and/or components of U pre

t are not provided to some coagents.

other coagents. When considering the ith coagent, θ can be
partitioned into two vectors, θi ∈ Rni (the parameters used
by the ith coagent) and θ̄i ∈ Rn−ni (the parameters used by
all other coagents). From the point of view of the ith coagent,
At is produced from St in three stages: execution of the
nodes prior to the ith coagent (nodes whose outputs are
required to compute the input to the ith coagent), execution
of the ith coagent, and execution of the remaining nodes
in the network to produce the final action. This process
is depicted graphically in Figure 1 and described in detail
below.

First, we define a parameterized distribution πpre
i (St, ·, θ̄i) to

capture how the previous coagents in the network produce
their outputs given the current state. The output of the
previous coagents is a random variable, which we denote
by U pre

t , and which takes continuous and/or discrete values
in some set Upre. U pre

t is sampled from the distribution
πpre
i (St, ·, θ̄i). Next, the ith coagent takes St and U pre

t as
input. We denote this input, (St, U

pre
t ), as Xt (or Xi

t if
it is not unambiguously referring to the ith coagent), and
refer to Xt as the local state. Given this input, the coagent
produces the output U it (below, when it is unambiguously
referring to the output of the ith coagent, we make the i
implicit and write Ut). The conditional distribution of U it is
given by the ith coagent’s policy, πi(Xt, ·, θi). Although we
allow the ith coagent’s output to depend directly on St, it
may be parameterized to only depend on U pre

t . Finally, At
is sampled according to a distribution πpost

i (Xt, U
i
t , ·, θ̄i),

which captures how the subsequent coagents in the network
produce At. Below, we sometimes make θ̄i and θi implicit
and write the three policy functions as πpre

i (St, ·), πi(Xt, ·),
and πpost

i (Xt, U
i
t , ·). Figure 2 depicts the setup that we have

described and makes relevant independence properties clear.

4. The Coagent Policy Gradient Theorem
Consider what would happen if the ith coagent ignored all of
the complexity in this problem setup and simply learned and
interacted with the combination of both the environment
and the other coagents as if this combination was a single
environment. From the ith coagent’s point of view, the
actions would be Ut, the rewards would remain Rt, and
the state would be Xt (that is, St and U pre

t ). Note that the
coagent may ignore components of this local state, such as
the S component. Each coagent could naively implement
an unbiased policy gradient algorithm, like REINFORCE
(Williams, 1992), based only on these inputs and outputs.
We refer to the expected update in this setting as the local
policy gradient, ∆i, for the ith coagent. Formally, the local
policy gradient of the ith coagent is:

∆i(θi) := E

[ ∞∑
t=0

γtGt
∂ ln (πi (Xt, Ut, θi))

∂θi

∣∣∣∣∣θ
]
.

The local policy gradient should not be confused with
∇J(θ), which we call the global policy gradient, or
with ∇J(θ)’s ith component, [∂J(θ)/∂θi]

ᵀ (notice that
∇J(θ) =

[∂J(θ)
∂θ1

ᵀ
, ∂J(θ)
∂θ2

ᵀ
, . . . , ∂J(θ)

∂θm

ᵀ]ᵀ
, where m is the

number of coagents). Unlike a network following∇J(θ) or
a coagent following its corresponding component of∇J(θ),
a coagent following a local policy gradient faces a non-
stationary sequence of partially-observable MDPs as the
other coagents (part of its environment) update and learn.
One could naively design an algorithm that uses this local
policy gradient and simply hope for good results, but with-
out theoretical analysis, this hope would not be justified.

The coagent policy gradient theorem (CPGT) justifies this
approach: If θ is fixed and all coagents update their param-
eters following unbiased estimates, ∆̂i(θi), of their local
policy gradients, then the entire network will follow an un-
biased estimator of ∇J(θ). For example, if every coagent
performs the following update simultaneously at the end of
each episode, then the entire network will be performing
stochastic gradient ascent on J (without using backpropaga-
tion):

θi ← θi + α

∞∑
t=0

γtGt

(
∂ ln (πi (Xt, Ut, θi))

∂θi

)
.

In practice, one would use a more sophisticated policy gra-
dient algorithm than this simple variant of REINFORCE.

Although Thomas & Barto (2011) present the CPGT in
their Theorem 3, the provided proof is lacking in two ways.
First, it is not general enough for our purposes because
it only considers networks with two coagents. Second, it
is missing a crucial step. They define a new MDP, the
CoMDP, which models the environment faced by a coagent,
but they do not show that this definition accurately describes
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Figure 2. Bayesian network depicting the relationships of relevant
random variables.

the environment that the coagent faces. Without this step,
Thomas & Barto (2011) have shown that there is a new MDP
for which the policy gradient is a component of∇J(θ), but
not that this MDP has any relation to the coagent network.

4.1. The Conjugate Markov Decision Process (CoMDP)

In order to reason about the local policy gradient, we
begin by modeling the ith coagent’s environment as an
MDP, called the CoMDP. Given M , i, πpre

i , πpost
i , and

θ̄i, we define a corresponding CoMDP, M i, as M i :=
(X i,U i,Ri, P i, Ri, di0, γi). Although our proof of the
CPGT relies heavily on these definitions, due to space lim-
itations the formal definitions for each of these terms are
provided in Section A of the supplementary material. A
brief summary of definitions follows.

We write X̃i
t , Ũ

i
t , and R̃it to denote the state, action, and

reward of M i at time t. These random variables in the
CoMDP are written with tildes to provide a visual distinc-
tion between terms from the CoMDP and original MDP.
Additionally, when it is clear that we are referring to the ith

CoMDP, we often make i implicit (for example, we might
write X̃i

t as X̃t).

The input (analogous to the state) to the ith coagent is in the
set X i := S×Upre

i . For x ∈ X , we denote the S component
as x.s and the Upre component as x.upre. We also sometimes
denote an x ∈ X i as (x.s, x.upre). U i is an arbitrary set that
denotes the output of the ith coagent. Ri := R and γi := γ
represent the reward set and the discount factor, respectively.
We denote the transition function as P i(x, u, x′), the reward
function as Ri(x, u, x′, r), and initial state distribution as
di0(x). We write Ji(θi) to denote the objective function of
M i.

4.2. The CoMDP Models the Coagent’s Environment

Here we show that our definition of the CoMDP correctly
models the coagent’s environment. We do so by presenting a
series of properties and lemmas that each establish different
components of the relationship between the CoMDP and
the environment faced by a coagent. The proofs of these
properties and theorems are provided in Section B of the
supplementary material.

In Properties 1 and 2, by manipulating the definitions of
di0 and πpre

i , we show that di0 and the distribution of X̃0.s

capture the distribution of the inputs to the ith coagent.

Property 1. ∀x ∈ X , di0(x) = Pr(S0=x.s, U pre
0 =x.upre).

Property 2. For all s ∈ S, Pr(X̃0.s=s) = d0(s).

In Property 3, we show that P i captures the distributions of
the inputs that the ith coagent will see given the input at the
previous step and the output that it selected.

Property 3. For all x ∈ X , x′ ∈ X , and u ∈ U ,
P i(x, u, x′) = Pr(St+1=x′.s, U pre

t+1=x′.upre
|St=x.s, U pre

t =x.upre, Ut=u).

In Property 4, we show that Ri captures the distribution of
the rewards that the ith coagent receives given the output
that it selected and the inputs at the current and next steps.

Property 4. For all x ∈ X , x′ ∈ X , u ∈ U , and r ∈ R,
Ri(x, u, x′, r) = Pr(Rt=r|St=x.s, U pre

t =x.upre, Ut=u,
St+1=x′.s, U pre

t+1=x′.upre).

In Properties 5 and 6, we show that the distributions of X̃
and X̃t.s capture the distribution of inputs to the ith coagent.

Property 5. For all s∈S and upre∈Upre
i ,

Pr(X̃t=(s, upre)) = Pr(St=s, U
pre
t =upre).

Property 6. For all s ∈ S, Pr(X̃t.s=s) = Pr(St=s).

In Property 7, we show that the distribution of X̃t.upre given
X̃t.s captures the distribution πpre

i .

Property 7. For all s ∈ S and upre ∈ Upre
i ,

Pr(X̃t.upre=upre|X̃t.s=s) = πpre
i (s, upre).

In Property 8, we show that the distribution of X̃t+1.s given
X̃t.s, X̃t.upre, and Ũt captures the distribution of the S
component of the input that the ith coagent will see given
the input at the previous step and the output that it selected.

Property 8. For all s ∈ S , s′ ∈ S , upre ∈ Upre
i , and u ∈ U ,

Pr(X̃t+1.s=s
′|X̃t.s=s, X̃t.upre=upre, Ũt=u)

= Pr(St+1=s′|St=s, U pre
t =upre, Ut=u).

In Property 9, we show that: Given the S component of the
input, the Upre

i component of the input that the ith coagent
will see is independent of the previous input and output.

Property 9. For all s ∈ S , s′ ∈ S , upre ∈ Upre
i , u′pre ∈ U

pre
i ,

and u ∈ U , Pr(X̃t+1.upre=u
′
pre|X̃t+1.s=s

′)

= Pr(X̃t+1.upre=u
′
pre|X̃t+1.s=s

′, X̃t=(s, upre), Ũt=u).

In Property 10, we use Properties 6, 7, 8, 9, and 10 to show
that the distribution of R̃it captures the distribution of the
rewards that the ith coagent receives.

Property 10. For all r ∈ R, Pr(Rt=r) = Pr(R̃it=r).

We then use Properties 3 and 4 and the definition of M i to
show that:
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Lemma 1. M i is a Markov decision process.

Finally, in Lemma 2, we use the properties above to show
that the CoMDP M i (built from M , i, πpre

i , πpost
i , and θ̄i)

correctly models the local environment of the ith coagent.

Lemma 2. For all M, i, πpre
i , πpost

i , and θ̄i, and given a
policy parameterized by θi, the corresponding CoMDP M i

satisfies Properties 1-6 and Property 10.

Lemma 2 is stated more specifically and formally in the
supplementary material.

4.3. The Coagent Policy Gradient Theorem

Again, all proofs of the properties and theorems below are
provided in Section B of the supplementary material. We use
Property 10 to show that M ’s objective, J(θ), is equivalent
to the objective Ji(θi) of the ith CoMDP.

Property 11. For all coagents i, for all θi, given the same
θ = (θi, θ̄i), J(θ) = Ji(θi).

Next, using Lemmas 1 and 2, we show that the local policy
gradient, ∆i (the expected value of the naive REINFORCE
update), is equivalent to the gradient ∂Ji∂θi

of the ith CoMDP.

Lemma 3. For all coagents i, for all θi,
∂Ji(θi)
∂θi

= ∆i(θi).

The CPGT states that the local policy gradients are the com-
ponents of the global policy gradient. Notice that this intu-
itively follows by transitivity from Property 11 and Lemma
3.

Theorem 1 (Coagent Policy Gradient Theorem).
∇J(θ) = [∆1(θ1)ᵀ,∆2(θ2)ᵀ, . . . ,∆m(θm)ᵀ]

ᵀ, where m
is the number of coagents and ∆i is the local policy gradient
of the ith coagent.

Corollary 1. If αt is a deterministic positive stepsize,∑∞
t=0 αt = ∞,

∑∞
t=0 α

2
t < ∞, additional technical as-

sumptions are met (Bertsekas & Tsitsiklis, 2000, Proposi-
tion 3), and each coagent updates its parameters, θi, with an
unbiased local policy gradient update θi ← θi + αt∆̂i(θi),
then J(θ) converges to a finite value and limt→∞∇J(θ)=0.

5. Asynchronous Recurrent Networks
Having formally established the CPGT, we now turn to ex-
tending the CPGA framework to asynchronous and cyclic
networks—networks where the coagents execute, that is,
look at their local state and choose actions, asynchronously
and without any necessary order. This extension allows for
distributed implementations, where nodes may not execute
synchronously. This also facilitates temporal abstraction,
since, by varying coagent execution rates, one can design
algorithms that learn and act across different levels of ab-
straction.

We first consider how we may modify an MDP to allow
coagents to execute at arbitrary points in time, including at
points in between our usual time steps. Our motivation is to
consider continuous time. As a theoretical construct, we can
approximate continuous time with arbitrarily high precision
by breaking a time step of the MDP into an arbitrarily large
number of shorter steps, which we call atomic time steps.
We assume that the environment performs its usual update
regularly every n ∈ Z+ atomic time steps, and that each
coagent executes (chooses an output in its respective U i) at
each atomic time step with some probability, given by an
arbitrary but fixed distribution that may be conditioned on
the local state. On atomic time steps where the ith coagent
does not execute, it continues to output the last chosen
action in U i until its next execution. The duration of atomic
time steps can be arbitrarily small to allow for arbitrarily
close approximations to continuous time or to model, for
example, a CPU cluster that performs billions of updates
per second. The objective is still the expected value of G0,
the discounted sum of rewards from all atomic time steps:
J(θ) = E[G0|θ] = E[

∑∞
t=0 γ

tRt|θ]. (Note that γ in this
equation is the nth root of the original γ, where n is the
number of of atomic time steps per environment update.)

Next, we extend the coagent framework to allow cyclic
connections. Previously, we considered a coagent’s lo-
cal state to be captured by Xi

t = (St, U
pre
t ), where U pre

t

is some combination of outputs from coagents that come
before the ith coagent topologically. We now allow coa-
gents to also consider the output of all m coagents on the
previous time step, U all

t−1 = (U1
t−1, U

2
t−1, . . . U

m
t−1). In the

new setting, the local state at time t is therefore given by
Xi
t = (St, U

pre
t , U all

t−1). The corresponding local state set is
given by X i = S ×Upre×U1× · · · ×Um. In this construc-
tion, when t = 0, we must consider some initial output of
each coagent, U all

−1. For the ith coagent, we define U i−1 to
be drawn from some initial distribution, hi0, such that for all
u ∈ U i, hi0(u) = Pr(U i−1 = u).

We redefine how each coagent selects actions in the asyn-
chronous setting. First, we define a random variable, Eit ,
the value of which is 1 if the ith coagent executes on atomic
time step t, and 0 otherwise. Each coagent has a fixed
execution function, βi : X i × N → [0, 1], which de-
fines the probability of the ith coagent executing on time
step t, given the coagent’s local state. That is, for all
x ∈ X i, βi(x) := Pr(Eit = 1|Xi

t = x). Finally, the
action that the ith coagent selects at time t, U it , is sampled
from πi(X

i
t , ·, θi) if Eit = 1, and is U it−1 otherwise. That

is, if the agent does not execute on atomic time step t, then
it should repeat its action from time t− 1.

We cannot directly apply the CPGT to this setting: the policy
and environment are non-Markovian. That is, we cannot de-
termine the distribution over the output of the network given



Asynchronous Coagent Networks

only the current state, St, since the output may also depend
on U all

t−1. However, we show that the asynchronous setting
can be reduced to the acyclic, synchronous setting using
formulaic changes to the state set, transition function, and
network structure. This allows us to derive an expression for
the gradient with respect to the parameters of the original,
asynchronous network, and thus to train such a network. We
prove a result similar to the CPGT that allows us to update
the parameters of each coagent using only states and actions
from atomic time steps when the coagent executes.

5.1. The CPGT for Asynchronous Networks

We first extend the definition of the local policy gradient,
∆i, to the asynchronous setting. In the synchronous set-
ting, the local policy gradient captures the update that a
coagent would perform if it was following an unbiased
policy gradient algorithm using its local inputs and out-
puts. In the asynchronous setting, we capture the update
that an agent would perform if it were to consider only
the local inputs and outputs it sees when it executes. For-
mally, we define the asynchronous local policy gradient:

∆i(θi) := E
[∑∞

t=0E
i
tγ
tGt

∂ ln
(
πi

(
Xt,Ut,θi

))
∂θi

∣∣∣θ].
The only change from the synchronous version is the intro-
duction of Eit . Note that when the coagent does not execute
(Eit = 0), the entire inner expression is 0. In other words,
these states and actions can be ignored. An algorithm es-
timating Gt would still need to consider the rewards from
every atomic time step, including time steps where the co-
agent does not execute. However, the algorithm may still
be designed such that the coagents only perform a com-
putation when executing. For example, during execution,
coagents may be given the discounted sum of rewards since
their last execution to serve as a summary of all rewards
since that execution. The important question is then: does
something like the CPGT hold for the asynchronous local
policy gradient? If each coagent executes a policy gradient
algorithm using unbiased estimates of ∆i, does the network
still perform gradient descent on the asynchronous setting
objective, J? The answer turns out to be yes.

Theorem 2 (Asynchronous Coagent Policy Gradient Theo-
rem).
∇J(θ) = [∆1(θ1)ᵀ,∆2(θ2)ᵀ, . . . ,∆m(θm)ᵀ]

ᵀ, where m
is the number of coagents and ∆i is the asynchronous local
policy gradient of the ith coagent.

Proof. The general approach is to show that for any MDP
M , with an asynchronous network represented by π with
parameters θ, there is an augmented MDP, M̀ , with objec-
tive J̀ and an acylic, synchronous network, π̀, with the same
parameters θ, such that J(θ) = J̀(θ). Thus, we reduce the
asynchronous problem to an equivalent synchronous prob-
lem. Applying the CPGT to this reduced setting allows us

to derive Theorem 2.

The original MDP, M , is given by the tuple
(S,A, P,R, d0, γ). We define the augmented MDP,
M̀ , as the tuple, (S̀, À, P̀ , R̀, d̀0, γ̀). We would like M̀ to
hold all of the information necessary for each coagent to
compute its next output, including the previous outputs
of all coagents. This will allow us to construct an acyclic
version of the network to which we may apply the CPGT.
We define U all = U1 × U2 × · · · × Um to be the combined
output set of all m coagents in π and E = {0, 1}m to be the
set of possible combinations of coagent executions. We
define the state set to be S̀ = S × U all and the action set
to be À = A × U all × E . We write the random variables
representing the state, action, and reward at time t as
S̀t, Àt, and R̀t respectively. Additionally, we refer to the
components of values s̀ ∈ S̀ and à ∈ À and the components
of the random variables S̀t and Àt using the same notation
as for the components of Xt above (for example, s̀.s is
the S component of s̀, Àt.uall is the U all component of Àt,
etc.). For vector components, we write the ith component of
the vector using a subscript i (for example, s̀.uall

i is the ith

component of s̀.uall).

The transition function, P̀ , captures the original tran-
sition function and the fact that S̀t+1.u

all = Àt.u
all.

For all s̀, s̀′ ∈ S̀ and à ∈ À, P̀ (s̀, à, s̀′) is given by
P (s̀.s, à.a, s̀′.s) if s̀′.uall=à.uall, and 0 otherwise. For all
s̀, s̀′ ∈ S̀, à ∈ À, and r ∈ R, the reward distribution is sim-
ply given by R̀(s̀, à, s̀′, r)=R(s̀.s, à.a, s̀′.s, r). The initial
state distribution, d̀0, captures the original state distribution
and the initialization of each coagent. For all s̀∈S̀, it is
given by d̀0(s̀)=d0(s̀.s)

∏m
i=1 h0(s̀.ui). The discount pa-

rameter is γ̀=γ. The objective is the usual: J̀(θ)=E[G̀0|θ],
where G̀0=E[

∑∞
t=0 γ̀

tR̀t|θ].

Next we define the synchronous network, π̀, in terms of
components of the original asynchronous network, π—
specifically, each πi, βi, and θi. We must modify the origi-
nal network to accept inputs in S̀ and produce outputs in À.
Recall that in the asynchronous network, the local state at
time t of the ith coagent is given by Xi

t = (St, U
pre
t , U all

t−1).
In the augmented MDP, the information inU all

t−1 is contained
in S̀t, so the local state of the ith coagent in the synchronous
network is X̀i

t = (S̀t, Ù
pre
t ), with accompanying state set

X̀ i = S̀×Ùpre. To produce the U all component of the action,
Àt.u

all, we append the output of each coagent to the action.
In doing so, we have removed the need for cyclic connec-
tions, but still must deal with the asynchronous execution.

The critical step is as follows: We represent each coa-
gent in the asynchronous network by two coagents in
the synchronous network, the first of which represents
the execution function, βi, and the second of which
represents the original policy, πi. At time step t, the
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first coagent accepts X̀i
t and outputs 1 with probability

βi((S̀t.s, Ù
pre
t , S̀t.u)), and 0 otherwise. We append the

output of every such coagent to the action in order to
produce the E component of the action, Àt.e. Because
the coagent representing βi executes before the coagent
representing πi, from the latter’s perspective, the output
of the former is present in Ù pre

t , that is, Ù pre
t .ei = Àt.ei.

If Ù pre
t .ei = 1, the coagent samples a new action from

πi. Otherwise, it repeats its previous action, which can
be read from its local state (that is, X̀i

t .u
all
i = Ù it−1).

Formally, for all (s̀, ùpre) ∈ X̀ i and θi, the probability of
the latter coagent producing action ù ∈ Ù i is given by:
π̀i((s̀, ùpre), ù, θi):=πi((s̀.s, ùpre, s̀.u

all), ù, θi) if ùpre.ei=1,
1 if ùpre.ei=0 and s̀.uall

i =ù, and 0 otherwise. This com-
pletes the description of π̀. In the supplementary material,
we prove that this network exactly captures the behavior of
the asynchronous network—that is, π̀((s, u), (a, u′, e), θ)
= Pr(At = a, U all

t = u′, Et = e|St = s, U all
t−1 = u, θ)

for all possible values of a, u, a, u′, e, and θ in their
appropriate sets.

The proof that J(θ) = J̀(θ) is given in Section C of the
supplementary material, but it follows intuitively from the
fact that 1) the “hidden” state of the network is now captured
by the state set, 2) π̀ accurately captures the dynamics of
the hidden state, and 3) this hidden state does not materially
affect the transition function or the reward distribution with
respect to the original states and actions.

Having shown that the expected return in the asynchronous
setting is equal to the expected return in the synchronous set-
ting, we turn to deriving the asynchronous local policy gradi-
ent, ∆i. It follows from J(θ) = J̀(θ) that∇J(θ) = ∇J̀(θ).
Since π̀ is a synchronous, acylic network, and M̀ is an MDP,
we can apply the CPGT to find an expression for ∇J̀(θ).
For the ith coagent in the synchronous network, this gives

us: ∂J̀(θ)
∂θi

= E
[∑∞

t=0 γ̀
tG̀t

∂ ln(π̀i((S̀t,Ù
pre
t ),Ùt,θi))

∂θi

∣∣∣θ].
Consider ∂ ln

(
π̀i((S̀t, Ù

pre
t ), Ùt, θi)

)
/∂θi, which we abbre-

viate as ∂π̀i/∂θi. When Ù pre
t .ei = 0, we know that the

action is Ù it = S̀t.ui = Ù it−1 regardless of θ. Therefore, in
these local states, ∂π̀i/∂θi is zero. When Ù pre

t .ei = 1, we
see from the definition of π̀ that ∂π̀i/∂θi=∂πi/∂θi. There-
fore, we see that in all cases, ∂π̀i/∂θi=(Ù pre

t .ei)∂π/∂θi.
Substituting this into the above expression yields:

E
[∑∞

t=0(Ù pre
t .ei)γ̀

tG̀t
∂ ln
(
πi

(
(S̀t.s,Ù

pre
t ,S̀t.u

all),Ùt,θi

))
∂θi

∣∣∣θ].
In the proof that J(θ) = J̀(θ) given in Section C of the
supplementary material, we show that the distribution over
all analogous random variables is equivalent in both settings
(for example, for all s ∈ S, Pr(St = s) = Pr(S̀t.s = s)).
Substituting each of the random variables of M into the
above expression yields precisely the asynchronous local

policy gradient, ∆i.

To empirically test the Asynchronous Coagent Policy Gra-
dient Theorem (ACPGT), we compare the gradient (∇J)
estimates of the ACPGT with a finite difference method.
The results are presented in Figure 5 (Section D) of the sup-
plementary material; this data provides empirical support
for the ACPGT.

6. Applications to Past and Future Work
Consider past RL approaches that use stochastic networks,
such as stochastic computation graphs, hierarchical net-
works like the option-critic, or any other form of SNN; one
could use the ACPGT to immediately obtain a learning rule
for any of these varieties of SNN. In other words, the theory
in the sections above facilitates the derivation of gradient
and learning rules for arbitrary stochastic architectures. The
ACPGT applies when there are recurrent connections. It
applies in the asynchronous case, even when the units (coa-
gents) have different rates or execution probabilities, and/or
have execution functions that depend on the output of other
units or the state. It also applies to architectures that are
designed for temporal abstraction, like the option-critic de-
picted in Figure 3. Architectures adding additional levels of
abstraction, such as the hierarchical option-critic (Riemer
et al., 2018), can be analyzed with similar ease. Architec-
tures designed for other purposes, such as partitioning the
state space between different parts of the network (Sutton
et al., 2011), or simplifying a high-dimensional action space
(Thomas & Barto, 2012), can also be analyzed with the
coagent framework.

The diversity of applications is not limited to network topol-
ogy variations. For example, one could design an asyn-
chronous deep neural network where each unit is a separate
coagent. Alternatively, one could design an asynchronous
deep neural network where each coagent is itself a deep
neural network. In both cases, the coagents could run at
different rates to facilitate temporal abstraction. In the lat-
ter case, the gradient generated by an algorithm following
the ACPGT could be used to train each coagent internally
with backpropagation. Notice that the former architecture is
trained without backpropagation while the latter architecture
combines an ACPGT algorithm with backpropagation: The
ACPGT facilitates easy design and analysis for both types
of architectures and algorithms.

Deriving the policy gradient for a particular coagent simply
requires identifying the inputs and outputs and plugging
them into the ACPGT formula. In this way, an algorithm
designer can rapidly design a principled policy gradient algo-
rithm for any stochastic network, even in the asynchronous
and recurrent setting. In the next section, we give an exam-
ple of this process.
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Figure 3. The option-critic framework, described by Bacon et al.
(2017), depicted as a three-coagent network consisting of 1) β,
which contains the termination functions for each option, 2) πΩ,
the policy over options, and 3) πω , which contains the option
policies and selects the action at. Each option has a corresponding
label. Ω is the set of the available options’ labels. The label
corresponding to the option selected at time t is denoted as ωt. β’s
local state is st and the previous option label, ωt−1 (the latter via
a recurrent connection from πΩ). β sends an action, et ∈ {0, 1},
to πΩ. πΩ’s execution function outputs 1 (a 100% chance of
execution) if et = 1, and outputs 0 (no chance of execution) if
et = 0. That is, πΩ executes if and only if et = 1. πΩ’s local
state is st and et. If it executes, πΩ outputs a new option label
ωt ∈ Ω. πω chooses an action, at ∈ A, based on its local state, st
and ωt. Internally, πω looks up the option policy corresponding to
the option label ωt and selects an action based on that option.

7. Case Study: Option-Critic
The coagent framework allows one to design an arbitrary
hierarchical architecture, and then immediately produce a
learning rule for that architecture. In this section, we study
the well-known option-critic framework (Bacon et al., 2017)
as an example, demonstrating how the CPGT drastically
simplifies the gradient derivation process. The option-critic
framework aspires to many of the same goals as coagent net-
works: namely, hierarchical learning and temporal abstrac-
tion. We show that the architecture is equivalently described
in terms of a simple, three-node coagent network, depicted
and described in Figure 3. More formal and complete def-
initions are provided in Section E.1 of the supplemental
material, but Figure 3 is sufficient for the understanding of
this section.

Bacon et al. (2017) give gradients for two of the three co-
agents. πω, the policy that selects the action, and β, the
termination functions, are parameterized by weights θ and
ϑ, respectively. Bacon et al. (2017) gave the corresponding
policy gradients, which we rewrite as:

∂J

∂θ
=

∑
x∈(S×Ω)

dπΩ(x)
∑
a∈A

∂πω(x, a)

∂θ
QU (x, a), (1)

∂J

∂ϑ
=−

∑
x∈(S×Ω)

dπΩ(x)
∂β(x, 0)

∂ϑ
AΩ(x.s, x.ω), (2)

where dπΩ(x) is a discounted weighting of state-option
pairs, given by dπΩ(x) :=

∑∞
t=0 γ

t Pr(st=x.s, ωt=x.ω),
QU (x, a) is the expected return from choosing option
x.ω and action a at state s under the current policy, and

AΩ(s, ω) is the advantage of choosing option ω, given by
AΩ(s, ω) = QΩ(s, ω) − VΩ(s), where QΩ(s, ω) is the ex-
pected return from choosing option ω in state s, and VΩ(s)
is the expected return from beginning in state s with no
option selected.

Previously, the CPGT was written in terms of expected
values. An equivalent expression of the local gra-
dient for policy πi is the sum over the local state
set, Xi, and the local action set, Ui: ∂J(θ)/∂θi =∑
x∈Xi

dπi (x)
∑
u∈Ui

∂πi(x,u)
∂θi

Qi(x, u), where Qi(x, u) =

E[Gt|Xi
t=x, U

i
t=u]. Deriving the policy gradient for a par-

ticular coagent simply requires identifying the inputs and
outputs and plugging them into this formula.

First consider the policy gradient for πω, that is, ∂J/∂θ:
the input set is Xω = S × Ω, and the action set is A. The
local initial state distribution (the dπi term) is given exactly
by dπΩ, and the local state-action value function (the Qi
term) is given exactly by QU . Directly substituting these
terms into the CPGT immediately yields (1). Note that this
derivation is completely trivial using the CPGT: only direct
substitution is required. In contrast, the original derivation
from Bacon et al. (2017) required a degree of complexity
and several steps.

Next consider ∂J/∂ϑ. The input set is again Xβ = S × Ω,
but the action set is {0, 1}. The local state distribution is
again the distribution over state-option pairs, given by dπΩ.
The PCGN expression gives us

∂J

∂ϑ
=

∑
x∈(S×Ω)

dπΩ(x)
∑

u∈{0,1}

∂β(x, u)

∂ϑ
Qβ(x, u).

In Section E.2 of the supplementary material we show that
this is equivalent to (2). Notice that, unlike πΩ, both of these
coagents execute every atomic time step. The execution
function, therefore, always produces 1 and therefore can be
ignored for the purposes of the gradient calculation.

Finally, consider the gradient of J with respect to the pa-
rameters of πΩ. Bacon et al. (2017) do not provide a policy
gradient for πΩ, but suggest policy gradient methods at the
SMDP level, planning, or intra-option Q-learning (Sutton
et al., 1999). One option is to use the ACPGT approach. The
execution function is simply the output of the termination
coagent at time t, et. We use the expected value form for
simplicity, substituting terms in as above:

∂J/∂µ = E
[ ∞∑
t=0

etγ
tGt

∂ ln
(
πΩ

(
Xt, ωt, µ

))
∂µ

∣∣∣{θ, ϑ, µ}],
where µ represents the parameters of πΩ and Xt ∈ (S ×
{0, 1}) is the local state of the πΩ coagent at time t. While
Bacon et al. (2017) introduce an asynchronous framework,
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the theoretical tools they use for the synchronous compo-
nents do not provide a gradient for the asynchronous com-
ponent. Instead, their suggestions rely on a piecemeal ap-
proach. While this approach is reasonable, it invokes ideas
beyond the scope of their work for training the asynchronous
component. Our approach has the benefit of providing a
unified approach to training all components of the network.

The ACPGT provided a simplified and unified approach to
these gradient derivations. Using the option-critic frame-
work as an example, we have shown that the ACPGT is
a useful tool for analyzing arbitrary stochastic networks.
Notice that a more complex architecture containing many
levels of hierarchy could be analyzed with similar ease.

8. Conclusion
We provide a formal and general proof of the coagent policy
gradient theorem (CPGT) for stochastic policy networks,
and extend it to the asynchronous and recurrent setting. This
result demonstrates that, if coagents apply standard policy
gradient algorithms from the perspective of their inputs and
outputs, then the entire network will follow the policy gradi-
ent, even in asynchronous or recurrent settings. We empiri-
cally support the CPGT, and use the option-critic framework
as an example to show how our approach facilitates and sim-
plifies gradient derivation for arbitrary stochastic networks.
Future work will focus on the potential for massive paral-
lelization of asynchronous coagent networks, and on the
potential for many levels of implicit temporal abstraction
through varying coagent execution rates.
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